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Abstract

Generative model based image lossless compression al-
gorithms have seen a great success in improving compres-
sion ratio. However, the throughput for most of them is less
than 1 MB/s even with the most advanced AI accelerated
chips, preventing them from most real-world applications,
which often require 100 MB/s. In this paper, we propose
PILC, an end-to-end image lossless compression framework
that achieves 200 MB/s for both compression and decom-
pression with a single NVIDIA Tesla V100 GPU, 10× faster
than the most efficient one before. To obtain this result,
we first develop an AI codec that combines auto-regressive
model and VQ-VAE which performs well in lightweight set-
ting, then we design a low complexity entropy coder that
works well with our codec. Experiments show that our
framework compresses better than PNG by a margin of 30%
in multiple datasets. We believe this is an important step to
bring AI compression forward to commercial use.

1. Introduction

Lossy compression have shown great success in recent
research [3, 6, 22, 25–28, 30]. In this paper, we focus on
lossless compression. The basic idea of a lossless com-
pression algorithm is to represent more likely appeared data
with shorter codewords, while less frequent data with longer
ones, such that the codeword is shorter than the original data
in expectation. For example, an image with each pixel ran-
domly generated is rarely seen in the real world, while a real
picture taken by a camera occurs much more often, so the
latter compresses better for almost all image compression
algorithms.

According to Shannon’s source coding theorem [34], no
algorithm can compress data shorter than its entropy. On
the other hand, if the distribution of data is known in ad-
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Figure 1. Comparison of compression throughput and ratio on
CIFAR10. Our framework achieves high compression throughput
with a competitive compression ratio.

vance, an entropy coder can be applied so that the code
length would be very close to its entropy, thus obtaining
the optimal compression ratio.

Unfortunately, in most cases, the data distribution is un-
known. Traditional algorithms make use of some prior in-
formation to infer this distribution. For example, LZ77 [47]
and LZ78 [48] used by most archive formats assume that
data with lots of repeated segments occur more often than
those without. For image compression algorithms, PNG [4]
assumes most adjacent pixels are similar to each other,
and JPEG-like algorithms apply the fact that lower fre-
quency components are more significant than higher fre-
quency ones.

Recently, deep generative models have shown great suc-
cess in probabilistic modelling and lossless compression.
However, the low throughput makes them difficult to be
used in real scenarios. An end user does not want to wait
for too long to compress/decompress a file, and a file server
needs to manipulate tons of files every day. In many cases,
a 100+ MB/s throughput is needed. For example, streaming
a 1080p video with 30 fps requires 187 MB/s for decom-
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pression. However, it is difficult for a learned algorithm to
achieve this speed due to the following bottlenecks:

Network inference. Barely any AI compression algo-
rithms have inference speed of 100+ MB/s because:

• A large network is usually needed for a good density
estimation [5].

• Multiple network inferences are required to decom-
press with an auto-regressive [32, 41] model.

• Bits-Back scheme [12] prevents algorithms from ap-
plying a large batch size [37].

Coder. Generative models only cooperate well with a
dynamic entropy coder, which is far slower than static vari-
ants used in traditional algorithms. For most AI algorithms,
the coder decodes only about 1 MB/s single-threaded.

Data transfer. Data transfer between CPU memory and
GPU memory can also be a bottleneck for AI algorithms.

• Too many transfers are needed for decompression with
an auto-regressive or hierarchical AE/VAE model.

• Transfer amount is too large for models predicting with
a complicated distribution including lots of parame-
ters, such as a distribution mixed by 10 logistic ones.

Besides, other problems exist in current AI algorithms.
One is single image decompression. One would expect to
decompress only this image, instead of having to decom-
press many unrelated ones at the same time, but it is not
the case for some VAE [37] and Flow algorithms [13] us-
ing bits-back [12]. Another is compression with different
image sizes. An algorithm that can only compress images
with a fixed size hardly gets used in real applications, how-
ever, those with a fully connected layer or transformer layer
in the network are not straight-forward to change the input
size. Table 1 briefly show the limitation of current algo-
rithms.

