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Abstract

The goal of open-world compositional zero-shot learn-
ing (OW-CZSL) is to recognize compositions of state and
objects in images, given only a subset of them during train-
ing and no prior on the unseen compositions. In this set-
ting, models operate on a huge output space, containing all
possible state-object compositions. While previous works
tackle the problem by learning embeddings for the com-
positions jointly, here we revisit a simple CZSL baseline
and predict the primitives, i.e. states and objects, indepen-
dently. To ensure that the model develops primitive-specific
features, we equip the state and object classifiers with sepa-
rate, non-linear feature extractors. Moreover, we estimate
the feasibility of each composition through external knowl-
edge, using this prior to remove unfeasible compositions
from the output space. Finally, we propose a new setting,
i.e. CZSL under partial supervision (pCZSL), where either
only objects or state labels are available during training,
and we can use our prior to estimate the missing labels.
Our model, Knowledge-Guided Simple Primitives (KG-SP),
achieves state of the art in both OW-CZSL and pCZSL, sur-
passing most recent competitors even when coupled with
semi-supervised learning techniques. Code available at:
https://github.com/ExplainableML/KG-SP.

1. Introduction
As humans, we interact with objects depending on their

state. For instance, we use ripe lemons rather than moldy
ones to prepare a lemonade, and we clean dirty dishes after
using them. Algorithms that can recognize objects together
with their state are crucial for autonomous agents to show
the same high-level interactions capabilities we have. In the
literature, this problem is studied under the name of Com-
positional Zero-shot Learning (CZSL). In CZSL, we are
given a training set with images of objects in a subset of their
possible states and, at test time, the goal is to recognize com-
positions of the same set of objects and states, even unseen
during training. Since an object has a different appearance
depending on its state (e.g. dry dog vs wet dog) and a state
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Figure 1. We consider the problems of open-world CZSL (OW-
CZSL), where we lack priors on unseen compositions at test time,
and CZSL under partial supervision (pCZSL) where we also lack
compositional labels during training (left). We tackle them by
independently predicting object (red) and state (blue) labels and
by using external knowledge (bottom) to estimate the feasibility
of compositions, reducing the search space during inference and
improving pseudo-labeling during training in pCZSL.

modifies objects in different ways (e.g. wet dog vs wet car),
the challenge of CZSL is modeling how states and objects
interact with each other, extrapolating this knowledge from
seen to unseen compositions. Under this perspective, mul-
tiple works modeled the interactions of objects and states,
either through compositional classifiers [26, 31], or a shared
embedding space [23, 28, 29].

Despite their effectiveness, [24] showed how the perfor-
mance of CZSL methods degrade in the open-world setting
(OW-CZSL). In OW-CZSL, there are no priors on the unseen
compositions, and models must consider all possible compo-
sitions at test time. Due to the large cardinality of the output
space, it is difficult to produce discriminative embeddings
for the unseen compositions [24]. Inspired by the findings
of [24], in this work we explore a completely different direc-
tion. Specifically, we design an architecture that disregards
the compositional nature of the problem and produces the
initial predictions independently for objects and states. The
idea is that while discriminating between compositions is
hard in OW-CZSL due to the large search space, recognizing
primitives (i.e. objects and states) in isolation is easier since
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1) the cardinality of the two sets is much lower and 2) the
sets are fixed at both training and test time.

Inspired from [26] and [19], we design a simple method
that predicts objects and states with two independent clas-
sifiers. Since recognizing states requires different features
w.r.t. recognizing objects, instead of having a shared fea-
ture representation, we train our model with two different
non-linear feature extractors. Furthermore, since not all com-
positions are equally feasible in reality (e.g. ripe dog) we
can refine the predictions of our model by eliminating less
feasible compositions from the output space. With this goal,
we use external knowledge (i.e. ConceptNet [39]) to estimate
the compatibility between a state and an object, using these
estimates to remove less feasible compositions at test time.
We name our model Knowledge-Guided Simple Primitives
(KG-SP). As our KG-SP method does not require composi-
tional labels during training, we explore a new challenging
setting, i.e. CZSL under partial supervision (pCZSL). In
pCZSL, training samples have either only object or state
annotation, but not both. Here we use our prior on feasible
compositions to aid pseudo-labeling during training. Experi-
ments show that KG-SP is either competitive or surpasses
the current state of the art in OW-CZSL and outperforms re-
cent CZSL approaches on pCZSL setting. Figure 1 provides
an overview of KG-SP and the two tasks.
Contributions. To summarize, 1) inspired by [19, 26], our
model predicts state and objects independently while at the
same time removing less feasible compositions from the
output space based on external contextual information about
the feasibility of certain compositions; 2) we explore the
problem of CZSL under partial supervision, where either
object or state information is missing in the ground-truth; 3)
we adapt recent baselines for pCZSL showing that KG-SP
outperforms them even when coupled with semi-supervised
learning techniques in both OW-CZSL and pCZSL settings.

