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Abstract

Existing knowledge distillation works for semantic seg-
mentation mainly focus on transfering high-level contextual
knowledge from teacher to student. However, low-level tex-
ture knowledge is also of vital importance for characteriz-
ing the local structural pattern and global statistical prop-
erty, such as boundary, smoothness, regularity and color
contrast, which may not be well addressed by high-level
deep features. In this paper, we are intended to take full
advantage of both structural and statistical texture knowl-
edge and propose a novel Structural and Statistical Texture
Knowledge Distillation (SSTKD) framework for Semantic
Segmentation. Specifically, for structural texture knowl-
edge, we introduce a Contourlet Decomposition Module
(CDM) that decomposes low-level features with iterative
laplacian pyramid and directional filter bank to mine the
structural texture knowledge. For statistical knowledge, we
propose a Denoised Texture Intensity Equalization Mod-
ule (DTIEM) to adaptively extract and enhance statistical
texture knowledge through heuristics iterative quantization
and denoised operation. Finally, each knowledge learning
is supervised by an individual loss function, forcing the stu-
dent network to mimic the teacher better from a broader
perspective. Experiments show that the proposed method
achieves state-of-the-art performance on Cityscapes, Pas-
cal VOC 2012 and ADE20K datasets.

1. Introduction
Semantic segmentation, which aims to assign each pixel

a unique category label for the input image, is a cru-
cial and challenging task in computer vision. Recently,
deep fully convolution network [32] based methods have
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Figure 1. The overview of the structural and statistical texture
knowledge distillation of an example image. Two kinds of the tex-
ture knowledge are extracted from the low-level feature of a CNN
backbone. The original structural and statistical texture are fuzzy
and in low-contrast. After distillation, the contour is clearer and
the intensity contrast is more equalized, showing that two kinds of
the texture are both enhanced.

achieved remarkable results in semantic segmentation, and
extensive methods have been investigated to improve the
segmentation accuracy by introducing sophisticated mod-
els [6, 8, 23, 27, 44, 46, 47, 50, 52]. However, these methods
are usually based on a large model, which contains tremen-
dous parameters. Since semantic segmentation has shown
great potential in many applications like autonomous driv-
ing, video surveillance, robot sensing and so on, how to
keep efficient inference speed and high accuracy with high-
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resolution images is a critical problem.
The focus of this paper is knowledge distillation, which

is introduced by Hinton et al. [22] based on a teacher-
student framework, and has received increasing attention
in semantic segmentation community [20, 30, 31, 37, 42].
Previous works mainly focus on the high-level contex-
tual knowledge [30, 37] or the final response knowledge
[20,31,42], which are appropriate to capture the global con-
text and long range relation dependencies among pixels, but
will also result in coarse and inaccurate segmentation re-
sults, since they are usually extracted with a large receptive
field and miss many low-level texture details. In this paper,
we concentrate on exploiting the texture knowledge from
the teacher to enrich the low-level information of the stu-
dent. According to the digital image processing [18], tex-
ture is a region descriptor which can provide measures for
both local structural property and global statistical property
of a image. The structural property can also be viewed as
spectral domain analysis and often refer to some local pat-
terns, such as boundary, smoothness and coarseness. While
the statistical property pay more attention to the global dis-
tribution analysis, such as histogram of intensity.

Based on the above analysis, we propose a novel
Structural and Statistical Texture Knowledge Distillation
(SSTKD) framework to effectively distillate two kinds of
the texture knowledge from the teacher model to the student
model, as shown in Figure 1. More comprehensively, we
introduce a Contourlet Decomposition Module (CDM) that
decomposes low-level features to mine the structural tex-
ture knowledge with iterative laplacian pyramid and direc-
tional filter bank. The contourlet decomposition is a kind of
multiscale geometric analysis tool and can enable the neu-
ral network the ability of geometric transformations, thus
is naturally suitable for describing the structural properties.
Moreover, we propose a Denoised Texture Intensity Equal-
ization module (DTIEM) to adaptively extract and enhance
the statistical knowledge, cooperated with an Anchor-Based
Adaptive Importance Sampler. The DTIEM can effectively
describe the statistical texture intensity in a statistical man-
ner in deep neural networks, as well as suppress the noise
produced by the amplification effect in near-constant re-
gions during the texture equalization. Overall, our contri-
bution is threefold:

• To our knowledge, it is the first work to introduce
both the structural and statistical texture to knowledge
distillation for semantic segmentation. We propose
a novel Structural and Statistical Texture Knowledge
Distillation (SSTKD) framework to effectively extract
and enhance the unified texture knowledge and apply
them to teacher-student distillation.

• More comprehensively, we introduce the Contourlet
Decomposition Module (CDM) and propose the
Denoised Texture Intensity Equalization Module

(DTIEM) to describe the structural and statistical tex-
ture, respectively. Moreover, DTIEM utilizes an adap-
tive importance sampler and a denoised operation for
efficient and accurate characterization.

• Experimental results show that the proposed frame-
work achieves the state-of-the-art performance on
three popular benchmark datasets in spite of the choice
of student backbones.

2. Related Work
Semantic Segmentation. Existing works for semantic seg-
mentation mainly focused on contextual information and
elaborate network [16, 21, 26, 33]. Many works [6–8,
23, 28, 50] try to take advantage of rich contextual infor-
mation in deep features, while the improvement of net-
work design has also significantly driven the performance,
such as graph modules [23, 24, 39] and attention tech-
niques [7, 17, 48]. How to find a better trade-off between
accuracy and efficiency have been discussed for a long
time. Real-time semantic segmentation algorithms aim to
produce high-quality prediction under limited calculation
[2, 34, 41, 45, 49]. BiSeNet [45] introduced spatial path
and semantic path to reduce computational cost. However,
though their efficiency, there is a large gap in the perfor-
mance to be considered.
Knowledge Distillation. In a typical knowledge distilla-
tion framework, the logits are used as the knowledge from
the teacher model [4, 22]. Many works followed this para-
diam in other visual applications, such as object detection
and human pose estimation. In semantic segmentation, ex-
isting methods also utilized this idea to produce fundamen-
tal results. They transferred the output maps to the stu-
dent model, distilling the class probabilities for each pixel
separately. Based on this, they further proposed to extract
the different knowledge from the task-specific view. He et
al. [20] proposed an affinity distill module to transfer the
long-rage dependencies among widely separated spatial re-
gions from a teacher model to a student model. SKD [30]
proposed structured knowledge distillation to transfer pair-
wise relations and holistic knowledge with the help of ad-
versarial learning. IFVD [40] forced the student model to
mimic the intra-class feature variation of the teacher model.
CWD [37] minimized the Kullback–Leibler divergence be-
tween the channel-wise probability map of the teacher and
student networks. Different from them, we first introduce
the texture knowledge to semantic segmentation, showing
an effective framework for this task.
Texture in Semantic Segmentation. In the perspective of
digital image processing [18], texture is a kind of descriptor
that provides measures of properties such as smoothness,
coarseness, regularity and so on. Image texture is not only
about the local structural patterns, but also global statistical
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Figure 2. An overview of our proposed framework. PSPNet [50] is used as the model architecture for both teacher and student network,
which consists of the backbone network, pyramid pooling module (PPM) and the final output map. Apart from the response knowledge, we
further propose to extract the texture knowledge from low-level features. The corresponding parts of two kinds of the texture knowledge
are depicted in the light red [1, 3, 29] and light green below the network pipeline, respectively.

property. Zhu et al. [52] firstly introduced the statistical tex-
ture to semantic segmentation, and proposed a Quantizaton
and Count Operator (QCO) to extract the low-level statisti-
cal texture feature, which is then aggregated with high-level
contextual feature to obtain a more precise segmentation
map. However the QCO performs as a global manner and
sparse quantization, as well as neglects the noise produced
by the amplification effect. Moreover, structural texture in-
formation is not well addressed in their work. In this paper,
we focus on the unified texture information including both
structural and statistical, and propose to improve the sta-
tistical characterization with anchor-based importance sam-
pling, heuristics iterative quantization and denoised opera-
tion, as well as propose the CDM to re-emphasize the struc-
tural texture.

