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Abstract

Video events grounding aims at retrieving the most rele-
vant moments from an untrimmed video in terms of a given
natural language query. Most previous works focus on
Video Sentence Grounding (VSG), which localizes the mo-
ment with a sentence query. Recently, researchers extended
this task to Video Paragraph Grounding (VPG) by retrieving
multiple events with a paragraph. However, we find the ex-
isting VPG methods may not perform well on context mod-
eling and highly rely on video-paragraph annotations. To
tackle this problem, we propose a novel VPG method termed
Semi-supervised Video-Paragraph TRansformer (SVPTR),
which can more effectively exploit contextual information
in paragraphs and significantly reduce the dependency on
annotated data. Our SVPTR method consists of two key
components: (1) a base model VPTR that learns the video-
paragraph alignment with contrastive encoders and tackles
the lack of sentence-level contextual interactions and (2) a
semi-supervised learning framework with multimodal fea-
ture perturbations that reduces the requirements of anno-
tated training data. We evaluate our model on three widely-
used video grounding datasets, i.e., ActivityNet-Caption,
Charades-CD-OOD, and TACoS. The experimental results
show that our SVPTR method establishes the new state-of-
the-art performance on all datasets. Even under the condi-
tions of fewer annotations, it can also achieve competitive
results compared with recent VPG methods.

1. Introduction

Localizing events in a given untrimmed video is one
of the challenging video understanding tasks, which is
first proposed by [1, 7]. Following their works, a list
of promising methods [16, 20, 45–47, 50] has been pro-
posed. However, most existing methods focus on Video
Sentence Grounding (VSG), addressing this problem in
“single-multi” approaches (as shown in Fig. 1(a)), they
ground a moment from a video that consists of several dif-
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(b) Video  Paragraph Grounding

 Two young girls are standing in the kitchen preparing to cook. 
 They then open a box of brownies…get an egg out of the fridge.
 After, the two continue to stir the contents … placing them on a pan. 
 Once the cookies are … watch the cookies bake. 
When they are done, they … begin eating.
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Sentence: The man with red shorts serves the ball.

(a) Video  Sentence Grounding
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Figure 1. An illustrative example of VSG and VPG: (a) VSG aims
at retrieving a particular moment with a single sentence. (b) VPG
receives a paragraph consisting of multiple sentences as a query
and localizes multiple events in the untrimmed video.

ferent events according to an individual sentence query.
Contrastively, as illustrated in Fig. 1(b), Video Paragraph
Grounding (VPG), which is recently proposed by [2], ad-
dresses the video events grounding task in the “multi-multi”
manner. Specifically, in the VPG task, given a paragraph
describing multiple events instead of a single sentence, it
is expected to localize all of the related moments in an
untrimmed video. Since a paragraph consisting of multiple
sentences in time order contains more temporal information
compared with the single sentence input, it is more infor-
mative for retrieving moments in videos.

The previous VPG methods [2, 6, 50] first generate pro-
posals for each sentence, then learn temporal order and se-
mantic relations among these proposals to select desired
candidates. Nevertheless, these methods exist three prob-
lems. Firstly, they rely on the temporal information of para-
graphs but hardly exploit the contextual information well
from the perspective of text modality. For example, shown
in Fig. 1(b), all the sentences in the paragraph are describ-
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ing two girls cooking in the kitchen and each of the sen-
tences is related to others contextually around the cook-
ing topic. Recently, the informal work [30] tried to tackle
VPG with Transformer [34], which proved the global con-
texts worked in this task. However, these methods includ-
ing [30] still fall into the second defect: with the paragraph
input, they only focus on the proposal-sentence matching
but ignore the video-paragraph matching, which may lead
to misalignment on cross-modal fusion. Lastly, compared
with moment-sentence annotation, the video-paragraph an-
notated data are more expensive and hard to generate. All
these VPG methods are required to be trained with tem-
poral labeled data, which brings heavy costs to this task.
Although there are also some weakly-supervised video
grounding methods [5, 19, 43], most of them are “single-
multi” methods and the performance is much worse than
fully-supervised methods.