2. Related works

Compositional zero-shot learning aims to recognize com-
positions of states and objects in images, even unseen during
training. The main challenge of this setting is modeling how
states modify objects, generalizing this capability to unseen
compositions. Most of the previous works focused on how
to model the interactions between states and objects either
at the parameter level or in a given representation space.
For instance, [26, 31] proposed to generate a classifier for
a given state-object composition given two classifiers (or
embeddings) for specific state and object primitives, using
either a compositional module [26] or a gating network [31].
Differently, [23, 29] model each state as an operator trans-
forming object embeddings, imposing properties on the state
operators (e.g. commutativity, symmetry). In [29] the state
operators are linear, while in [23] they are coupling and
decoupling networks. Recently, [28, 36] used graph convo-

lutional networks [17] to model the interactions between
state, objects and their compositions. Differently, [2] tackles
CZSL from a causality perspective, learning disentangled
objects and states representations. In this work, we revisit
VisProd [26], predicting objects and states in isolation, show-
ing that this strategy is effective in OW-CZSL. As in [24], we
estimate the feasibility of each composition to improve the
model’s performance. However, we use ConceptNet to this
aim, rather than compositional annotations, being the first to
tackle CZSL without compositional labels during training.
Multi-task learning. Since we predict state and object inde-
pendently, our work is related to Multi-Task [7,15,27,35,37]
and Multi-Domain learning [4, 22, 32, 33], where the goal
is to learn a unique model able to address different visual
tasks. Most of the approaches in this domain either learn
task-specific parameters [4, 22, 32, 33, 37] and how to com-
bine them [27, 35], or focus on re-weighting different loss
functions [15]. While we use multi-task learning to design
primitive classifiers for CZSL, our final goal is different
since we compose predictions from separate output spaces.
Learning from Partial Supervision. Our CZSL setting
without compositional labels is related to semi-supervised
learning and learning with missing labels. In semi-
supervised learning, both labeled and unlabeled samples
are available, and the goal is to effectively use the unlabeled
samples. Popular ideas revolve around consistency regu-
larization [5, 6, 38], and self-training [10, 20, 34]. Unlike
semi-supervised learning, in pCZSL, all samples are labeled,
but partially. Thus, we can also exploit the prior on how
objects interact with states to estimate the missing labels.

For what concerns learning with missing labels, this is
most prevalent in multi-label scenarios where it is unfeasible
to annotate all labels that are present in a single image. Ap-
proaches in this field usually model the correlation among
labels [8,9,12,18] to impose semantic objectives on missing
ones. While we are also interested in learning from partial
supervision, our labels lie on two separate spaces (i.e. objects
and states), and the missing labels (e.g. state) influences the
appearance of the positive one (e.g. object). In this setting,
the main challenge is to model how the two spaces influence
each other without any compositional supervision.

3. Knowledge Guided Simple Primitives
Problem formulation. CZSL [24] aims to recognize com-
positions of a set of objects O and a set of states S. Formally,
we are given a training set T = {(x, y)}Ni=1, where N is the
size of the training set, x ∈ X denotes an image in the input
space X and y ∈ Ys is its label in the set of seen compo-
sitions Ys. The goal is to learn a model that can recognize
a set of compositions Yt = Ys ∪ Yu, where Yu is a set of
unseen compositions (i.e. Yu ∩ Ys = ∅) and Yt ⊆ Y , with Y
being the set of all possible compositions, i.e. Y = S ×O.
OW-CZSL and pCZSL settings. In this work, we con-
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sider two different CZSL settings. Open-World CZSL (OW-
CZSL) [24] assumes no prior on the set of unseen composi-
tions at test time. This means that the model needs to operate
on the full compositional space, i.e. Yt = Y . Consequently,
the number of unseen compositions is much larger than the
number of seen ones i.e. Yu = Y \ Ys, thus the main chal-
lenge is operating in a very large output space where most of
the compositions are unseen and thus hard to discriminate.

In this work, we also consider a new challenging task,
namely CZSL under partial supervision (pCZSL), where
the training set does not contain any compositional label
and all training images have either object or state label,
but not both. This setting is more realistic than standard
CZSL since most datasets are collected with single labels
(e.g. only object-level information) and collecting multi-
ple labels is expensive and time-consuming. Formally, we
consider the labels of our training set T to be of the form
y = (s, u) ∨ y = (u, o), ∀(x, y) ∈ T , with s ∈ S, o ∈ O
and u denoting an unknown label. Note that, as a conse-
quence of this formulation, the set of training compositions
Ys is not known a priori anymore. This implies that, as in
OW-CZSL, we need to consider the full compositional space
at test time, i.e. Yt = Y . Moreover, since no training image
contains both object and state labels, we do not have explicit
supervision on how states modify objects and vice-versa.

In the following, we describe the two components of our
framework, Simple Primitives (SP) where we predict the
primitives, e.g. object and states, independently and Knowl-
edge Guidance (KG) where we use external resources that
guide our model on the feasibility of certain compositions.

3.1. Simple Primitives (SP) in KG-SP

Inspired by the early Visual Product (VisProd) base-
line [26], our model completely disregards the composi-
tional nature of the problem and predicts states and objects
independently. This idea contrasts with recent approaches
(i.e. [2,23,24,28,29,31]), explicitly modeling the interactions
between objects and states within the model.

Formally, given an image x, we extract its feature repre-
sentation z = ω(x) through a function ω, mapping images
into a feature space Z, i.e. ω : X → Z. We then have an
object classifier ϕo : Z → ∆O that maps z to a vector in
the probability simplex ∆O, spanning all object categories.
Similarly, we have another classifier that maps z to a proba-
bility over the states, i.e. ϕs : Z → ∆S . During training, we
minimize the cross-entropy loss for both the object and state
predictions. Specifically, we minimize:

Lvisprod =

N∑
i=1

Isi ̸=uLstate(xi, si) + Ioi ̸=uLobj(xi, oi) (1)

= −
N∑
i=1

Isi ̸=u log ϕs(zi, si) + Ioi ̸=u log ϕo(zi, oi)

where zi = ω(xi), ϕo(z, o) is the probability of the object o
assigned by ϕo to the input z, and ϕs(z, s) is the probability
of the state s assigned by ϕs to the input z. In Eq. (1), I is an
indicator function used to not compute the loss in pCZSL, in
the absence of primitive labels. Our prediction function is:

f = argmax
(s,o)∈Y

ϕo(w(x), o) · ϕs(w(x), s). (2)

Although learning simple primitives independently like this
may not be effective in standard CZSL, we argue that the ca-
pability to separate state and objects predictions is crucial in
OW-CZSL, where the search space is too large if predictions
are made over the full compositional space.

