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Abstract

When coming up with phrases of movement, choreogra-
phers all have their habits as they are used to their skilled
dance genres. Therefore, they tend to return certain pat-
terns of the dance genres that they are familiar with. What
if artificial intelligence could be used to help choreogra-
phers blend dance genres by suggesting various dances,
and one that matches their choreographic style? Numer-
ous task-specific variants of autoregressive networks have
been developed for dance generation. Yet, a serious limita-
tion remains that all existing algorithms can return repeated
patterns for a given initial pose sequence, which may be in-
ferior. To mitigate this issue, we propose MNET, a novel
and scalable approach that can perform music-conditioned
pluralistic dance generation synthesized by multiple dance
genres using only a single model. Here, we learn a dance-
genre aware latent representation by training a conditional
generative adversarial network leveraging Transformer ar-
chitecture. We conduct extensive experiments on AIST++
along with user studies. Compared to the state-of-the-art
methods, our method synthesizes plausible and diverse out-
puts according to multiple dance genres as well as gen-
erates outperforming dance sequences qualitatively and
quantitatively.

1. Introduction

Dance has long been considered as a universal language
that can share emotions more effectively than words. Nowa-
days, many people share their life-log via short-form video
apps such as TikTok and Youtube Shorts [27,54]. However,
dancing is a highly creative and artistic process, hence pro-
fessional training is often followed to express a feeling of
elegant and rhythmic own story in a short-form video. For
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this reason, the music-conditioned dance generation, de-
spite significant progress, is a challenging task that should
capture high kinematic complexity rhythmically.

Recently, deep autoregressive networks have been used
to synthesize dance motions learning long-range dependen-
cies with the input music. Most state-of-the-art (SOTA)
methods [21,29,37,38] exploit RNN or Transformer archi-
tectures and generate dance for a given initial pose sequence
with music. While previous studies produce temporally co-
herence sequence according to music, we find that all exist-
ing algorithms remain severely limited diversity by extend-
ing a given initial pose sequence into a repeated patterns.
Although skilled dancers and choreographers often repeat
dance patterns, they try to subtly diversify their dance lines.
So, the lack of diversity issue is critical to the dance synthe-
sizing.

In this paper, we tackle the problem of the music-
conditioned pluralistic dance generation synthesized by
multiple dance genres. The key challenge of pluralis-
tic dance generation is to produce perceptually realistic
and various motions aligning to musical beats. To over-
come this challenge, we propose a generic new approach
that bridges the gap between music-conditional sequence-
to-sequence learning and recent unconditional generative
architectures via Transformer Conditional GAN.
Specifically, we leverage the generative capability from
transformer decoder, embedding both conditional and
stochastic representations via self-attention module.
By injecting a latent code and querying a certain duration
of music and initial pose sequence, the proposed model en-
ables the synthesis of diverse and consistent dance as shown
in Figure 1.

However, to synthesize dance controlled by multiple
dance genres, injecting latent code with conditions is an
ineffective process in such multi-domain translation task,
which can not be scalable to the increasing number of do-
mains. As discussed in multi-domain image-to-image trans-
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Figure 1. Goal: We learn a Music-conditioned transformer NETwork (MNET) to generate diverse dance motions following beats. Given
music, our model not only generates diverse sequences within one dance genre (left two rows) but also synthesizes various dance genres

during the music (right two rows).

lation literature [4,22,28,42,46], given k domains, k (k—1)
generators are required to sufficiently handle translations
between each and every domain, limiting their practical us-
age. To address the scalability, we employ two modules,
a mapping network and a multi-task discriminator, to the
sequence-to-sequence generative learning inspired by [10].
The mapping network learns to transform random Gaussian
noise into each dance genre code, which is termed style
code for a specific domain. For the multi-task discrimi-
nator, we take the role of the classifier to the transformer
encoder, where the module performs per-style clssification
as in the standard GAN setting. Considering multiple do-
mains, both modules have multiple output branches. Fi-
nally, our generator learns to successfully synthesize diverse
dance motions over multiple domains with a single model
utilizing an adversarial framework.

The main contribution of this work is three-fold: (1) We
newly introduce MNET, a novel Transformer-based condi-
tional GAN framework, and train it to generate pluralistic
dance motions by sampling from each latent representation
of multiple dance genres. (2) We demonstrate that it is pos-
sible to learn to generate realistic and diverse dance motions
which scalable to multiple dance genres in terms of visual
quality and empirical metrics. (3) We present a comprehen-
sive ablation studies of the architecture and loss components
outperforming state-of-the-art performance on the AIST++
dataset, which contains 3D motions reconstructed from real
dancers paired with music and multiple dance genres. Code
will be available for research purposes. Project page