1.1. Our contributions

In this paper, we focus on practical image lossless com-
pression. To solve above issues, we make the following
contributions:

• We build an end-to-end framework with compres-
sion/decompression throughput of about 200 MB/s in
one Tesla V100, and compression ratio 30% better than
PNG, which also enables single image decompression
and image of different sizes.

• We develop a very lite auto-regressive + Vector Quan-
tized Variational Auto-encoder (VQ-VAE) [42] model,
whose inference speed is about 300 MB/s, but log-
likelihood is similar to L3C [23], whose inference
speed is only about 30 MB/s.

• We design an AI compatible semi-dynamic entropy
coder that is efficient in GPU besides CPU. As a re-
sult, only one data transfer with a minimal amount is
needed between CPU memory and GPU memory. As
far as we know, this is the first GPU coder applied in

Table 1. Limitations for some generative model based algorithms,
where the columns mean: whether single image decompression
is supported; whether images of different sizes are supported;
whether inference time, coder, transfer time are faster than 100
MB/s, respectively.

Algorithm Single Size Inference Code Trans

PixelCNN [41] ✓ ✓ ✗ ✗ ✗

DistAug [16] ✓ ✗ ✗ ✗ ✗

L3C [23] ✓ ✓ ✗ ✗ ✓

BB-ANS [37] ✗ ✗ ✗ ✗ ✗

Bit-Swap [17] ✗ ✗ ✗ ✗ ✗

IDF [14] ✓ ✓ ✗ ✗ ✓

LBB [13] ✗ ✓ ✗ ✗ ✗

PILC (Ours) ✓ ✓ ✓ ✓ ✓

an AI compression algorithm.
• We implement the end-to-end version in pure Python

and PyTorch, making it easier for future works to test
and improve on our implementation.

2. Related Work
Generative model based lossless compression. While

human designed algorithms are sometimes very powerful,
deep-learning models can usually do better (See Fig. 1).
For example, to compress a portrait, many traditional al-
gorithms can make use of the fact that the skin color is sim-
ilar everywhere, but few know a human has two eyes, one
nose, etc., which can be usually be captured by a generative
model. Denote the real probability of x as p(x), the pre-
dicted probability of x as q(x), and the expected codeword
length as L. Then

L(X) = −
∑
x∈X

p(x) log2 q(x) = H(X)+KL(P ||Q) (1)

Therefore, for a deep-learning algorithm, the compression
ratio depends on how accurate the prediction is. Generative
model based image lossless compression algorithms can be
classified into 3 types.

• Auto-regressive (AR) algorithms predict each symbol
from the previous context. Some of them are Pixel-
CNN [41], PixelCNN++ [32], DistAug [16], etc.. They
have great compression ratios with accurate modelling.
However during decompression, since one pixel can be
predicted only when all previous ones are known, one
inference of the network can only decode one symbol,
resulting in a very slow decompression speed.

• Autoencoder (AE) and Variational autoencoder (VAE)
algorithms make use of latent variables to help with
the prediction. Since the whole image can be predicted
with only one network inference, an auto-encoder al-
gorithm such as L3C [23] can decompress thousands
of times faster than PixelCNN++ [32], but with a much
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worse compression ratio. After bits-back [12] scheme
is introduced to VAE algorithm [37], the compression
ratio is improved significantly. Thus later works such
as BB-ANS [37], Bit-Swap [17] and HiLLoC [38] all
apply this scheme. Algorithms such as NVAE [39] and
VDVAE [5] can even get ratios comparable to auto-
regressive ones. However, bits-back introduces a de-
pendency between different images, making it impos-
sible to decompress a single one. Furthermore, the cost
of random initial bits can only be leveraged by com-
pressing/decompressing a large number of images se-
quentially, affecting the batch size and transfer speed
greatly.