3. Method

In this section, we introduce the proposed Structural and
Statistical Texture Knowledge Distillation (SSTKD) frame-
work in detail. Firstly, we introduce the overall Structure in

section 3.1. Subsequently, we introduce the Structural Tex-
ture Knowledge Distillation and Statistical Texture Distilla-
tion in section 3.2 and 3.3, respectively. Finally, we provide
the optimization process in section 3.4.

3.1. Overview

The overall framework of the proposed method is illus-
trated in Figure 2. The upper network is the teacher net-
work while the lower one is the student network. Following
the previous works [30, 37, 40], the PSPNet [50] architec-
ture is used for both the teacher and student, and ResNet-
101 and ResNet-18 [19] are used as their backbone respec-
tively, which can be also changed to any other backbone
networks. Firstly, we adopt the same basic idea in knowl-
edge distillation to align the response-based knowledge be-
tween the teacher and student as previous works [30,37,40].
Specifically, we use the KL divergence to supervise the
pixel-wise probability distribution and adversarial learning
to strengthen the output segmentation maps. Furthermore,
we propose to extract two kinds of the texture knowledge
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Figure 3. LP decomposition [11, 12, 29]. The low-pass subbands
a is generated from the input x with a low-pass analysis filters
H and a sampling matrix S. The high-pass subbands b are then
computed as the difference between x and the prediction of a, with
a sampling matrix S followed by a low-pass synthesis filters G.

from the first two layers of ResNet backbone for both the
teacher and student model, as the texture information is
more reflected on low-level features. For structural tex-
ture knowledge, we introduce a Contourlet Decomposition
Module (CDM) which exploits structural information in the
spectral space. For statistical texture knowledge, we in-
troduce a Denoised Texture Intensity Equalization Module
(DTIEM) to adaptively extract the statistical texture inten-
sity histogram with an adaptive importance sampler, then
enhance it with a denoised operation and graph reasoning.
Finally we optimize two kinds of the knowledge between
the teacher and student model with two individual Mean
Squared (L2) loss.

3.2. Structural Texture Knowledge Distillation

Traditional filters have inherent advantages for texture
representation with different scales and directions in the
spectral domain, and here we consider to utilizing the con-
tourlet decomposition, a kind of multiscale geometric anal-
ysis tool which has substantial advantages in locality and
directionality [11–14, 29, 36], and can enhance the ability
of geometric transformations in CNN. Based on the advan-
tages, we introduce a Contourlet Decomposition Module
(CDM) [11, 29] to mine the texture knowledge in the spec-
tral space. The light red part in Figure 2 shows the details of
CDM. Specifically, it adopts a Laplacian Pyramid (LP) [5]
and a directional filter bank (DFB) [1,3,9] iteratively on the
low-pass image. The LP is aimed to obtain multiscale de-
composition. As shown in Figure 3, given the input feature
x, a low-pass analysis filters H and a sampling matrix S
are used to generate downsampled low-pass subbands, then
the high-pass subbands are obtained by the difference be-
tween the original x and the intermediate result, which is
computed by a sampling matrix S and a low-pass synthe-
sis filters G [5, 29]. Next, DFB is utilized to reconstruct
the original signal with a minimum sample representation,
which is generated by m-level binary tree decomposition in
the two dimensional frequency domain, resulting in 2m di-
rectional subbands [3]. For example, the frequency domain
is divided into 23 = 8 directional subbands when m = 3,
and the subbands 0-3 and 4-7 correspond to the vertical and

horizontal details, respectively. Finally, the output of the
contourlet decomposition in level n can be described by the
following equations:

Fl,n+1, Fh,n+1 = LP (Fl,n) ↓ p

Fbds,n+1 = DFB(Fh,n+1) n ∈ [1,m]
(1)

where the symbol ↓ is downsampling operator, p denotes the
interlaced downsampling factor, l and h represent the low-
pass and high-pass components respectively, bds denotes
the bandpass directional subbands.