To tackle these problems, we first propose a novel
base model termed Video-Paragraph TRansformer (VPTR),
which introduces contrastive learning and semi-supervised
learning into VPG. We further extend it to the semi-
supervised version, the Semi-supervised Video-Paragraph
TRansformer (SVPTR), to reduce the dependency on tem-
poral annotations. Specifically, as the general framework of
our proposed SVPTR method shown in Fig. 2, to explore
the contextual information hidden in paragraphs, we ex-
tract hierarchical text features and design a sentence-based
query mechanism in the decoder. The individual sentence
queries interact with particular words and other sentences
with such designs thus we can extract more contextual infor-
mation. Moreover, to avoid misalignment between proposal
moments and sentences, contrastive learning is introduced
into the multimodal encoder to guide the cross-modal fu-
sion at the video-paragraph level. As is shown in Fig. 2, the
contrastive encoder separately encodes the two modalities
and projects them into a common space via self-supervised
learning. Finally, we develop an advanced semi-supervised
learning VPG method SVPTR that is based on the teacher-
student framework, which effectively reduces the consump-
tion of video-paragraph temporal annotations.

The primary contributions in this work are as follows:

• We explore contextual information in the paragraph
query with hierarchical text features and the sentence-
based query mechanism. It effectively improves the
precision of localizing events in untrimmed videos.

• We combine self-supervised learning to optimize the
cross-modal fusion in video paragraph grounding. Par-
ticularly, we design a contrastive loss at the video-
paragraph level without proposing moment candidates.

• We design a semi-supervised learning framework for
VPG and achieve promising results with less annotated

data. To the best of our knowledge, we are the first
to explore the semi-supervised learning on video para-
graph grounding.

To evaluate the proposed SVPTR method, we con-
duct extensive experiments on three widely-used datasets:
ActivityNet-Caption [12], Charades-CD-OOD [44], and
TACoS [27]. The comprehensive results demonstrate the
superiority of our SVPTR method compared with a hand-
ful of state-of-the-art VPG approaches under both fully-
supervised and semi-supervised settings.

2. Related Work

Video Sentence Grounding. Video Sentence Grounding
(VSG) is first proposed by [1,7], which determines the start
and end time points of a single event by a query sentence.
Early works in VSG [1, 7, 8, 45, 48, 50] adopt a two-stage
model that first generates proposal candidates then models
these video segments and sentence queries jointly. Mean-
while, a part of VSG methods [15, 20, 22, 47] follow the
proposal-free model and treat the VSG as a regression task
that predicts the timestamps directly. Recently, researchers
[16, 39, 49, 51] are studying new frameworks to localize the
target events. Notably, Zhang et al. [49] introduced Trans-
former [34] into VSG to improve the quality of cross-modal
modeling, which proved its effectiveness for video ground-
ing task. Additionally, there are also weakly-supervised
methods [5, 19, 43] tackling the VSG problem from the
perspective of overcoming the costs of temporal annota-
tions. Since the lack of location information, these methods
usually perform much worse than popular fully-supervised
methods. Recently, an informal work [18] proposed a novel
VSG framework that achieves a trade-off between annota-
tion costs and performance with semi-supervised learning.
Nevertheless, most of these methods above are limited in
single event grounding and not suitable for localizing mul-
tiple events at the same time.
Video Paragraph Grounding. Different from VSG, Video
Paragraph Grounding (VPG) treats video events grounding
as a “multi-multi” problem. Specifically, the natural lan-
guage query in VPG is a long paragraph, which describes
multiple events in the untrimmed video. The VPG is first
defined by Bao et al. [2] as the inverse problem of the
Dense Video Caption [35]. In this initial work [2] for VPG,
they first extended two previous methods [6, 50] to base-
lines, then designed a novel VPG model DepNet. Follow-
ing that, a recent informal work [30] proposed a method
that utilized Transformer [34] to tackle this task.Although
these methods above have achieved promising improvement
compared with conventional VSG methods, they ignore cru-
cial contextual information hidden in paragraphs or the high
costs of annotations caused by paragraph input, which mo-
tivates us to develop this work.
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Figure 2. An overview of our SVPTR method. The first part on the top shows the semi-supervised framework of our method, which
maintains a teacher model and a student model. Two models receive different inputs via multimodal feature perturbations. We update the
teacher model with Exponential Moving Average (EMA) instead of backpropagation. The second part in the yellow box illustrates the
details of the proposed base model VPTR.

Semi-supervised Learning. Semi-supervised Learning
(SSL) is a class of dominant methods in machine learning to
learn from limited labeled data and massive unlabeled data.
In general, it can be roughly categorized into two types:
pseudo label generation and consistency regularization. The
former [14, 25, 40] usually make predictions from a model
trained on labeled data to impute approximate labels for un-
labeled data, while the latter [13, 31] encourage models to
reduce the discrepancy between predictions made perturbed
data points. Recently, some works [10, 18, 37] introduced
semi-supervised learning into video understanding task. Ji
et al. [10] designed two sequential perturbations based on
the mean teacher framework. Wang et al. [37] combined
self-supervised learning and SSL to reduce the reliance on
labeled data for Temporal Action Proposal. Meanwhile,
Luo et al. [18] recently explored the SSL in VSG, which is
the most related to our work.