In the original VisProd formulation, objects and state
predictors are simple linear layers operating over the same
feature vector. However, this choice is suboptimal and leads
to low results in practice. In fact, by using separate linear
layers, VisProd addresses CZSL as a multi-task learning
problem [7, 15, 27, 32, 33, 35, 37], where there are two dif-
ferent tasks (i.e. states and objects prediction) that share the
same feature extractor while differing only for the classifi-
cation head. However, multiple works in multi-task (MTL)
and multi-domain learning (MDL) discussed how fully shar-
ing the parameters to extract the feature representation for
different tasks (i.e. hard-sharing [7]) is suboptimal when the
tasks are not strictly related [27, 32, 33] and may even lead
to negative transfer [21].

In CZSL, recognizing objects is different than recognizing
their states. Specifically, the former requires focusing on
global features: for instance, distinguishing an animal from
another requires focusing on their shapes and skins while
distinguishing fruits requires detecting texture-based cues.
On the contrary, recognizing states requires focusing on local
patterns: for instance, the difference between dry and wet
can be detected by the presence of drops in cars and apples
while in animals it requires looking at the shape of the fur.
With this premise, we need to overcome the limits imposed
by hard-parameter sharing to ensure the objects and state
classifiers have enough flexibility to learn primitive-specific
features. While advanced MTL and MDL techniques can
be used for this purpose, in this work we found that it is
sufficient to implement the two classifiers as multi-layer
perceptrons (MLP) with non-linear activations.

3.2. Knowledge Guidance (KG) in KG-SP

In the large output space of OW-CZSL and pCZSL, not all
compositions are equally feasible (e.g. ripe dog, hairy apple)
and taking this prior into account can help in correcting
incompatible state-object predictions of our model. In the
following we describe how we estimate the feasibility scores
and how we use them in our model.
Estimating feasibility scores. Formally, let us associate to
each composition (s, o) a compatibility score cos ∈ [0, 1].
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Figure 2. Knowledge-Guided Simple Primitives (KG-SP). We train a separate object (red) and state (blue) predictor on top of a shared
feature extractor (green) using the available state and object labels. We use external knowledge to estimate feasibility scores of compositions
(yellow, bottom), using this prior during inference to directly remove unfeasible compositions from the output space. In pCZSL , we use this
knowledge to re-weight the class scores and perform pseudo-labeling (grey) of missing labels, sampling them through the Gumbel-softmax.

Since there exist no database contain such information, pre-
vious works exploited the set of seen compositions Ys to
estimate cos [24]. Here we explore an alternative direction
by using external knowledge. In this way, our estimation is
independent of the actual availability of the set Ys and can
also be applied in pCZSL, where Ys is unknown. While we
explored different strategies (see supplementary), we found
ConceptNet [39] to give reliable feasibility estimates.

ConceptNet is a knowledge graph connecting words and
phrases with labeled edges, extracted from various sources
[39]. We can use ConceptNet in two ways. The first is
querying for the existence of a composition and the second is
querying for the relatedness between two entries (i.e. object
and state). Since direct queries are very sparse, we follow
the second approach, defining the scores as:

cos = ρKB(s, o) (3)

where ρKB(s, o) returns the relational score between s and o.
In ConceptNet, these scores are computed from the cosine-
similarity of ConceptNet Numberbatch embeddings [40].
The latter are built from ConceptNet adjacency matrix and
existing word embeddings (e.g. word2vec [25], GloVe [30]).
Using the feasibility scores during inference. Similarly to
[24], the most straightforward-way to use the feasibility sores
is to remove from the output space less feasible compositions
during inference. Thus, our prediction function becomes:

fKG = argmax
(s,o)∈Y,cos>0

ϕo(z, o) · ϕs(z, s) (4)

where we consider feasible all compositions with cso > 0.
Using the feasibility scores during training for pCZSL.
In pCZSL, we may obtain additional supervision by estimat-
ing missing labels. One straightforward way to achieve this
is through pseudo-labeling [20], a semi-supervised learning
technique that takes the model predictions as ground-truth

for unlabeled samples. In pCZSL, this means that, when the
state (object) label is missing, pseudo-labeling will impute
as label the object (state) predicted with the highest score. To
avoid that the pseudo-labels form unfeasible compositions,
we can use our prior to aid the pseudo-labeling process.

Given either an object label o or a state label s, we esti-
mate their respective state and object pseudo-labels as:

ŝ ∼ Gumbel (ϕs(z)⊙ co) , ô ∼ Gumbel (ϕo(z)⊙ cs) (5)

where co is the vector containing the compatibility scores
for all states given the object o, i.e. co = [cos]s∈S , and cs
is its counterpart for all objects given the state s, i.e. cs =
[cos]o∈O

1. Note that in both equations we sample the pseudo-
labels using Gumbel-softmax (Gumbel) [14]. We found
this choice helpful to make the model more robust to noisy
predictions and less biased toward the training set latent label
distribution. Our objective function becomes:

LpCZSL
visprod =

∑
(xs,s)∈Ts

Lstate(xs, s) + Lobj(xs, ô)

+
∑

(xo,o)∈To

Lobj(xo, o) + Lstate(xo, ŝ).
(6)

We use this objective in pCZSL during training and Eq.(1)
for OW-CZSL. In both cases we perform inference through
Eq.(4). Since we couple independent primitive prediction
with external knowlede to refine them, we name the method
Knowledge-guided Simple Primitives (KG-SP). Figure 2
illustrates our approach during training and inference.