• Flow algorithms apply learnable invertible transforms
to make data easier to compress. IDF [14] and
IDF++ [40] that have only integer transforms are
named as integer flows. On the other hand, general
flows such as LBB [13] and iFlow [45] use transforms
in real numbers. There is also one type in between
called volume preserving flow, which is discovered in
iVPF [46]. Integer flows are the only type that do not
require bits-back, hence the only one that supports sin-
gle image decoding. But as the expressive power of a
single layer is weaker, the model needs to be large, af-
fecting the inference time. Besides, general flow mod-
els require one coding step for each layer, making data
transfer another bottleneck.

Entropy Coder. A static entropy coder codes data from
a fixed distribution. It is used by most commercial algo-
rithms. A dynamic entropy coder, on the other hand, can
code many distributions. It is usually used to code one kind
of distribution with parameters as input, such as a normal
distribution with variable means and variances. The most
widely used entropy coders such as Huffman Code [15],
Arithmetic Coder (AC) [24, 31], and Asymmetric Numer-
ical System (ANS) [10] all have both static and dynamic
variants. Dynamic entropy coders are much slower than
static ones, as the density mass needs to be calculated on
the fly, unlike the latter one, which can precalculate all of
them beforehand. For example, in a single-threaded setting,
a static variant of ANS named FSE [8] decodes faster than
300 MB/s, while another variant named rANS [10] decodes
at only about 1 MB/s with a distribution mixed by 10 lo-
gistic ones. Despite this fact, a dynamic coder is required
for an AI algorithm to do fine-grained density estimation,
which is also a key point that makes AI outperform tradi-
tional methods.

3. Methods
In this section, we introduce PILC, a practical image

lossless compression framework. The proposed framework
consists of a generative model and a semi-dynamic en-
tropy coder. The model is composed of Three-Way Auto-

regressive module and VQ-VAE module. We demonstrate
how the model interact with the coder to achieve high
throughput.

3.1. Model Architecture

Overall Model. Among all current algorithms, AE have
the highest throughput but the lowest compression ratio. As
suggested by many previous works, AE models cannot cap-
ture local features very well, while a local AR model is ca-
pable of doing so [33,44]. Therefore an intuitive idea would
be to use a small AR to capture local features, and AE for
more global ones. Since AR model hurts the parallelism
and affect the throughput heavily, it must be very small. In
this work, a Three-Way Auto-regressive (TWAR) model is
designed, where each pixel is predicted with only 3 other
ones, reserving the ability to decompress in parallel. For
the AE model, we replace it with VQ-VAE [42], which is
proven to be successful in image generation [9, 11, 29, 42],
while the inference time is still similar to AE.

As is shown in Fig. 2a, TWAR predicts the original im-
age and output image residual, then VQ-VAE estimates the
distribution of the residual. Distribution of values in the
residual is much simpler than those of original images, mak-
ing it easier to be predicted by VQ-VAE and coded with our
entropy coder.

Compress: Given an image x, we use the Three-Way
Auto-regressive module to predict the image, and get the
reconstruction image x̂, image residual r = x− x̂. Then we
adopt VQ-VAE to estimate the residual distribution p(r|x),
which we model as a simple logistic distribution. With r
and p(r|x), we could compress r to bit stream with our pro-
posed dynamic entropy coder. We also compress the vector
index to bit stream using the coder.

Decompress: At decompress time, we decompress vec-
tor index from bit stream. Then we select corresponding
vectors from the codebook Z to formulate the latent feature
zq . The feature is fed to the decoder and outputs the resid-
ual distribution p(r|x). The coder subsequently decode the
residual r using p(r|x). The AR module then decodes the
original image x from the residual r.