3. Proposed Method

3.1. Problem Formulation

Given an untrimmed video V and a paragraph P consist-
ing of K sentences, our goal is to localize timestamps of K
events in the video which are most related to these sentences
respectively. Specifically, we represent the untrimmed
video V as V = {vi}l

V

i=1, where lV is the frame number
of V. The paragraph P is presented as P = {Si}K

i=1 where
Si denotes i-th sentence in the paragraph. Let ts and te be
the start time and end time of one target video segment re-

spectively, the VPG task can be formulated as follows:

MVPG(V,P)→ {(ts, te)i}K
i=1, ts < te, (1)

where (ts, te)i is the retrieved result for i-th sentence in P.

3.2. Video-Paragraph TRansformer

Depicted in Fig. 2, we first propose a base model VPTR,
which tackles the problems of learning contextual informa-
tion and aligning the two modalities.
Video Modality. Given an untrimmed video V with lV

frames, we divide them into a group of small clips with-
out overlap and each clip contains the same constant num-
ber of frames. Afterward, we extract visual features with
pre-trained C3D backbones [32], where lF denotes the to-
tal length of video features. Let mv (·) be the 3D CNN
backbone and φv (·) be the projecting layer with normal-
ization, the video feature extraction can be expressed as
Fv = φv (mv (V )) = {fi}l

F

i=1.
Text Modality. Most existing works in VSG [15, 16, 51]
denote the query into a group of word-level features. How-
ever, in VPG, we receive multiple sentences from the para-
graph query, where each sentence contains different seman-
tics. To this end, we hierarchically extract the text fea-
tures from paragraph input. Specifically, we first extract
the word-level features from the whole paragraph to learn
global semantics. Following that, we extract the sentence-
level features from each sentence individually. Given a
paragraph query P = {Si}l

S

i=1 = {Wj}l
W

j=1, we use 2-
layer bidirectional GRUs to obtain the word-level features
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Fw = {wj}l
W

j=1, where lS, lW denote the number of sen-
tences and words in the paragraph respectively and wj de-
note j-th word features. Moreover, we split the paragraph
into sentences and each sentence is encoded by the GRUs
individually. The sentence-level feature of i-th sentence in
the paragraph is obtained by the concatenation of hidden
states in both directions, which is denoted as si. Hence, we
obtain the sentence-level features of the whole paragraph
Fs = {si}l

S

i=1. Formally, the language feature extraction
can be represented as following:{

si = BiGRU
(
wi

k, h
i
k−1
)
,

wj = BiGRU (wj , hj−1) ,
(2)

where wi
k represents the k-th word in i-th sentence and the

h is the hidden state of GRUs. Afterward, the word-level
features Fw are processed by a projecting layer with nor-
malization φw (·), which is similar to video modality.
Contrastive Encoder. Inspired by the success of multi-
modal Transformer [33], the recent work [49] introduces
it into VSG and achieves competitive results. However, we
observed that the mixed input of encoders results in degen-
eration of learning intra-modality information. To main-
tain the intra-modality modeling and obtain inter-modality
aligning for VPG, we design a contrastive encoder, learn-
ing the semantic consistency [42] via self-supervision. As
illustrated in Fig. 3(a), our contrastive encoder projects the
video features Fv and word-level text features Fw into a
common subspace for semantic alignment [41]. The objec-
tive of our contrastive encoder is to pull the positive video
and paragraph pairs together and push the negative pairs
away. Specifically, as depicted in Fig. 2, we apply the trans-
former encoder [3] Φ (·) and normalization layer Norm to
acquire the transferred video feature F̃v = Norm (Φ (Fv))
and text features F̃w = Norm (Φ (Fw)). Additionally, we
construct a triplet tuple

(
F̃+

v , F̃
+
w , F̃

−
w

)
, where

(
F̃+

v , F̃
+
w

)
is a positive pair and

(
F̃+

v , F̃
−
w

)
a negative pair, for our

contrastive learning. Let Tv and Tw represent triplet tuples(
F̃+

v , F̃
+
w , F̃

−
w

)
and

(
F̃+

w , F̃
+
v , F̃

−
v

)
respectively, the con-

trastive loss can be expressed as:

LCT =
∑

(F̃+
v ,F̃+

w)

{∑
F̃−

w

LT (Tv) +
∑
F̃−

v

LT (Tw)
}
, (3)

whereLT (·) [19] ensures the positive pair’s similarity score
is better than the negative pair’s by at least a margin. Mean-
while, we concatenate the encoded features of video and
paragraph together, which are used as the memory of de-
coder. Let [; ] denote the concatenating operation, we obtain
the multimodal memory Fmem = [Fv;Fw].
Sentence-based Decoder. In previous work [2], multiple
sentences brought more temporal information, however, the

Sentence.Sentence.Sentence.Sentence.Sentence 1:
The ball goes out of bounds.