4. Experiments
Datasets. We use the three standard datasets for Composi-
tional Zero-Shot Learning, namely UT-Zappos [43,44], MIT-
States [13] and the recently proposed C-GQA [28] dataset.

1We assume S and O to be alphabetically ordered.
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Method MIT-States UT Zappos C-GQA
S U HM AUC S U HM AUC S U HM AUC

TMN [31] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 NA NA NA NA
AoP [29] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 NA NA NA NA
LE+ [26] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08
VisProd [26] 20.9 5.8 5.6 0.7 54.6 42.8 36.9 19.7 24.8 1.7 2.8 0.33
SymNet [23] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CompCosCW [24] 25.3 5.5 5.9 0.9 59.8 45.6 36.3 20.8 28.0 1.0 1.6 0.20
CGEff [28] 29.6 4.0 4.9 0.7 58.8 46.5 38.0 21.5 28.3 1.3 2.2 0.30
CompCos [24] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 28.4 1.8 2.8 0.39
CGE [28] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47
KG-SPff 23.4 7.0 6.7 1.0 58.0 47.2 39.1 22.9 26.6 2.1 3.4 0.44
KG-SP 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.78

Table 1. Open World CZSL results on MIT-States, UT Zappos and C-GQA. We measure best seen (S) and unseen accuracy (U), best
harmonic mean (HM), and area under the curve (AUC) on the compositions. KG-SPff refers to our proposed method with a frozen backbone.

UT-Zappos contains 12 object categories (shoe types) and
16 state categories (material types), with 83 seen composi-
tions and a compositonal space of 192 compositons. MIT
States is a larger dataset that contains 245 object categories
in 115 possible states. In total, it contains 1, 262 seen com-
positions and an output space of 28, 175 compositions in
OW-CZSL. Finally, C-GQA is a recently proposed dataset2

with 674 object categories and 413 state categories. It con-
tains 5, 592 training compositions and a full compositional
space with 278, 362 compositions.
Baselines. In OW-CZSL, we compare KG-SP against stan-
dard CZSL approaches; namely Attributes as Operators
(AoP) [29], Label Embed+ (LE+) [26], Task Modular Net-
works (TMN) [31], SymNet [23], Compositional Graph
Embeddings (CGE) [28] and Compositional Cosine Log-
its (CompCos) [24]. In the tables, we refer to the closed
world version of CompCos as CompCosCW and the variant
of CGE with a frozen feature extractor as CGEff.

In pCZSL, we compare KG-SP with CGE [28] and Com-
pCos [24], the state-of-the-art models in the closed and open-
world settings respectively. These methods are adapted to
pCZSL by marginalizing their predictions over states/objects,
when the state/object information is available, minimiz-
ing the cross-entropy loss on the ground-truth annotation.
We also experiment with popular semi-supervised learning
techniques such as entropy minimization [10] and pseudo-
labeling [20], adding them to both CompCos and CGE.
Evaluation Protocol. For the OW-CZSL setting, we follow
the standard splits of [28, 31], evaluate all the methods on
the generalized setting, where the model recognizes samples
from both seen and unseen compositions. Following the
protocol in [31], we apply a bias on the seen compositions
at test time, measuring the performance as best seen (S) and
best unseen (U) accuracy, best harmonic mean (HM) as well
as the area under the curve (AUC) by varying the bias.

2We refer to the updated split in https://github.com/ExplainableML/czsl.

For the pCZSL setting, we propose a new split of the
training split set, separating samples with object and state
labels. This is done by keeping only the object label for half
the samples, while for the remaining half, only the state label,
ensuring that every object and state is seen in the training
set.Furthermore, for pCZSL setting, the model has no access
to seen compositons Ys. Thus, we evaluate the model in the
full compositional space, without subtracting any bias on
Ys. Therefore, we use as metric the seen (S) and unseen (U)
accuracy, and their harmonic mean (HM), as it is standard in
Zero-Shot Learning [42].
Implementation Details. We follow the standard practices
in the CZSL literature [24, 28], by using a ResNet18 [11]
feature extractor. For the state and object classifiers, we
follow [28] and use Multi-Layer Perceptrons with three lay-
ers, comprising Layer Normalization [3] and Dropout [41].
The model is optimized using Adam [16] with the default
hyperparameters, a learning rate and weight-decay of 5e-5.

4.1. Open-World CZSL
The results on the challenging OW-CZSL setting are re-

ported in Table 1. In this setting KG-SP either outperforms
or it is competitive with the state of the art. Specifically, on
UT-Zappos KG-SP outperforms the best competitor (CGE)
in all metrics, with an improvement of 3.4% in AUC (26.5
vs 23.1), 3.3% in best HM (42.3 vs 39.0) and 4.4% best un-
seen (52.1 vs 47.7). Similarly, without end-to-end training,
KG-SPff surpasses the best baseline (CGEff) by 1.3 in AUC
(22.9 vs 21.5) and by 1.3 in best HM (39.1 vs 38.0).