Learning Residual with Three-Way Auto-regressive.
Inspired by the Paeth filter which is utilized in the tradi-
tional lossless compression method PNG [4] to transform
the image to make it more efficiently compressible, we
adopt a similar rule that utilizes three predicted points to
predict the current one, which is shown in Fig. 2b. Our AR
module is formulated by:

x̂ruv = WT
r · (xr(u−1)(v−1), xr(u−1)v, xru(v−1))+ br (2)

x̂guv = WT
g · (xgu(v−1), xru(v−1), xruv) + bg (3)

x̂buv = WT
b · (xbu(v−1), xgu(v−1), xguv) + bb (4)
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Figure 2. Left: Our framework consists of Three-Way Auto-regressive, VQ-VAE, and Coder. The AR module predicts the input image
and obtains the residual. The VQ-VAE models the probability distribution of the residual with a codebook. The Coder compresses image
residual and vector index to bit stream. When decompress, vector index is decompressed first and pushed into the VQ-VAE decoder
to obtain the residual distribution. This distribution is subsequently adopted to decompress the residual and then recover the original
image (blue solid arrows indicate compress process, red dotted ones indicate decompress, best viewed in color). Right: Three-Way Auto-
regressive adopts three predicted points to predict the current point.

where r, g, b denote image channel, u, v denote the spa-
tial location. We pad the input image with one row on the
top and one column on the left to initiate the prediction.
For the red channel, the current point is predicted by its up,
left, upper-left points like Paeth filter. Inspired by YCoCg-R
color space which is shown successful in FLIF [35] format
and utilizes different channels to calculate the color space,
for green and blue channel, we also use their previous chan-
nel to conduct the prediction. Different from [19], our AR
module models the pictures channel-wise, predict the mean
only, and only has 12 parameters (with a bias in each chan-
nel), but it could still generate a high-quality prediction. As
shown in Fig. 2a, x̂ is quite close to x, which suggests the
locality of natural images.

As explained in Sec. 1, auto-regressive models like Pix-
elCNN [41] fail in decompression speed due to their depen-
dencies nature because it is hard to parallelize the inference
process. Fortunately, our AR module could be parallelized
during inference. Figure 3 suggests one step in decoding.
For the red channel, the current point is dependent on its up,
left, upper-left points, so anti-diagonal points can be calcu-
lated in parallel. Once the red channel is recovered, for the
green channel, we could calculate column by column to re-
cover this channel, and the blue channel is the same. Thus,
more points could be calculated at one time, which speeds
up the inference process of the AR module. Because the
padding rule is fixed, we could eventually losslessly recover
the original image x using the residual r.

Learning Distribution with VQ-VAE. Vector quanti-
zation has been proved to be effective in lossy compres-
sion [1, 20]. Instead of designing a more sophisticated
auto-encoder (AE) model, we utilize VQ-VAE [42] to learn
residual distribution. Intuitively, given a fixed storage
space, for VQ-VAE, we could just store the vector index and
when decoding, with the codebook we could utilize more
diversity features. But for vanilla AE, we only have the
fixed size features. Experiments in Sec. 4.2 suggest VQ-
VAE’s superiority over vanilla AE. As the original image
would contain much more spatial information, we choose
to model the residual distribution given the original image,
i.e., p(r|x).

As shown in Fig. 2a, given an image x ∈ RH×W×3, we
get its latent feature by:

ẑ = E(x) ∈ Rh×w×D (5)

where E is residual block based encoder, and D is feature
depth dimension. Then, with a codebook Z = {zi}Ki=1 ∈
RD, we could conduct vector quantization on ẑ:

zq = q(ẑ) :=

(
argmin

zi∈Z
∥ ẑuv − zi ∥

)
∈ Rh×w×D (6)

where q is the element-wise quantization for each ẑuv ∈ RD

to its closest code zi, and u, v is the spatial location. Finally,
we output the residual distribution p(r|x) which we model
as a logistic distribution and is formulated by:

(µ, s) = D(zq) ∈ RH×W×3×2 (7)
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Figure 3. The decoding process of Red channel (left) and
Green/Blue channel (right) for proposed AR model. For the red
channel, anti-diagonal pixels can be decompressed in parallel,
while for G and B, one column of pixels can be decoded in parallel.

where µ is the location parameter, s is the scale parameter,
and D is residual block based decoder.

At compress time, the quantized vector index is encoded
to bit stream by the coder. At decompress time, we could
decode the index, select the corresponding vectors, and de-
code the distribution p(r|x). In this way, we utilize the
codebook Z to memorize more information.