Sentence.Sentence.Sentence.Sentence.Sentence 1:
Two young girls are standing in the 
kitchen preparing to cook.

(a) An illustration of Contrastive Encoder

Sentence.Sentence.Sentence.Sentence.Sentence 1:
A brown sandy tennis…begin 
playing the sport.







Temporal Info Contextual Info

The man in green 
picks up the ball.

The ball goes out 
of bounds.

The man with red 
shorts serves the ball. 

The man serves 
the ball again.

The ball goes out of 
bounds again.

(b) Sentence-level Context Modeling



Sentences





 

Figure 3. A detailed illustration for VPTR. (a) The contrastive
encoder projects multimodal pairs with similar semantics closer.
The circles and triangles represent text features and video features
respectively. (b) The sentence-based decoder maintains sentence-
level temporal and contextual information. The thickness of lines
represents the strength of contextual connection.

contextual information among these sentences was mined
insufficiently. To overcome this defect, our decoder receives
sentence-level features from the paragraph query rather than
learnable embeddings. As depicted in Fig. 3(b), this mech-
anism conducts the sentence-level context modeling, turn-
ing each sentence gets related temporally and contextually.
Concretely, given the sentence-level features Fs = {si}l

S

i=1,
we first use the position embedding layer to encode tem-
poral information, and then the interactions among sen-
tences are conducted by the self-attention layers. Following
that, each sentence query generates a feature for describing
events from the multimodal memory via cross-attention lay-
ers. With the hierarchical text features, the sentence-level
features can also interact with particular words, allowing
the decoder to learn more contextual information. Finally, a
parallel regression layer is employed to compute the times-
tamps of each sentence-wise feature. The procedures of
sentence-based decoder are formulated as follows:

T = MLP (Ψ (Fmem,Fs)) , (4)

where the Ψ (·) represents the decoders of transformer
which conduct the position embedding on sentence level.
T is the localizing results consisting of lS valid timestamps.

3.3. Semi-supervised VPTR

Based on the teacher-student framework, we extend our
VPTR to Semi-supervised VPTR (SVPTR), which consists
of two base models and a multimodal feature perturbation
module. With such a semi-supervised learning pipeline, we
significantly reduce the consumption of annotated data.
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Feature Perturbations. In previous works on semi-
supervised learning [31, 37], stochastic perturbations have
been found effective for improving the robustness of mod-
els. Moreover, the perturbations can also be regarded as
data augmentation that helps self-supervised learning. Illus-
trated in Fig. 2, we conduct the feature perturbations both
on two modalities. For video modality, we follow [37] and
employ the random temporal shift as our video perturba-
tion module. Concretely, we randomly choose µ channels
first, then µ/2 feature channels are moved forward and the
other µ/2 channels are moved backward. Different from
the conventional temporal shift, the random selection brings
more diversity into the perturbation, which augments the
video modality features for semi-supervised learning and
self-supervised learning. As for text modality, inspired by
BERT [4], we randomly mask a part of words from the
whole paragraph. Furthermore, we also apply dropout strat-
egy with probability hyperparameter λ on both modalities.
Mean Teacher Framework. Mean Teacher [31] is a semi-
supervised learning method based on consistency regular-
ization. As illustrated in Fig. 2, two base models are main-
tained: a student VPTR model Γ and the teacher VPTR
model Γ′. The student model Γ learns from the annotated
data, and the Contrastive Encoder also allows us to train it
with self-supervised learning. The teacher model Γ′ is a
duplicate of the student model, whose weights are updated
with a sequence of student models during training via the
Exponential Moving Average (EMA) strategy. Specifically,
the Mean Teacher Framework can be formulated as follow:

Γ′t = τΓ′t−1 + (1− τ) Γt, (5)

where t, τ denote the number of training iterations and
smoothing coefficient respectively.