2. Related Work

Music to dance generation. Different from common mo-
tion synthesis [2, 3,7, ], dance generation includes its
own challenges in that choreographed movements are ex-
tremely complex to animate. Thanks to the success of 2D
human pose estimation [8], most earlier works have been

studied in 2D pose context [16,29, 32,53, 55] by leverag-
ing the huge amount of paired pose and music from dance
videos available online. While 3D dance generation should
capture high kinematic complexity for the dynamic syn-
thesis. Various methods have been proposed to handle
this task, where network architectures such as LSTMs [31,
,67], GANs [29, 57], and sequence-to-sequence meth-
ods [1,21] have been explored. Most recent approaches em-
ploy transformer-based architectures. TSMT [37] employs
a two-stream motion transformer that computes the discrete
representation of the output pose which degrades motion
quality. FACT [38] present a full-attention based cross-
modal transformer that adopts sequence-to-sequence learn-
ing to generate more realistic 3D dance sequence. Close to
the previous works, DanceNet3D [35] also employ trans-
former architecture, but they further introduce a kinematic
chain network that enables the model to adapt to the tempo-
ral locality of motions. In contrast to these prior works, our
goal is to synthesize dance motions in a controlled way em-
bedding both conditional and stochastic representation via
transformer architecture.
Cross-modal sequence-to-sequence learning. Most ex-
isting works for cross-modal sequence-to-sequence gener-
ation task are often dominated by modeling between vi-
sion and text such as image/video captioning [25, 41, 59]
and text-to-image generation [52,62]. With the recent suc-
cess of multi-head attention module, transformer-based ap-
proaches now the de-facto architecture achieving SOTA
performance for many sequence-to-sequence learning tasks
[13,23,36,56,64]. 3D dance generation innately requires to
take into account the consistency between dance and music
simultaneously. This framework is closely related to the re-
search of learning a universal multi-modal generation task.
Multiple domain synthesis. Multiple domain synthesis has
long been discussed especially in image-to-image transla-
tion aiming to learn a mapping between different visual do-
mains. Most of the works inject a low-dimensional latent
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Figure 2. Method overview: We illustrate the generator (left) and the discriminator (right) of our transformer-based conditional GAN
to generate diverse dance motions synthesized by multiple dance genres. The mapping network transforms a latent code into style code
for multiple dance genres. The generator outputs long-range future motion by taking both sequences of seed motion and music piece as
query and the style code as key and value. Given a sequence of real (fake) motions with a corresponding music piece, the discriminator

distinguishes between real and fake motions from multiple domains.

code into the generator and map the sampled code between
the two domains for various styles when generating im-
ages [22,22,28,42,45]. However, they are limited to scale
the increasing number of domains. To address the multi-
ple domain scalability, StarGAN [9] learns the mappings
between all available domains using a single generator but
is limited to learning a deterministic mapping per each do-
main. To get the diverse images across multiple domains,
StarGAN?2 [10] introduces a mapping network replacing its
domain label with the specific style code sampled from ran-
dom Gaussian noise. Inspired by the success of image-to-
image translation, our work explores music-conditioned 3D
dance generation considering multiple dance genres.
Transformer Generative Adversarial Networks. Trans-
former models have recently demonstrated exemplary per-
formance in language tasks [6, | |, 58]. Vision transformer
has increased interest in neural network models [12, 14,39].
Several works utilize transformer as a generative adversar-
ial training to learn data distribution from sampled latent
noise which is completely free of convolutions [24,33]. In
this work, we adopt the strong representation capability of
transformers to bridge the gap between music-conditional
sequence-to-sequence learning and unconditional genera-
tive architectures for both conditional and stochastic rep-
resentations.

3. Music-Conditioned Pluralistic Dancing

Problem definition. Suppose we have a dataset D
{x,y}, where x = {z;}}*, is a sequence of movement,
and y = {y;}}~, is a music clip. Previous dance gener-
ation methods attempt to reconstruct a sequence of future

motion X = {it}zim 41 conditioned by a seed sample of
motion x and a longer music sequence y, where n > m.
This results in only a single solution with fixed dance genre.
In contrast, our goal is to sample from p(X|x, y, s), where s
is an arbitrary style of multiple dance genres.

Motion and music representation. For 3D dance gener-
ation, we employ SMPL pose parameters [40] which rep-
resent 24 x 3 scalar values of joint rotations in the kine-
matic tree. We combine the 6-dim rotation matrix repersen-
tation [30,34,65] for all 24 joints, along with a 3-dim global
translation vector, resulting in a z; € R motion repre-
sentation. For the music data, we follow the previous work
to extract a yy; € R35 representation which contains 1-dim
envelope, 20-dim MFCC, 12-dim chroma, 1-dim one-hot
peaks and 1-dim one-hot beats by employing the publicly
available audio processing toolbox Librosa [43].

3.1. Conditional Transformer GAN

The goal is to generate diverse dance synthesized by
multiple dance genres using transformer generator G given
%,y and s. Thus, the model can generate dance X based on
G(x,y,s;) where j is the index of multiple domains. Here,
we first present mapping network F' generates a style code
s of each dance genre. Then, we introduce our sequence-to-
sequence architectures, transformer decoder G, chosen for
pluralistic dance generation. Lastly, we introduce a trans-
former encoder D that takes the role of the multi-task dis-
criminator. This process is depicted in Figure 2.