For a richer expression, we stack multiple contourlet
decomposition layers iteratively in the CDM. In this way,
abundant bandpass directional features are obtained via
the contourlet decomposition from the low-level features,
which are used as the structural texture knowledge F str

for distillation. We apply the CDM to the teacher and stu-
dent networks respectively and use the conventional Mean
Squared (L2) loss to formulate the texture distillation loss:

Lstr(S) =
1

(W ×H)

∑
i∈R

(F str;T
i − F str;S

i )2 (2)

where F str;T
i and F str;S

i denote the ith pixel in texture fea-
tures produced from the teacher network T and the student
network S, and i ∈ R = W ×H represents the feature size.

3.3. Statistical Texture Distillation

The statistical texture is usually of a wide variety and
a continuous distribution in spectral domain, which is dif-
ficult to be extracted and optimized in deep neural net-
works. Previous work [52] firstly proposed a Quantization
and Count Operator (QCO) to describe the statistical tex-
ture, which quantized the whole input feature into multiple
uniform levels, then counted the number of features belong-
ing to each level to get the quantization encoding matrix,
followed by a graph module to perform quantization lev-
els redistribution and texture enhancement. However, there
are three limitations in the ordinary QCO. Firstly, it quan-
tizes the input feature in a global manner, resulting in very
sparse and discrete quantizaton levels distribution, which
can not well balance the trade-off between accurate texture
and computation burden. Secondly, amounts of pixels will
never be quantized to any level as it generates the initial
quantization levels by a uniform distribution, meanwhile
using several narrow-peak functions to quantize the input
feature. Thirdly, it may come across quantization noise pro-
duced by the over-amplify effect in near-constant areas dur-
ing quantization process.

We propose to describe the statistical knowledge based
on the ordinary QCO. Moreover, we propose three improve-
ments in response to the three limitations as shown in the
light green part in Figure 2. Firstly, for the sake of accurate
characterization and efficient computation, we exploit an
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Anchor-Based Adaptive Importance Sampler to only select
the important regions for extraction. Secondly, we design
a heuristics iterative method for a more equalized quantiza-
tion level initialization. Thirdly, we utilize a denoised op-
eration to suppress the over-amplify effect. Based on above
analysis, we propose the Denoised Texture Intensity Equal-
ization Module (DTIEM) to extract and enhance the statis-
tical texture adaptively. In the following sections, we illus-
trate the above modules in detail.
Anchor-Based Adaptive Importance Sampler. Ex-
tracting the statistical texture of the whole input feature is
straightforward, but it lacks the attention on discriminative
regions and only works well when the feature intensities of
pixels are near-uniformly distributed. However, real-world
scenes are usually offended with chaotic conditions and the
pixel intensities tend to be heavily imbalanced distributed.
Moreover, the global operation on a whole image is not
able to describe local intensity contrast accurately and al-
ways means a large computation burden. Thus we consider
using an importance sampling method to mine the hard-to-
classify areas, where the feature intensity distribution is dis-
crete and varying, while the statistical texture is rich and di-
verse. Following the typical paradiam [25], we design an
Anchor-Based Adaptive Importance Sampler. It is designed
to bias selection towards most uncertain regions, while re-
taining some degree of uniform coverage, by the follow-
ing steps [25]. (i) Over Generation: Aiming at sample M
points, to guarantee the variety and recall, we over-generate
candidate points by randomly selecting the kM(k > 1)
points with a uniform distribution. (ii) Importance sam-
pling: In the kM points, we are intended to choose out the
most uncertain βM(β ∈ [0, 1]) ones with an anchor-based
adaptive importance sampling strategy. (iii) Coverage: to
balance the distribution, we select the remaining (1− β)M
ones from the rest of points with a uniform distribution.