The input of each iteration consists of labeled and unla-
beled data. During the training, the student VPTR receives
input from the feature perturbation module and predicts the
timestamps, while the teacher VPTR is fed by the original
data to get predictions. Using the predictions from the two
models, we compute a consistency loss, which induces our
model to learn from labeled and unlabeled data jointly:

LCS =
1

N

N∑
i=1

‖Γ (X)i − Γ′ (X ′)i ‖
2, (6)

where X and X ′ represent agumented features and origi-
nal features respectively, and N denotes the total number of
events in each input.

3.4. Objective Function

The loss function of the proposed SVPTR method con-
sists of three parts: supervised loss, contrastive loss and
consistency loss. We represent the overall loss as follows:

Ltotal = αLSP + βLCT + γLCS. (7)

The supervised loss guides our model to learn location
information from the annotated data. Concretely, for total
N events, we denote the supervised loss as follows:

LSP =
1

N

N∑
i=1

(
‖Ti − T̂i‖1 + Liou

(
Ti, T̂i

)
+ Lattn (ai, âi)

)
,

(8)
where the Ti, T̂i represent the predictions and ground truth
respectively. Liou is temporal IoU loss which based GIoU
loss [28]. Lattn is the attention guided loss for cross-
attention layers in decoder referring to [20], where ai and âi
represent the attention weights of valid video features and
the fine-grained one-hot ground truth in i-th event. α, β, γ
are hyperparameters for balancing different part of losses.

4. Experiments
4.1. Experimental Settings

Following the previous VPG methods [2, 50], we eval-
uate our SVPTR method on three benchmark datasets:
ActivityNet-Caption (Activity). [12] It is the largest
dataset in video grounding task, which contains around 20k
open domain videos. On average, each video contains 3.65
queries, and each query has an average of 13.48 words.
Since the original test set is not released, we follow the
previous work [2] and split the dataset into the training,
val 1, val 2 of 10009/37421, 4917/17505, and 4885/17031
video/sentence respectively, where the val 2 is used for test.
Charades-CD-OOD (Charades). [7, 44] The dataset con-
tains 6672 indoor daily life videos and is first released by
Gao et al. [7] namely Charades-STA. To better evaluate
the effectiveness of existing VSG methods, Yuan et al.
[44] re-organizes the original dataset and splits it into train,
val, and test ood with 4563/11071, 333/859, and 1442/3375
video/sentence respectively, in which the training and test-
ing data are designed to have different distributions.
TACoS. [27, 29] It is based on MPII Cooking Compos-
ite Activities video corpus [29] and enriched by Regneri
et al. [27] with natural language descriptions and tempo-
ral annotations. All the videos are in kitchen room and
the videos are much longer than the other two datasets. A
standard split consists of 75/10146, 27/4589, and 25/4083
video/sentence pairs for training, validation, and testing.
Implementation Details. Following the previous work
[2, 7, 50], we use pre-trained C3D [32] model without fine-
tuning to extract the video features, and employ GLoVe em-
beddings [24] to receive the text vector representations. For
Activity, the video features are preprocessed by PCA [12].
All the video features are sampled evenly to a fixed length
L first. As for the videos which are shorter than L, we ap-
ply the zero padding and avoid the invalid padding features
with padding masks. We set the number of encoder and
decoder layers to 2 for all datasets. The smoothing coeffi-
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cient for EMA in Mean Teacher is set to 0.999. In feature
perturbations, µ and λ are set to 64 and 0.2 respectively.
We train the model with Adam optimizer [11], which has
a fixed learning rate 4 × 10−5. The weight decay factors
are set to 1× 10−5 for three datasets. Moreover, we follow
the metrics adopted in most video grounding works, which
is denoted as Recall@k, IoU=m, where k is the number of
generated candidates and m is the threshold. In our meth-
ods, k is set to 1 since the SVPTR predicts the timestamps
directly, while m is set to {0.3, 0.5, 0.7}, {0.3, 0.5, 0.7},
and {0.1, 0.3, 0.5} for Activity, Charades, and TACoS re-
spectively. We also adopt the mIoU metric, which shows
the average effect of our model. More detailed implemen-
tations are reported in the supplementary materials.

4.2. Overall Comparison Results

We compare our proposed SVPTR with the existing
state-of-the-art VPG methods DepNet [2], and two natural
extension methods Beam Search and 3D-TPN, which are
reported by Bao et al. [2]. Moreover, to show the superior-
ity of exploring the contextual information hidden in para-
graph, we also compare our model with recent VSG meth-
ods, including CTRL [7], ACRN [17], WSSL [5] ,ABLR
[46], [38], 2D-TAN [50], DRN [47], CBP [36], LGI [20],
CPNet [15], BPNet [39], CBLN [16], DeNet [51], MATN
[49], I2N [21]. Furthermore, Luo et al. [18] introduces
semi-supervised learning into VSG recently, we compare
their informal work on Charades under the same settings.
Note that the experiments on *DepNet are implemented by
us based on the open source project [2]. The results of com-
pared VSG methods on Charades refer to [44].