These results are confirmed in the challenging C-GQA
dataset. Despite an output space of almost 280k composi-
tions, KG-SP obtains 0.78 AUC vs 0.47 of the best com-
petitor (CGE), 4.7 HM (vs 3.3 of SymNet) and 2.9 on best
unseen (vs 2.2 of SymNet). When non-finetuned, the method
achieves competitive results w.r.t. SymNet (e.g. 3.4 HM)
while being much easier to optimize, since KG-SP does not
impose any constraint on the compositional space. Our re-
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Marginaliz. Seen Unseen HM AUC

CGEff
25.5 5.7 6.5 1.0

✓ 24.0 7.8 8.1 1.3

CGE
27.2 6.6 7.0 1.3

✓ 25.1 8.1 8.1 1.4
Table 2. OW-CZSL results in the validation set of MIT-States when
using marginalization. CGEff is the approach of [28] with frozen
backbone whereas CGE performs end-to-end training.

Figure 3. Ablation study on the importance of the depth of the
object and state-classifiers for KG-SPff on UT-Zappos (red curve)
and MIT-States (blue curve) validation set for the OW-CZSL setting.
Performance is measured in AUC.

Mask Seen Unseen HM AUC

VisProd
24.8 6.8 7.3 1.1

✓ 24.7 7.2 7.6 1.2

KG-SPff
26.3 7.4 7.9 1.3

✓ 26.5 7.7 8.2 1.4
Table 3. OW-CZSL results on MIT states validation set while
applying our feasibility-based masks (fKG) on different models.

sults indicate that modeling states and objects independently
may be an effective approach to deal with the very large
output space of OW-CZSL. This independence assumption
ensures that each predictor learns a discriminative classifier
over a few hundred classes rather than a single classifier over
thousands of compositions, which does not scale well even
with powerful architectures (e.g. graph-convolutional neural
network of [28]) and initialization through side-information
(e.g. word-embeddings [25]).

Finally, the table also highlights the gap between KG-SP
and the VisProd baseline of [26]. In particular, our revised
model (without fine-tuning) consistently surpasses VisProd
in AUC (i.e. 1.0 vs 0.7 on MIT-States, 22.8 vs 19.7 in Zappos,
0.44 vs 0.33 in C-GQA) and best harmonic mean (6.7 vs
5.6 on MIT-States, 39.3 vs 36.9 on Zappos and 3.4 vs 2.8
on C-GQA). These results confirm the importance of our
modifications to the original VisProd model, as we will
ablate in the following.

4.1.1 Why KG-SP works in OW-CZSL?

Separately predicting objects and states. We argue that
an important reason for the success of KG-SP is the sepa-
rate treatment of states and objects, As stated in previous
discussion, predicting state and objects independently makes

the OW-CZSL problem easier and more scalable w.r.t. pre-
dicting directly over thousands of compositions. To verify
this hypothesis, we take the state-of-the-art method in stan-
dard CZSL, CGE [28] (with and without end-to-end training)
and we modify its classifier in such a way that it can output
separate objects and states. Specifically, we take the state
predictions by marginalizing their scores across all possible
objects and, similarly, we marginalize object predictions over
the set of possible states. Results are reported in Table 2. We
see a consistent increase in best unseen accuracy (5.7 vs 7.8
for CGEff, 6.6 vs 8.1 for CGE) and in the best HM (6.5 vs
8.1 for CGEff, 7.0 vs 8.1 for CGE) when we separate the two
predictions. As a consequence, the methods also improve
in AUC (1.1 to 1.2 CGEff, 1.3 to 1.4 for CGE). This indi-
cates how providing a separate ground for objects and states
predictions is a useful strategy in the open-world setting. Op-
erating in the primitives rather than the compositional space,
provides a simplification of the problem that can improve the
performance even of existing state-of-the-art CZSL models.
Effect of depth of the classifier on KG-SP. We ablate the
impact of the depth in Fig 3 for KG-SPff on both MIT-States
and UT-Zappos validation sets. The validation AUC on both
UT-Zappos (red curve) and MIT-States (blue curve) rapidly
increases with the depth of the classifier. This shows the
importance of taking into account the multi-task nature of
the problem and instantiate objects and state classifiers that
have enough capacity to extract primitive-specific features.
While deeper predictors help, after 3 layers the performance
degrades (i.e., going from 26.9 to 24.3 on UT-Zappos when
depth is increased from 3 to 5 layers). The reason behind this
drop is mainly linked to overfitting on seen compositions.
Effect of the knowledge-based masking. We ablate the im-
pact of masking out unfeasible compositions from the output
space in Table 3 for MIT-states validation set. We experi-
ment with both VisProd and KG-SPff. As the table shows,
KG-SPff benefits from removing unfeasible compositions,
with the unseen accuracy going from 7.3 to 7.5 and the best
HM from 7.6 to 8.1. Similarly, also for VisProd we see a
consistent improvement for both the unseen accuracy (6.8
to 7.2) and the best HM (7.3 to 7.6) when its output space is
filtered. These results show how removing unfeasible com-
positions from the output space benefit the performance of
OW-CZSL models and that ConceptNet is a reliable source
for estimating feasibility scores of the compositions.

4.2. CZSL under Partial supervision

The results on our proposed pCZSL setting are reported
in Table 4. In addition to recognizing unseen compositions
in an extremely large compositional space, in pCZSL the
model has to cope with the lack of compositional labels.