As found that the most essential step lies in importance
sampling, we formulate this process as follows. For each
sample si ∈ kM , we set several anchors with various scales
and aspect ratios at the location. In this way, we generate
ξ region proposals Ri for each si. For each rij ∈ Ri(i ∈
[1, kM ], j ∈ [1, ξ]), we calculate its sample probability by:

probij = std(rij) (3)

where std(·) means the variance function. It shows that
the region with larger variance will be more likely sampled,
as its intensity distribution is diverse and may have more
rich statistical textures that need to be enhanced. Noted that
the student utilizes the same importance sampling results as
teacher to select region proposals.
Texture Extraction and Intensity Equalization. QCO is
inspired of histogram quantification [18] and describes tex-
ture in a statistical manner. Given the input feature A ∈
RC×H×W , it firstly calculates the self-similarity matrix S,

and quantizes it into N uniform levels L. Next it counts the
value for each quantization level and gets the quantization
encoding matrix E ∈ RN×HW . Finally it utilizes a simple
fully-connected graph to perform quantization levels redis-
tribution and texture enhancement. The quantization can be
formulated as:

Ln =
max (S)−min (S)

N
· n+min(S), n ∈ [1, N ]

En
i =

{
1− |Ln − Si|, if − 0.5

N ≤ Ln − Si <
0.5
N

0 else
(4)

where i ∈ [1, HW ]. Based on the above discussion, we
propose the other two improvements here.

For the quantization level, a heuristics iterative method
is adopted instead of a uniform quantization. Specifically,
we use a simple t-step uniform sampling to formulate an at-
tention sampled results. Firstly, we over-quantize the input
into 2N levels to guarantee that most points can be quan-
tized to one of the levels, obtaining the quantization en-
coding matrix with Eq. 4. Based on the count values of
all quantization levels, we set an intensity ratio threshold δ
to divide the quantization levels into two groups G<δ and
G>=δ , which are then re-quantized into αN(α ∈ [0, 1])
and (1 − α)N levels to obtain final N levels. The above
process can be performed iteratively. In this way, the imbal-
anced distribution problem among quantization levels can
be weaken. Moreover, for each quantization function in Eq.
4, we widen its peak adaptively by replacing the N with
its current group levels number, as each intermediate group
level number is much smaller than N , thus the cover range
of each quantization function can be broadened.
Intensity-Limited Denoised Strategy. For the noise over-
amplity problem, inspired by the Contrast-Limited Adap-
tive Histogram Equalization [35], we propose an intensity-
limited denoised strategy to constrain the intensity peak and
redistribute the extra peak to all quantization levels dynam-
icly. More comprehensively, for each selected region and N
quantization levels, we get the initial quantization encoding
matrix E by Eq. 4. Due to the near-constance sub-area,
the count value of some levels may show in a very high
peak [35], we perform an intensity-clip operation to limit
these peaks with a given ratio threshold θ, and then redis-
tribute the sum of extra peak values Eextra equally among
all the quantization levels. Finally, the denoised quantiza-
tion encoding matrix DE can be calculated:

Eextra =

N∑
n

[max(En − θ ·max(E), 0)] (5)

DEn =

{
θ ·max(E) + Eextra

N if En > θ ·max(E)
En + Eextra

N else
(6)
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where n ∈ [1, N ], max(·) is the maximum function. Then
DE is also enhanced with the graph reasoning as the previ-
ous work [52] to get the statistical texture knowledge F sta.
Similarly as the structural texture knowledge distillation,
we apply the DTIEM to both teacher and student respec-
tively and use the L2 loss to formulate the distillation loss:

Lsta(S) =
1

(W ×H)

∑
i∈R

(F sta;T
i − F sta;S

i )2 (7)

where F sta;T
i and F sta;S

i denote the statistical texture
knowledge of the teacher and student respectively.