Table 1. Comparisons with state-of-the-arts on the Activity.

Method IoU=0.3 IoU=0.5 IoU=0.7 mIoU
LGI [20] (CVPR’20) 58.53 41.51 23.07 41.13
DRN [47] (CVPR’20) - 45.45 24.36 -
CPNet [15] (AAAI’21) - 40.56 21.63 40.65
BPNet [39] (AAAI’21) 58.98 42.07 24.69 42.11
CBLN [16] (CVPR’21) 66.34 48.12 27.6 -
DeNet [51] (CVPR’21) 61.93 43.79 - -
MATN [49] (CVPR’21) - 48.02 31.78 -

Beam Search [6] 62.53 46.43 27.12 -
3D-TPN [50] (AAAI’20) 67.56 51.49 30.92 -
DepNet [2] (AAAI’21) 72.81 55.91 33.46 -

SVPTR (Ours) 78.07 61.70 38.36 55.91

Comparison with Fully-supervised Learning. For fair
comparisons, we first train our method with 100% labeled
data and compare the test results with recent SOTA fully-
supervised methods. The experimental results on Activ-
ity, Charades, and TACoS are reported in Table 1, Table
2, and Table 3 respectively. Based on these results, we list
following observations: (1) On all datasets, our proposed
SVPTR outperforms recent state-of-the-art VPG methods
on most metrics under the same labeled proportion. No-

Table 2. Comparisons with state-of-the-arts on the Charades.

Method IoU=0.3 IoU=0.5 IoU=0.7 mIoU
CTRL [7] (ICCV’17) 44.97 30.73 11.97 -

ACRN [17] (SIGIR’18) 44.69 30.03 11.89 -
ABLR [46] (AAAI’19) 44.62 31.57 11.38 -

TSP-PRL [38] (AAAI’20) 31.93 19.37 6.20 -
2D-TAN [50] (AAAI’20) 43.45 30.77 11.75 -

DRN [47] (CVPR’20) 40.45 30.43 15.91 -
STLG [18] (arXiv’21) 48.30 30.39 9.79 -

*DepNet [2] (AAAI’21) 45.61 27.59 10.69 29.30
SVPTR (Ours) 55.14 32.44 15.53 36.01

Table 3. Comparisons with state-of-the-arts on the TACoS.

Method IoU=0.1 IoU=0.3 IoU=0.5 mIoU
DRN [47] (CVPR’20) - - 23.17 -
FIAN [26] (MM’20) 39.55 33.87 - -

2D-TAN [50] (AAAI’20) 47.59 37.29 - -
BPNet [39] (AAAI’21) - 25.96 20.96 19.53

I2N [21] (TIP’21) - 31.47 29.25 -
CBLN [16] (CVPR’21) 49.16 38.98 27.65 -
CPNet [15] (AAAI’21) - 42.61 28.29 28.69

Beam Search [6] 48.46 38.14 25.72 -
3D-TPN [50] (AAAI’20) 55.05 40.31 26.54 -
DepNet [2] (AAAI’21) 56.10 41.34 27.16 -