Since there is no real gradient defined for Eq. (6), the
gradient back-propagation is achieved by straight-through
estimator, which just copies the gradient from the decoder
to encoder. The VQ loss is formulated by:

LV Q = ∥ sg[ẑ]− zq ∥2 + β∥ ẑ − sg[zq] ∥2 (8)

where sg denotes the stop-gradient operator. The first term
optimizes the codebook Z and the second term is a commit-
ment loss to make sure ẑ commits to codebook and does not
grow arbitrarily [42]. β is a weight parameter to balance the
two terms.

Loss Function. During training, we could jointly opti-
mize the AR module and VQ-VAE module by maximizing
the negative log-likelihood of the residual r:

LNLL = Ex∼p(x) [− log p(r|x)] (9)

where p(x) denotes the distribution of the training dataset.
The lower the negative log-likelihood is, the fewer bits we
need to compress the residual r. See Sec. 3.3 for the more
implement detail.

Thus, the total objective function to optimize our neural
compression model can be formulated by:

Ltotal = LNLL + αLV Q (10)

where α balances the two terms.
Our lightweight model with the Three-Way Auto-

regressive and VQ-VAE achieves a high inference speed,
which plays an important role in our overall framework.

3.2. Coder Design

We design our entropy coder based on rANS [10], and
save computation time by precalculating intermediate re-
sults. Previous works such as tANS [10] already adopt

this idea. However, tANS can only code a fixed distribu-
tion, which is inappropriate for AI algorithms. On the other
hand, our proposed coder is more similar to dynamic ones,
as it supports distributions with variable parameters. The
only difference is that the parameters need to be quantized,
and probability mass needs to be calculated for all of them.
Thus we call it a semi-dynamic entropy coder.

To code with rANS, one first needs to choose a constant
M , then for each symbol x, quantize its probability mass
function (denoted as Px), so that

∑
x Px = 2M . Let Cx

be the cumulative distribution function of x. It satisfies that
Cx =

∑
i<x Px. To encode pixels within range [0, 255], M

is usually chosen in [10, 15].
In this work, we modify rANS slightly, and propose Al-

gorithm 1 and Algorithm 2 as the logic behind.

Algorithm 1 Modified rANS: Encode x

Input: M , Px, Cx, State S, stream
1: S ← S + 2M

2: while S ≥ Px ∗ 2 do
3: push stream(S mod 2) ▷ last bit of S to stream
4: S ← ⌊S ÷ 2⌋
5: end while
6: S ← S − Px + Cx

Algorithm 2 Modified rANS: Decode one symbol

Input: M , Px, Cx for all x, State S, stream
1: x← binary search(S): Cx ≤ S < Cx + Px

2: S ← S − Cx + Px

3: while S < 2M do
4: S ← S × 2 + pop stream() ▷ last bit of stream
5: end while
6: S ← S − 2M

7: return x

Loops and binary search form the time-consuming steps
for these algorithms, so tables are built to cache these re-
sults.

For encoding, one solution would be to create a table to
store the number of bits to be pushed for each possible value
of S and Px. Each value can be represented as a 16-bit un-
signed integer, so the memory needed is 22M+1 bytes. In
this work, we assume the number of distributions for differ-
ent symbols is small. Denote the total number of distribu-
tions as D, and the distribution index d ∈ [0, D) for each
symbol can be calculated via the network, and let X be the
number of colors. Since S is always in [2M , 2M+1) after
Step 1, so for a fixed d, the number of loops can differ only
1. So we build a table δ with dimension D ×X such that

S

2⌊(δ[d,x]+S)/2M⌋ ∈ [Px, Px ∗ 2) (11)

To further simplify the algorithm, Step 6 is merged with
Step 1 of next symbol in this work, and table ϕ is built such
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that ϕ[d, x] = 2M − Px + Cx. S needs to be initialized in
[2M , 2M+1) then. The encoding process now is shown in
Algorithm 3. Both δ and ϕ use unsigned 16-bit integers,
so the memory needed for tables are 4 × D × X bytes.
As the total memory needed for all Px’s and Cx’s are also
4×D×X bytes, which is not needed any more, Algorithm 3
does not cost any additional memory.