In this scenario KG-SP achieves state-of-the-art results on
all the three datasets. On UT-Zappos, KG-SP achieves a HM
of 13.1 vs 10.7 of the best competitor (CGE). Similarly, on
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Method MIT-States UT Zappos C-GQA
S U HM S U HM S U HM

CGEff [28] 19.6 1.3 2.4 50.3 3.4 5.0 17.4 0.4 0.9
+Pseudo-Lab. 19.7 0.9 1.8 48.5 1.1 2.2 19.8 0.2 0.4
+Entropy Min. 15.1 1.7 3.1 51.9 4.2 6.4 22.1 0.4 0.9

CompCos [24] 10.8 2.0 3.6 52.4 4.1 7.6 24.3 0.4 0.7
+Pseudo-Lab. 9.2 1.9 3.2 52.9 3.7 6.8 23.6 0.3 0.5
+Entropy Min. 13.2 2.1 3.7 55.0 4.2 7.9 23.1 0.6 1.1

CGE [28] 17.9 1.6 3.0 55.8 5.9 10.7 25.6 0.7 1.4
+Pseudo-Lab. 10.6 2.3 3.8 56.1 3.9 7.3 21.3 0.6 1.2
+Entropy Min. 17.8 1.6 3.0 60.1 4.7 8.7 24.8 1.0 1.8

KG-SPff 13.5 2.6 4.4 53.8 6.9 12.3 22.3 0.9 1.7
KG-SP 18.4 2.2 4.0 57.9 7.4 13.1 26.9 1.2 2.3

Table 4. Partial Open-World CZSL results on MIT-States, UT Zappos and C-GQA. We measure seen (S) and unseen accuracy (U) on the
compositions and their harmonic mean (HM). KG-SP refers to our full model with our knowledge-guided pseudo-labeling and inference.
CGEff and KG-SPff denotes the non-finetuned version of the methods. For each CZSL baseline, we show the results of the original methods
and the same coupled with Entropy-Minimization (Entropy Min.) [10] or Pseudo-labeling (Pseudo-Lab.) [20].

Method Seen Unseen HM
KG-SP 16.6 2.8 4.8

+ Pseudo-Labeling 15.9 2.7 4.6
+ Gumbel Softmax 16.1 2.6 4.5

+ ConceptNet-scores 16.6 3.1 5.3
Table 5. Partial Open-World CZSL results on MIT-States valida-
tion set for different methods in terms of Seen, and Unseen accuracy
and their Harmonic Mean (HM). Pseudo-Labeling, sampling the
pseudo-label using Gumbel-Softmax, and using ConceptNet to
filter unfeasible labels are added one after another.

MIT-States and C-GQA, the results obtained by KG-SP ex-
ceed the performance of the competitors, with KG-SP achiev-
ing 4.4 HM vs 3.7 of CompCos with entropy minimization
on MIT-States, and 2.3 (1.7 when non end-to-end trained)
HM on C-GQA vs 1.8 of the best competitor (CGE). It is
interesting to note how, even incorporating semi-supervised
learning techniques in CGE and CompCos does not bridge
the gap between KG-SP and these methods. Interestingly,
semi-supervised learning techniques do not bring consis-
tent improvements across CZSL models and tasks. Entropy
minimization, by pushing the method toward confident pre-
dictions, improves CGE (1.8 vs 1.4 AUC) and CompCos (1.1
vs 0.7) on C-GQA, and improves CGEff on MIT-States (3.1
vs 2.4 AUC). However, in the other settings either achieves
the same performances of the baseline (e.g. CGE on MIT-
States) or degrades them (e.g. CGE on UT-Zappos, 8.7 vs
10.7 AUC). On the other hand, pseudo-labeling degrades
the performance of the CZSL models in all settings (e.g.
from 3.6 to 3.2 AUC of CompCos on MIT-States), providing
advantages only for CGE on MIT-States (3.8 vs 3.0 AUC).
The low efficacy of standard semi-supervised learning tech-
niques, is due to the fact that the top predicted object/state
may form an unfeasible composition with the ground-truth

state/object. Without modeling the feasibility of state-object
compositions, pseudo-labeling may assign incorrect (and
unfeasible) labels while entropy minimization may push the
model toward incorrect predictions. In the following sec-
tion, we discuss why this happens and why it is important to
restore to our knowledge-aided pseudo-labeling in pCZSL.

4.2.1 Ablation Study

We ablate the two important components of our proposed
approach: the pseudo-labeling strategy and the quality of the
ConceptNet feasibility scores.
Effect of the pseudo-labeling strategy. In Table 5, we con-
sider a few alternatives to our proposed pseudo-labeling strat-
egy for KG-SP. The first option is to just introduce vanilla
pseudo-labeling. This is done by replacing the missing la-
bels with the top predicted class, when the confidence of
the model is greater than a threshold. This strategy has a
negative effect, reducing the accuracy of the model on both
seen and unseen compositions (i.e. 16.6 vs 15.9 on the seen,
2.8 vs 2.7 on the unseen). This is because pseudo-labeling
alone is prone to confirmation bias [1] since the model can
become increasingly more confident about the predictions
that, without modeling the feasibility of compositions, may
be not only incorrect, but also unfeasible.