SVPTR (Ours) 67.91 47.89 28.22 31.42

tably, shown in Table 1, with 100% labeled data, our method
brings at least 4.9% improvement on all the metrics com-
pared with DepNet (2) Compared with VSG methods, our
SVPTR method also shows obvious advantages. The rea-
son is that our SVPTR method receives a paragraph as
input rather than an individual sentence. By the well-
designed sentence-based decoder, our SVPTR method ef-
fectively mines the contextual information among the sen-
tences and learns more temporal features from the two
modalities jointly. (3) Compared with the previous works,
our SVPTR method reveals superiority on mIoU metric. It
demonstrates our method also has more stable performance
and localizes events more precisely.
Comparison with Semi-supervised Learning. We list the
semi-supervised training results of our SVPTR method and
compare them with several state-of-the-art methods in Table
4, where the {ρ1, ρ2, ρ3} follows the same settings above
for the three datasets. “FS”, “SS”, “WS” represent fully-
supervised learning, semi-supervised learning, and weakly-
supervised learning methods, respectively. From the results,
we can observe that: (1) Our SVPTR method successfully
utilizes the unlabeled data and significantly improves the
grounding performance. Specifically, under the same situ-
ation, our SVPTR method clearly outperforms DepNet on
all the datasets. (2) Using much less labeled data only, our
method achieves similar or higher even performance com-
pared with fully-supervised methods. It proves the supe-
riority of our SVPTR method that reduces the dependency
on expensive video-paragraph annotations and utilizes the
labeled data more effectively. (3) The proposed method
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SVPTR finds a fair trade-off between temporal annota-
tion costs and performance. Compared with the weakly-
supervised methods, our method brings more than 20% im-
provement on Activity and 5% approximately on Charades
under the metric of R1@IoU=0.5. (4) It reveals the superi-
ority of semi-supervised learning strategy that our SVPTR
method achieves better performance than the base model
VPTR does. However, we also note that on the TACoS
dataset, the advantages of SVPTR are weakened. One prob-
able reason is the diversity of videos is poor in this dataset,
which has a negative influence on training robust models.

Table 4. Comparisons with state-of-the-arts methods using fewer
temporal annotations.

Datasets Types Methods IoU=ρ1 IoU=ρ2 IoU=ρ3 mIoU

A
ct

iv
ity

FS
3D-TPN 67.56 51.49 30.92 -

DepNet@100% 72.81 55.91 33.46 -
WS WSSL 41.98 23.34 - 28.23

SS
*DepNet@10% 61.46 45.14 26.78 44.11

VPTR@10% 72.80 53.14 29.07 50.08
SVPTR@10% 73.39 56.72 32.78 51.98

C
ha

ra
de

s

FS
STLG@100% 48.30 30.39 9.79 -

*DepNet@100% 45.61 27.59 10.69 29.30
WS WSSL 35.86 23.67 8.27 -

SS
STLG@30% 46.15 29.43 9.38 -

*DepNet@30% 43.03 25.07 10.14 28.09
VPTR@30% 45.13 24.98 10.22 28.92

SVPTR@30% 50.31 28.50 12.27 32.13

TA
C

oS

FS
3D-TPN 55.05 40.31 26.54 -

DepNet@100% 56.1 41.34 27.16 -

SS
*DepNet@50% 40.27 26.95 16.54 18.68

VPTR@50% 61.31 40.59 21.39 26.59
SVPTR@50% 63.06 40.19 20.05 26.10

4.3. Further Analysis

Effectiveness of Structures. To learn how each module
of SVPTR performs in grounding, we conduct the struc-
ture ablation studies on Activity and Charades datasets with
10% and 30% labeled data respectively. As depicted in Ta-
ble 5, we study the effectiveness of following components:
sentence-level query (S.Q.), multimodal encoding (M.E.),
contrastive loss (LCT), consistency loss (LCS), and feature
perturbations (F.P.). According to the results, we can ob-
serve that: (1) The multimodal encoding performs a sig-
nificant role in VPG. Specifically, with multimodal encod-
ing, the precision on most metrics gets improved on the
two datasets. The reason is that it allows the fine-grained
cross-modal interactions between word-level text features
and clip-level video features. (2) The consistency loss LCS
is essential for the whole semi-supervised learning frame-
work. Without LCS, the generalization of models on unla-
beled data will be degraded greatly thus leading to worse
performance under semi-supervised conditions. (3) Using
contrastive loss with the feature perturbations boosts the fi-
nal results. A probable reason is that video perturbations
bring more diversity into multimodal features, which has
been proved [9, 23] to be crucial for contrastive learning.
Effectiveness of Annotation Proportions. To study the
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Figure 4. Analysis with respect to the proportion of annotations
on Activity dataset.

quality of the semi-supervised learning framework, we eval-
uate our VPTR and SVPTR on different proportions of la-
beled data. For fair comparisons, we also train the recent
method DepNet under the same conditions. Limited by the
space, we report the experimental results on Activity. For
more results on Charades, please refer to the supplementary
materials. As illustrated in Fig. 4, we list following observa-
tions: (1) Our two models, VPTR and the complete model
SVPTR, both outperform the previous method DepNet sig-
nificantly, which reveals the robustness and effectiveness of
our method. (2) The SVPTR achieves promising improve-
ment compared with the base model VPTR, especially un-
der the situation of less annotated data. It demonstrates the
superiority of our SVPTR method that reduces the require-
ments of annotated data again. (3) The performance of our
method can be improved with more labeled data. Specifi-
cally, with 100% labeled data, our SVPTR method achieves
about 5% higher both on the two metrics compared with the
results of 10% labeled data.
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Figure 5. Analysis with respect to the sentence-level contexts.