Algorithm 3 ANS-AI: Encode x

Input: M , δ, ϕ, x, d, State S, stream
1: b = ⌊(δ[d, x] + S)/2M⌋
2: push stream(S, b) ▷ last b bits of S to stream
3: S ← ⌊S/2b⌋+ ϕ[d, x]

In terms of decoding, for each distribution index d and
state S, we maintain a table Θ to store the symbol to be de-
coded, a table B for number of bits to pop, and a table N
to merge Step 2 to 6. Since Θ and B use 8-bit unsigned
integers, and N use a 16-bit unsigned one, the total mem-
ory consumed for these tables are D × 2M+2 bytes. One
alternative is to replace N and B with ϕ and δ, reducing the
memory to D×2M+4×D×X , but this will make the com-
putation more complicated, and reduce the decoding speed
by about 50% from our experiments.

Algorithm 4 ANS-AI: Decode one symbol

Input: M , Θ, B, N , d, State S, stream
1: x← Θ[d, S]
2: S ← N [d, S] + pop stream(B[d, S]) ▷ last B[d, S]

bits
3: return x

Our proposed coder not only simplifies the computation,
but also makes it possible to implement with a machine
learning framework such as PyTorch by removing all the
logical units.

3.3. Integration of Model and Coder

To guarantee the effectiveness of the coder, the total
number of distributions D needs to be small. In our model,
each pixel of r is predicted with a truncated logistic dis-
tribution with location parameter µ and scale parameter s,
truncated between 0 and 255. Denote the distribution as
r ∼ L(µ, s, 0, 255). Since the number of means is required
to be quantized to at least 256 values, D would be over one
thousand.

In this work, we predict r−µ+128 within uint8 space,
i.e., the prediction of r ∼ L(µ, s, 0, 255) is approximated
as (r − µ + 128) mod 256 ∼ L(128, s, 0, 255). To make
it as accurate as possible, µ needs to be as close to 128 as
possible. We apply the following two techniques for this:

1. In VQ-VAE module, instead of predicting residual r
directly, we predict (r + 128) mod 256.

2. We add a sigmoid layer to predict the final value of µ
in VQ-VAE module to make sure it is close to 128.
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Figure 4. KL divergence between real truncated logistic distribu-
tion and approximated distribution, which indicates the BPD loss
for the approximation. The figure shows that the approximated
distribution is very close to the real one when µ ∈ [96, 160].

Fig. 4 and Fig. 6 show that this technique almost deals
with no BPD loss.

4. Experiments
In this section, we evaluate the model and coder effec-

tiveness with extensive experiments and we conduct exper-
iments on both low resolution and high resolution images
which demonstrate our framework obtains the fastest com-
pression speed with a competitive compression ratio.

4.1. Experimental Settings

Implementation Details. The AR and VQ-VAE module
are jointly trained. The AR module contains 12 parame-
ters. In VQ-VAE, the codebook size K is set to 256 and
the codebook dimension D is set to 32. The encoder and
decoder both have 4 residual blocks, all with 32 channels.
The encoder downsampling ratio is 2, and pixel shuffle is
used when upsampling in the decoder. Thus, an image x
with shape 32× 32× 3 would be quantized to 16× 16× 1
vectors. β in Eq. (8) is set to 0.25 as in [42], and α in
Eq. (10) is set to 125.

We do all experiments in a Linux docker with Intel(R)
Xeon(R) Gold 6151 CPU (3.0 GHz, 72 threads), and one
NVIDIA Tesla V100 32GB. For speed tests, we ignore the
time for disk I/O, since it has nothing to do with compres-
sion algorithms. But for fair comparison between AI and
traditional methods, we do count the time for data trans-
fer between CPU memory and GPU memory. That means
for all AI algorithms, timer starts when data is loaded into
RAM and ends when compressed data is stored in RAM.