3.4. Optimization

Following the common practice and previous knowledge
distillation works for semantic segmentation [30, 40], we
also add the fundamental response-based distillation loss
Lre and adversarial loss Ladv for stable gradient descent
optimization:

Lre =
1

(Wre ×Hre)

∑
i∈R

KL(P re;T
i ||P re;S

i ) (8)

where P re;T
i and P re;S

i denote the class probabilities of i-
th pixel produced by the teacher and student model respec-
tively, and i ∈ R = Wre ×Hre represents the output size.
The adversarial training is aimed to formulate the holistic
distillation problem [30, 43] and denoted as follows:

Ladv = ES∼p(S)[D(S|I)] (9)

where E(·) is the expectation operator, and D(·) is the dis-
criminator. I and S are the input image and corresponding
segmentation map respectively.

Therefore, for the overall optimization, the whole objec-
tive function consists of a conventional cross-entropy loss
Lseg for semantic segmentation and the abovementioned
distillation loss:

L = Lseg + λ1Lstr + λ2Lsta + λ3Lre − λ4Ladv (10)

where λ1, λ2, λ3, λ4 are set to 0.9, 1.15, 5, 0.01, respec-
tively.

4. Experiments
4.1. Datasets and Evaluation Metrics

To verify the effectiveness of the proposed method, we
conduct experiments on the following large-scale datasets.
Cityscapes. The Cityscapes dataset [10] has 5,000 images
captured from 50 different cities, and contains 19 semantic
classes. Each image has 2048 × 1024 pixels, which have
high quality pixel-level labels of 19 semantic classes. There
are 2,979/500/1,525 images for training, validation and test-
ing.

Method mIOU(%)
T: PSPNet-R101 78.56
S: PSPNet-R18 69.10
+Response Knowledge 72.47
+Response+Structural Texture Knowledge 74.10
+Response+Statistical Texture Knowledge 74.69
+Response+Structural+Statistical
Texture Knowledge 75.15

Table 1. Efficacy of two kinds of the texture knowledge.

ADE20K. The ADE20K dataset has 20K/2K/3K images for
training, validation, and testing, and contains 150 classes of
diverse scenes.
Pascal VOC 2012. The Pascal VOC 2012 dataset [15] is
a segmentation benchmark of 10,582/1,449/1,456 images
for training, validation and testing, which involves 20 fore-
ground object classes and one background class.
Evaluation Metrics. In all experiments, we adopt the mean
Intersection-over-Union (mIoU) to study the distillation ef-
fectiveness. The model size is represented by the number
of network parameters, and the Complexity is evaluated by
the sum of floating point operations (FLOPs) in one forward
propagation on a fixed input size.

4.2. Implementation Details

Following [30, 37, 40], we adopt PSPNet [50] with
ResNet101 [19] backbone as the teacher network, and
use PSPNet with different compact backbones as the stu-
dent networks, including Resnet18 [19] and EfficientNet-
B1 [38], which also validates the effectiveness when the
teacher model and the student model are of different ar-
chitectural types. In this paper, we adopt an offline distil-
lation method, first train the teacher model and then keep
the parameters frozen during the distillation progress. In
the training process of the student network, random scaling
(from 0.5 to 2.1) and random horizontal flipping (with the
probability of 0.5) are applied as the data augmentation. We
implement two-level contourlet decomposition iteratively in
the CDM, where m is set to 4 and 3 respectively. We set
N = 50, α = 0.3, θ = 0.9. Stochastic Gradient Descent
with momentum is deployed as the optimizer, where the
momentum is 0.9 and weight decay rate is 1e-5. The base
learning rate is 0.015 and multiplied by (1− iter

max−iter )
0.9.

We train the model for 80000 iterations with the batch size
of 16.

4.3. Ablation Study

In all the ablation studies, we use Cityscapes validation
dataset, and ResNet-18 pretrained from ImageNet as the
backbone of the student network.
Efficacy of Two Kinds of the Texture Knowledge. Table
1 shows the effectiveness of two kinds of the texture knowl-
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Levels number in CDM val mIoU(%)
baseline 72.47

1 73.44
2 74.10
3 74.11

Table 2. The impact of layer number of comtourlet decomposition.