Effectiveness of Contexts. We design four ablated models
to study how the contextual information of paragraph influ-
ence the grounding quality, which is shown in Fig. 5: (1)
“No Contexts”: no sentence-level contexts are utilized and
the model degenerates to a conventional VSG model. (2)
“Temporal Shuffle”: the order of sentences in a paragraph
is shuffled randomly. (3) “No Temporal”: we disable the
sentence-level position embedding in a decoder. (4) “Uni-
directional”: the contexts are limited in the single direction.

Comparing these results, we can observe that our com-
plete model achieves significant improvement on grounding
precision, which proves again that contextual information is
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Table 5. Ablation study on Activity with 10% labeled data and Charades with 30% labeled data.

S.Q. M.E. LCT LCS F.P.
Activity Charades

IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU
√

73.24 52.98 28.45 50.02 46.01 26.16 11.67 30.25√ √
73.67 53.41 28.56 50.34 47.38 28.36 10.67 30.81√ √ √
72.80 53.14 29.07 50.14 45.13 24.98 10.22 28.92√ √ √
74.36 54.50 30.00 51.04 49.01 29.54 11.44 31.71√ √ √ √
73.46 53.78 29.57 50.42 49.44 29.87 10.94 31.51√ √ √ √
74.69 55.98 31.63 51.70 46.87 27.02 10.81 30.25√ √ √ √ √
73.39 56.72 32.78 51.98 50.31 28.50 12.27 32.14

crucial for localizing events in untrimmed videos. However,
we also note that “No Contexts” version performs better on
Charades than it does on Activity. One essential reason is,
compared with the latter, Charades contains a large number
of videos consisting of sparse events. It thus leads to a defi-
ciency of sentence-level contextual information, weakening
the advantages of our SVPTR method.

 A kid is skate boarding down an empty street.  Another kid skate boards 
behind the first kid.  They both then zig zag down the street together.

SVPTR (Ours)

(b)

22.81s 136.87s
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114.06s 182.49s

0s
29.06s 121.50s

116.36s 182.46s

Ground Truth
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30.11s 114.05s

117.67s 182.49s

 A man stands in a bull ring.  A bull runs towards the man.  The man gets 
hit by the bull.  The man then runs around being chased by the bull.

DepNet (AAAI’21)

0s
2.78s 41.63s

12.49s 33.30s
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Figure 6. Visualization of two examples on Activity dataset.

A woman is seen speaking to the camera and begins wrapping a box. 
She pushes the paper all along the box and tucking in the sides. 

 She tapes down the box and presents it to the camera.

Ground Truth
0s

60.78s 145.01s
142.88s


 210.05s63.98s Time

Q
ue

ry








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Figure 7. Visualization of cross-modal attention weights.

Qualitative Analysis. To illustrate the localizing quality
of the proposed SVPTR method, we visualize two local-

izing examples with different length of videos and com-
pare them with the results of DepNet [2]. In Fig. 6(a),
our proposed SVPTR method precisely localizes all the
target moments, while the previous method DepNet fails
to retrieve the second event. Moreover, as described in
Fig. 6(b), the long video example is more challenging since
the high demand on understanding the contexts. Focusing
the proposal-sentence matching and ignoring crucial con-
texts in paragraph, the DepNet gives an absolutely incorrect
result on the first event, which contains the whole video al-
most. Contrastively, our SVPTR method avoids this fatal
defect effectively with the video-paragraph alignment and
sentence-level context modeling. Additionally, to show how
the proposed method SVPTR works, we visualize the cross-
attention weights between sentence and video features from
sentence-based decoders. As illustrated in Fig. 7, we can
observe that each sentence gains more attention on the re-
lated moments and maintains the temporal order correctly.

5. Conclusion

In this work, we have introduced a novel Video
Paragraph Grounding (VPG) framework dubbed Semi-
supervised Video-Paragraph TRansformer (SVPTR) that
learns contextual information from paragraphs and signif-
icantly reduces the dependency on annotated data. We eval-
uated our SVPTR method on three public datasets and con-
duct extensive experiments to prove its effectiveness and ro-
bustness. The results show that our proposed SVPTR model
achieves competitive results with less annotated data. More-
over, with fully-supervised training, SVPTR outperforms
the latest VPG methods. For future work, we will study fur-
therly the trade-off between performance and costs based
on this work, and we believe it will inspire more research
on video events grounding.
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