Different from previous AI compression works which fo-
cus on density estimation, this paper targets practical com-
pression. Therefore, for BPD values reported in this paper,
all storage required to recover the original image is counted,
including meta data, Huffman tables, auxiliary bits, etc..
For AI algorithms, real BPD is reported instead of theoret-
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Table 2. Ablation study on the model architecture. Theoretical
BPD on CIFAR10 is reported.

Model BPD

Vanilla Auto-encoder (AE) 5.53
VQ-VAE 5.13
Three-Way Auto-regressive (AR) 4.92
AR + AE 4.35
AR + VQ-VAE 4.17

Table 3. Ablation study on the receptive field of AR model and the
parallel mechanism. Theoretical BPD and decompress throughput
on CIFAR10 (red channel) are reported. Receptive field means the
current point is predicted by how many previous points.

Receptive Field BPD
Throughput

(MB/s)

3 (with parallel) 5.7714 382.5
3 5.7714 48.5
4 5.7737 47.5
5 5.7708 46.0
6 5.7701 44.8
7 5.7449 44.0
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Figure 5. Encoding/decoding speed of the GPU coder. When the
number of threads (batch size) is small, the throughput of the GPU
coder is low, but it can benefit from large number of threads.

ical one unless specified otherwise, which means for each
image, we calculate the number of bytes (instead of bits)
needed for each image, then take the average.

Datasets. For low resolution experiments, we train and
evaluate on CIFAR10, ImageNet32/64. For high resolution
experiments, we train our model on 50000 images from
Open Image Train Dataset [18] which are randomly se-
lected and preprocessed as [23] to prevent overfitting on
JPEG artifacts. Then, we evaluate on natural high resolu-
tion datasets, CLIC.mobile, CLIC.pro [7] and DIV2K [2]
to test the model generalization ability. For high resolution
setting, we crop 32 × 32 patches for evaluating.

4.2. Model Effectiveness

Effectiveness of model architecture. We analyze single
and combinations of each component to evaluate the effec-
tiveness of model architecture. In Tab. 2, the vanilla Auto-
encoder (AE) contains the same encoder and decoder ar-
chitecture as VQ-VAE with latent feature shape 16×16×1.
In AE and VQ-VAE, we directly use the model to predict
the distribution of the original image. In the single AR,
we compress the residual with a static entropy coder to get
the BPD. AR+AE follows the same process as AR+VQ-
VAE. As shown in Tab. 2, VQ-VAE outperforms AE which
demonstrates the effectiveness of the learned codebook Z.
We could intuitively explain that 16×16×1 vector indexes
would contain more diversity features than 16×16×1 num-
bers in AE’s latent. Our proposed AR+VQ-VAE model
achieves the best theoretical BPD on CIFAR10 which sug-
gests the effectiveness of predicting residual.

Effectiveness of Three-Way AR and parallel mech-
anism. We compare different receptive fields of the AR
model and the parallel mechanism. Experiments are con-
ducted on red channel of CIFAR10 images. The receptive
field of AR model means the current point is predicted by
how many previous points. In our model, the receptive field
is three. As shown in Tab. 3, as the receptive field increases,
the BPD indeed descends, but the decline is very limited.
With the parallel mechanism we designed in Sec. 3.1, the
Three-Way AR achieves a throughput of 382.5 MB/s when
recovering original images from residual in decompression,
and outperforms other settings which cannot be paralleled.

4.3. Coder Effectiveness

We implement the GPU coder based on Algorithm 3 and
Algorithm 4. We test the coder on the randomly generated
data (1000000 pieces, each with length 1000, and range 0-
255). The signals have the same dimension with each value
in 0-7. For each setting, we run 10 times and take the av-
erage speed. From Fig. 5, we see that GPU coder is slow
for the small number of threads. Fortunately, the number
of threads can easily reach one million with a V100 32G.
Therefore, we can inference on million batches, and save
the result in GPU. Then we can code all of the batches at
once. This is beneficial for the GPU coder, in the sense that
the data transfer times and the amount is smaller for both
compression and decompression.