Method Params (M) FLOPs (G)
PSPNet 70.43 574.9
CDM 1.24 10.90

DTIEM 2.80 23.73

Table 3. The FlOPs and Parameters of the proposed texture mod-
ules.

Components in DTIEM mIOU(%)
baseline 72.47
+Global 73.57
+Adap. Samp. 74.06
+Adap. Samp. + Heuristics Init. 74.25
+Adap. Samp. + Heuristics Init. + Denoised 74.69

Table 4. Abalation Study of Statistiacal Knowledge. “Global”
means global operation without sampling, “Adap. Samp.” means
anchor-based adaptive importance sampling, “Heuristics Init.”
means quantization levels heuristics initialization.

edge. The student network without distillation achieves the
result of 69.10%, and the response knowledge improves it
to 72.47%. Then we further add two kinds of the texture
knowledge successively to validate the effect of each one.
Concretely, it shows that the structural texture knowledge
brings the improvement to 5.0%, and the statistical texture
knowledge boosts the improvement to 5.59%. Finally, when
we add both the texture knowledge, the performance is pro-
moted to 75.15% with a large increase of 6.05%. The gap
between student and teacher is finally reduced, providing a
closer result to the teacher network.
Analysis of Structural Texture Knowledge. We conduct
experiments to verify the effectiveness of the components
in the structural texture module, and show the impact of
level number of comtourlet decomposition in the CDM.
As shown in Table 2, “baseline” means the results of stu-
dent network with response knowledge, with the level num-
ber gradually increasing, mIOU is gradually increasing and
stays still around 74.1%, which indicates that the texture
knowledge is almost saturated when the level number gets
to 2.
Analysis of Statistical Texture Knowledge. In Table 4, we
show the effectness of different components in the statistical
texture module, “baseline” means the results of student net-
work with response knowledge. Firstly, we perform a global

Figure 4. Comparison of visualization of the low-level feature
from stage 1 of the backbone. KD means knowledge distillation.
(a) is the original image. (b) is from the student network without
texture knowledge distillation, (c) shows the changes after apply-
ing it in our method. Line 1 and 3 show the structural texture,
while line 2 and 4 show the statistical texture.

Figure 5. Visual improvements on Cityscapes dataset: (a) orginal
images, (b) w/o distillation, (c) Our distillation method, (d) ground
truth. Our method improves the student network w/o distillation to
produce more accurate and detailed results, which are circled by
dotted lines.

feature intensity equalization on the whole image and get a
limited improvement. Then we add the adaptive sampling,
quantization level heuristics initialization and the denoised
strategy successively, and the performance is gradually im-
proved in this case.
Complexity of Texture Extraction Modules. We show
that the proposed texture modules are lightweight in Table
3, which are estimated with the fixed input size. It shows
that the CDM and DTIEM only bring very little extra cost
compared to the PSPNet.
Visualization. Figure 4 shows the visualization of the low-
level feature from the student network with ResNet18 back-
bone. For comparison, we give the results of the student
network w/ and w/o the texture knowledge distillation in
our method. Specifically, Figure 4 (b) shows the results
which are produced without the structural/statistical texture
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Method
Cityscapes
mIOU(%) Params

(M)
Flops
(G)val test

ENet [34] - 58.3 0.358 3.612
ICNet [49] - 69.5 26.50 28.30
FCN [32] - 62.7 134.5 333.9
RefineNet [27] - 73.6 118.1 525.7
OCNet [47] - 80.1 62.58 548.5
STLNet [52] 82.3 82.3 81.39 293.03