The second alternative is to use Gumbel-softmax [14],
sampling a label instead of performing direct pseudo-
labeling. This approach may allow the model to overcome
the confirmation bias, especially in the initial training stages
by sampling different labels w.r.t. the top prediction. How-
ever, this strategy alone does not achieve good results, de-
grading the performance of the base model (e.g. 4.5 vs 4.8
HM) and performing slightly worse than standard pseudo-
labeling (4.5 vs 4.6 HM). This performance degradation
is due in both cases by not exploiting the external knowl-
edge to correct the pseudo-labeling process, avoiding using
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Compositions
Most Feasible (Top-5) Least Feasible (Bottom-5)
painted paint grimy balloon
muddy mud steaming bracelet
frozen ice blunt clock
mossy moss thin garage
cloudy cloud unpainted belt

Objects States
Most Feasible (Top-3) Least Feasible (Bottom-3)

chains frayed, broken, loose pureed, unripe, steaming
sugar melted, whipped, caramelized scratched, ancient, coiled
sword blunt, sharp, splintered filled, runny, closed
laptop small, shattered, modern cloudy, sunny, dull
tulip bright, wilted, ruffled grimy, raw, damp

Table 6. Examples of ConceptNet feasibility scores. Top: Top-5
(left) and Least-5 (right) compositions per feasibility; Bottom: Top-
3 highest and Bottom-3 lowest feasible states per random objects.

incompatible compositions as supervision.
Our pseudo-labeling strategy, on the other hand, provides

a clear improvement (5.3 vs 4.8 HM) over our method which
already attains state-of-the-art results on open-world CZSL
benchmarks. Its benefits come from using external knowl-
edge to assign a feasibility score to each composition. These
feasibility scores are used to refine the pseudo-labeling pro-
cess, avoiding incompatible compositional labels. In addi-
tion to this, using the model scores to sample the label in
a probabilistic manner ensures that confirmation bias and
model drift can be avoided.
Quality of the ConceptNet feasibility scores. An impor-
tant aspect of KG-SP is the quality of the estimated feasi-
bility scores. In Table 6 we show some qualitative results
of our strategy, reporting detailed quantitative analyses on
the supplementary material. ConceptNet assigns the highest
feasibility scores to compositions where the state and the
objects share the same root, such as painted paint, muddy
mud, and mossy moss. This is a consequence of the very
similar contexts in which such states and objects appear. On
the other hand, among the least feasible compositions we
find objects with incompatible physical transformations (i.e.
steaming bracelet), or unclear states (e.g. unpainted belt,
blunt clock). These scores reflect the reliance of ConceptNet
relatedness scores to the context in which words appear. This
is also a limitation, since rare co-occurrences can be deemed
as unfeasible compositions (e.g. grimy balloon, thin garage).

When inspecting the most and least feasible composi-
tions for random objects (Table 6, bottom), we find that
the compositions ranked as most feasible such as bright
tulip, caramelized sugar, and blunt sword are indeed fea-
sible in the reality, while the compositions marked as least
feasible are not. Interestingly, the unfeasible compositions
merge objects and states from different categories. Examples
are food vs tools (e.g. pureed chains, scratched sugar) and

weather vs objects (e.g. cloudy laptop). This suggests that
the ConcepNet-based feasibility scores encode a high-level
notion of grouping, where objects and states can be separated
depending on the contexts where they commonly occur.

5. Conclusion
In this work, we addressed the problem of Open-World

Compositional Zero-Shot learning (OW-CZSL), where the
goal is to recognize compositions of objects and states in im-
ages given only a subset of them during training and without
any prior on unseen compositions at test time. We address
the problem by revisiting a simple CZSL method, VisProd,
that independently predicts state and object labels. The idea
is to simplify the problem by exploiting the much smaller
cardinality of object and state sets w.r.t. the compositional
labels. Our model, KG-SP, uses two different feature extrac-
tors to account for the dissimilarity between the two tasks,
and uses external information to remove less feasible com-
positions from the output space at test time. As KG-SP does
not require compositional labels, we explore a new challeng-
ing setting, CZSL under partial supervision (pCZSL) where
training images have either only object or state annotation.
In pCZSL, we use the feasibility scores to aid the estima-
tion of the missing labels. Experiments show that KG-SP
achieves the state of the art in OW-CZSL and pCZSL, out-
performing recent CZSL approaches coupled with standard
semi-supervised learning techniques.
Limitations and Broader Impact. One weakness of our
approach, shared with CZSL methods, is that the absolute
performance on all OW-CZSL benchmarks is quite low (e.g.
2.9 unseen accuracy on C-GQA). This can significantly ham-
per the real-world deployment of these models. However, we
believe that this research topic is crucial to bridge the gap be-
tween machine and human visual compositional recognition
abilities: our work contributes to the field by making another
step toward this direction. Another limitation of our work is
that automatic retrieving feasible state-object compositions
is a process without expert supervision, thus vulnerable to
inaccuracies in the knowledge base. For instance, if a valid
composition is marked as unfeasible, it will not be predicted
during inference and removed from candidate pseudo-labels
during pCZSL training. This may lead to the model produc-
ing erroneous outcomes, even reflecting potential biases in
the knowledge base. Modeling issues in the knowledge base
and/or merging multiple external sources is an important
topic for future research in OW-CZSL and pCZSL.

Acknowledgments This work has been partially funded by
the ERC (853489 - DEXIM), by the DFG (2064/1 – Project
number 390727645), and as part of the Excellence Strategy
of the German Federal and State Governments. The authors
thank the International Max Planck Research School for
Intelligent Systems (IMPRS-IS) for supporting Shyamgopal
Karthik.