4.4. Distribution Effectiveness

We count the predicted location parameter µ for the dis-
tribution specified in Sec. 3.3. It can be shown in Fig. 6 that
for all the three datasets, the predicted values nearly always
fall in [96, 160]. As stated in Sec. 3.3, this cause almost no
loss in BPD.

3745



Table 4. Compression performance in BPD and throughput in compression and decompression, compared to both engineered codec
PNG [4], WebP [43], FLIF [35], JPEG2000 [36] and the learned L3C [23].

BPD CIFAR10 ImageNet32 ImageNet64 DIV2K CLIC.pro CLIC.mobile
Throughput (MB/s)

Compress Decompress

PNG [4] (fastest) 6.44 6.78 6.09 4.64 4.23 4.39 55.9 118.2
PNG [4] (best) 5.91 6.41 5.77 4.23 3.90 3.80 3.0 83.5
WebP [43] (-z 0) 4.77 5.44 4.92 3.43 3.22 3.03 29.8 99.1
FLIF [35] (–effort 0) 4.27 5.06 4.70 3.24 3.03 2.82 6.2 4.2
JPEG2000 [36] 6.75 7.50 6.08 4.11 3.79 3.94 7.6 9.1
L3C [23] 4.55 5.19 4.57 3.13 2.96 2.65 12.3 6.3
PILC (Ours) 4.23 5.10 4.76 3.41 3.23 3.00 180.3 217.2
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Figure 6. The probability mass of the predicted µ on multiple
datasets. They roughly follow the double exponential distribution
with location parameter 128.

4.5. Compression performance

Compare with exists methods. We reproduce all meth-
ods in Tab. 4 on the same platform explained in Sec. 4.1
for fair comparison. We use Python CV2 lib for PNG and
JPEG2000. We adopt FLIF version 1.0.1 and use command
‘flif -e –effort=0’ for fastest setting. For WebP, we use ver-
sion 1.2.1 and the command ‘cwebp -lossless -z 0’. For
L3C, we reproduce the results using the official model [21]
and we replace the original coder in L3C with ours to test
the speed as the original coder is very slow. The throughput
results are reported based on high resolution settings. Ta-
ble 4 shows our framework achieves the fastest compress
and decompress throughput. Also, the framework achieves
a competitive compression ratio on low resolution images
and we still outperform PNG, WebP and JPEG2000 on high
resolution images.

End-to-end throughput. To fully use the GPU coder
and make the measured speed more accurate, we duplicate
the CIFAR10 validation set 100 times (1 million images).
Table 5 shows the details of the throughput and time taken
for each step.

Table 5. Throughput & decomposition of time for the whole com-
pression/decompression process on CIFAR10. Throughput is cal-
culated with respect to the size of the original data. Time is mea-
sured as µs per image.

Phase
Throughput

(MB/s)
Time
(µs)

Compress

RAM → GPU 9246 0.33
Model Inference 276 11.11
Coder Encode 675 4.55
GPU → RAM 2985 1.03

Total 180 17.02

Decompress

RAM → GPU 11101 0.28
Coder Decode 11091 0.28

VQ-VAE Decode 721 4.26
Code Decode 672 4.57
AR Decode 869 3.53

GPU → RAM 2521 1.20
Total 217 14.12

4.6. Limitation Analysis

Our framework, although very light-weighted, requires
an AI chip such as Tesla V100 to work efficiently, which
is inaccessible for most end-users. For example, one image
with 2K resolution compresses only about 1.3 MB/s in the
CPU of our server machine. Therefore, our framework is
only applicable to file/cloud servers.

5. Conclusion

In this work, we develop the first efficient end-to-end
generative model based image lossless compression frame-
work with throughput of about 200 MB/s, and compression
ratio 30% better than PNG. To achieve this result, we de-
velop a model that combines AR model and VQ-VAE, and
a semi-dynamic coder that is computation efficient.

To further improve PILC, future works could focus on
algorithms that are more friendly in everyday devices, such
as a PC, or mobile phone. This requires a network with
much less FLOPS than the current VQ-VAE one.
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