Results w/ and w/o distillation schemes
T: PSPNet-R101 [50] 78.56 78.4 70.43 574.9
S: PSPNet-R18 69.10 67.60 13.07 125.8
+ SKDS [30] 72.70 71.40 13.07 125.8
+ SKDD [31] 74.08 - 13.07 125.8
+ IFVD [40] 74.54 72.74 13.07 125.8
+ CWD [37] 74.87 - 13.07 125.8
+ SSTKD 75.15 74.39 13.07 125.8
S: Deeplab-R18 73.37 72.39 12.62 123.9
+ SKDS [30] 73.87 72.63 12.62 123.9
+ IFVD [40] 74.09 72.97 12.62 123.9
+ CWD [37] 75.91 74.32 12.62 123.9
+ SSTKD 76.13 75.01 12.62 123.9
S: EfficientNet-B1 60.40 59.91 6.70 9.896
+ SKDS [30] 63.13 62.59 6.70 9.896
+ IFVD [40] 66.50 64.42 6.70 9.896
+ CWD [37] - - 6.70 9.896
+ SSTKD 68.26 65.77 6.70 9.896

Table 5. Quantitative results on Cityscapes. “R18”(“R101”)
means ResNet-18(ResNet-101).

knowledge. As we can see, the texture details are very fuzzy
and in low-contrast, the contours of the objects are also in-
complete. By contrast, they are clearer in Figure 4 (c) when
incorporating with two kinds of the texture knowledge. In
this case, the contours of the auto logo and lane lines can of-
fer more correct cues for semantic segmentation. The phe-
nomenon illustrates the validity of the texture knowledge,
providing a better understanding of our method. Besides,
we also visualize the results of the different methods in Fig-
ure 5 for a better comparison.

4.4. Comparison with State-of-the-arts

Cityscapes. Table 5 shows that the proposed SSTKD
framework achieves state-of-the-art results with differ-
ent backbones in Cityscapes validation and test datasets.
More comprehensively, SSTKD improves the student
model(PSPNet) built on ResNet-18 to 75.15% and 74.39%
on validation and test dataset respectively. Moreover,
we also change the student backbone to Deeplab and
EfficientNet-B1, which shows the generality of SSTKD.
Besides, the experimental results also show that we improve
the baseline by a large margin.

Method
Pascal VOC
mIOU(%)

ADE20K
mIOU(%)

Params
(M)

FCN [32] 69.6 39.91 134.5
RefineNet [27] 82.4 40.7 118.1
Deeplab V3 [6] 77.9 44.99 87.1
PSANet [51] 77.9 43.47 78.13
OCRNet [46] 80.3 43.7 70.37

Results w/ and w/o distillation schemes
T: PSPNet-R101 [50] 78.52 44.39 70.43
S: PSPNet-R18 65.42 24.65 13.07
+SKDS [30] 67.73 25.11 13.07
+IFVD [40] 68.04 25.72 13.07
+CWD [31] 69.25 26.80 13.07
+SSTKD 70.98 29.19 13.07
S: Deeplab-R18 66.81 24.89 12.62
+SKDS [30] 68.13 25.52 12.62
+IFVD [40] 68.42 26.53 12.62
+CWD [31] 69.97 27.37 12.62
+SSTKD 71.45 29.79 12.62

Table 6. Quantitative results on Pascal VOC 2012 and ADE20K.
“R18”(“R101”) means ResNet-18(ResNet-101)

.

Pascal VOC 2012 and ADE20K. Table 6 shows the com-
parisons with state-of-the-art methods on PASCAL VOC
2012 and ADE20K validation dataset. Experimental results
show that the proposed method improves the performance
of the student network without distillation, meanwhile sur-
passes previous works in all cases in spite of the choice of
architectures and backbones for student networks.

5. Conclusion

In this paper, we focus on the low-level structural and
statistical knowledge in distillation for semantic segmen-
tation. Specifically, we introduce the Contourlet Decom-
position Module to effectively extract the structural tex-
ture knowledge, and the Denoised Texture Intensity Equal-
ization Module to describe and enhance statistical texture
knowledge, respectively. Under different supervisions, we
force the student network to mimic the teacher network bet-
ter from a broader perspective. Experimental results show
that we achieve new state-of-the-art results on three seman-
tic segmentation datasets, which proves the effectiveness
and superiority of our method.
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