9343



References
[1] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor,

and Kevin McGuinness. Pseudo-labeling and confirmation
bias in deep semi-supervised learning. In IJCNN, 2020. 7

[2] Yuval Atzmon, Felix Kreuk, Uri Shalit, and Gal Chechik.
A causal view of compositional zero-shot recognition. In
NeurIPS, 2020. 2, 3

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
5

[4] Rodrigo Berriel, Stephane Lathuillere, Moin Nabi, Tassilo
Klein, Thiago Oliveira-Santos, Nicu Sebe, and Elisa Ricci.
Budget-aware adapters for multi-domain learning. In CVPR,
2019. 2

[5] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution alignment
and augmentation anchoring. ICLR, 2020. 2

[6] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin Raffel. Mixmatch: A
holistic approach to semi-supervised learning. NeurIPS, 2019.
2

[7] Rich Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997. 2, 3

[8] Elijah Cole, Oisin Mac Aodha, Titouan Lorieul, Pietro Perona,
Dan Morris, and Nebojsa Jojic. Multi-label learning from
single positive labels. In CVPR, 2021. 2

[9] Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning
a deep convnet for multi-label classification with partial labels.
In CVPR, 2019. 2

[10] Yves Grandvalet, Yoshua Bengio, et al. Semi-supervised
learning by entropy minimization. NeurIPS, 2004. 2, 5, 7

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
5

[12] Dat Huynh and Ehsan Elhamifar. Interactive multi-label cnn
learning with partial labels. In CVPR, 2020. 2

[13] Phillip Isola, Joseph J Lim, and Edward H Adelson. Discover-
ing states and transformations in image collections. In CVPR,
2015. 4

[14] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with gumbel-softmax. In ICLR, 2018. 4, 7

[15] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geometry
and semantics. In CVPR, 2018. 2, 3

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 5

[17] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In ICLR, 2017.
2

[18] Kaustav Kundu and Joseph Tighe. Exploiting weakly super-
vised visual patterns to learn from partial annotations. In
NeurIPS, 2020. 2

[19] Christoph H Lampert, Hannes Nickisch, and Stefan Harmel-
ing. Learning to detect unseen object classes by between-class
attribute transfer. In CVPR, 2009. 2

[20] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In ICML-WS, 2013. 2, 4, 5, 7

[21] Hae Beom Lee, Eunho Yang, and Sung Ju Hwang. Deep
asymmetric multi-task feature learning. In ICML, 2018. 3

[22] Yunsheng Li and Nuno Vasconcelos. Efficient multi-domain
learning by covariance normalization. In CVPR, 2019. 2

[23] Yong-Lu Li, Yue Xu, Xiaohan Mao, and Cewu Lu. Symmetry
and group in attribute-object compositions. In CVPR, 2020.
1, 2, 3, 5

[24] Massimiliano Mancini, Muhammad Ferjad Naeem, Yongqin
Xian, and Zeynep Akata. Open world compositional zero-shot
learning. In CVPR, 2021. 1, 2, 3, 4, 5, 7

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. In NeurIPS, 2013. 4, 6

[26] Ishan Misra, Abhinav Gupta, and Martial Hebert. From red
wine to red tomato: Composition with context. In CVPR,
2017. 1, 2, 3, 5, 6

[27] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-
tial Hebert. Cross-stitch networks for multi-task learning. In
CVPR, 2016. 2, 3

[28] Muhammad Ferjad Naeem, Yongqin Xian, Federico Tombari,
and Zeynep Akata. Learning graph embeddings for compo-
sitional zero-shot learning. In CVPR, 2021. 1, 2, 3, 4, 5, 6,
7

[29] Tushar Nagarajan and Kristen Grauman. Attributes as oper-
ators: factorizing unseen attribute-object compositions. In
ECCV, 2018. 1, 2, 3, 5

[30] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
EMNLP, 2014. 4

[31] Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta,
and Marc’Aurelio Ranzato. Task-driven modular networks
for zero-shot compositional learning. In ICCV, 2019. 1, 2, 3,
5

[32] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Learning multiple visual domains with residual adapters. In
NeurIPS, 2017. 2, 3

[33] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Efficient parametrization of multi-domain deep neural net-
works. In CVPR, 2018. 2, 3

[34] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat,
and Mubarak Shah. In defense of pseudo-labeling: An
uncertainty-aware pseudo-label selection framework for semi-
supervised learning. In ICLR, 2021. 2

[35] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and
Anders Søgaard. Latent multi-task architecture learning. In
AAAI, 2019. 2, 3

[36] Frank Ruis, Gertjan J Burghouts, and Doina Bucur. Indepen-
dent prototype propagation for zero-shot compositionality. In
NeurIPS, 2021. 2

[37] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 2, 3

9344



[38] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang,
Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han Zhang,
and Colin Raffel. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. NeurIPS, 2020. 2

[39] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet
5.5: An open multilingual graph of general knowledge. In
AAAI, 2017. 2, 4

[40] Robyn Speer and Joanna Lowry-Duda. Conceptnet at
semeval-2017 task 2: Extending word embeddings with mul-
tilingual relational knowledge. In International Workshop on
Semantic Evaluation (SemEval-2017), 2017. 4

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. JMLR, 15(1),
2014. 5

[42] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and
Zeynep Akata. Zero-shot learning—a comprehensive evalua-
tion of the good, the bad and the ugly. IEEE TPAMI, 41(9),
2018. 5

[43] Aron Yu and Kristen Grauman. Fine-grained visual compar-
isons with local learning. In CVPR, 2014. 4

[44] Aron Yu and Kristen Grauman. Semantic jitter: Dense super-
vision for visual comparisons via synthetic images. In ICCV,
2017. 4

9345