Mapping network. Motivated by existing work [10], map-
ping network generates a style code s; = F);(z) from given
latent code z for all available dance genres, where j is index
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of each domain. F’ consists of stacked MLPs with multiple
outputs branches corresponding to all available domains.
This makes F' can produce diverse and scalable style code
by sampling the latent code z € Z.

Generator design. Designing a G based on the trans-
former architecture is a nontrivial task. A challenge is that
the GAN training becomes highly unstable when coupled
with a multi-head attention module that is hindered by high-
variance gradients during adversarial training. Therefore,
we empirically chose the architectural design and we dis-
cuss several baselines in Section 4.4. For our choice, we
employ a transformer decoder as the G. Given the seed mo-
tion x and audio features y, these are concatenated and fed
as a query. In contrast, the style code s from the mapping
network is fed as key and value. The transformer decoder
outputs a sequence of X by passing through a linear projec-
tion.

Discriminator design. Similar to the G, the transformer-
based discriminator D takes the concatenated real (fake)
motion X, .../ (X,,,1.,,/) and audio feature y, but we
employ transformer encoder as a discriminator. To allow
the G to synthesize a dance sequence reflecting the style for
all genres, the D is a multi-task discriminator, which con-
sists of multiple output branches. Each branch D; classifies
the dance into being real and fake of its domain j.

3.2. Training

Overall, the architecture is trained using an adversarial
loss as well as a number of additional losses. We present an
ablation study regarding loss function in Section 4.4.
Adversarial loss. Given a seed motion x with its dance
genre index j and corresponding music features y, we sam-
ple a latent code z € Z, and extract target style code
s; = Fj(z). The generator G takes an x, y and s;, to gen-
erate an output dance sequence G(x,y,s;) via an original
adversarial loss

Lori =Ex [IOgDJ (Xj,m,-l—l:m/ ’ y)]+ ey
]Ex,z [log(l - D](G(Xja Y, Sj)7 Y))]v

where the D;(-) has an objective to distinguish generated
motion sequence from the real ones corresponding to the
specific domain j. While the G learns to utilize style code
s; through mapping network F' and generates the output
that is indistinguishable from the real motion sequence of
the domain j.

Our goal is not only to generate diverse dance motions
but also synthesize sequence following the style code that
represents multiple dance genres. Suppose we have a dance
motion x; representing style s; as a seed motion, and we
use this as an input of a generator to synthesize a dance mo-
tion G(x;,y,s;) using a different style s,. We found that
the transformer conditional GAN focuses on the style of the

seed motion sequence which sticks to the style variants ac-
cording to x;, and ignores the input style variants s;. To
further guarantee that the generated motion sequence prop-
erly preserves the domain-specific style regardless of seed
motion x;, we employ style-focusing term

Esty = IEx,z [IOng (G(Xja Yy, Si)7 y)+ (2)
10g(1 - DZ(G(X]a Y, Si)7 Y))]

By indirectly moving the output of each discriminator
branch apart, the generator can focus more on style code,
encouraging each domain to learn disentangled representa-
tions. Thus, the new adversarial loss is now can be com-
PUted by ﬁadv = £ori + Esty

Appearance matching loss. The output of the model is the
future motion sequence supervised by appearance match-
ing loss using both pose parameters and vertex coordi-
nates. As such, we use L2 loss between the ground-truth
pose sequence X, ., and our prediction X, .../ =
G(x,y,s;) as L, = EX[meH:m’ =Xt 2]. For
the pose parameters, we contain both the SMPL rotations
and the global translations. For the global consistency, we
further minimize the distance between the ground-truth and
predicted vertices. Following [49], we integrate differen-
tiable SMPL layer with a mean shape (i.e., § = 6) as a
part of end-to-end framework to obtain the root-centered
vertices of the mesh v, ., - and v, ., - . By mini-
mizing the vertices L2 distance, we define vertex loss as
Ly = Ev[|[Vini10m = Yomgrom ||, |- Finally, our appear-
ance matching loss is given by Ly, = L, + L.

Style diversity loss. To further encourage the generator G
to produce pluralistic dance motions, we explicitly regular-
ize G via diversity loss [10,42]

»Cdiv - Ex,zl,ZQ,j[”G(vav Sj,l) - G(Xayvsj,Q)HQ]v (3)

where the target style codes s; 1 and s; o are produced by F
conditioned on two random noise z; and zs. The mapped
sequences G(x,y,s;1) and G(x,y, s;,2) in the same dance
genre j are more likely to be collapsed into the same mode.
By maximizing the L4, in the same genre, our model fo-
cuses more on variations of the input style code that con-
tribute to the output diversity.

Overall loss. Thus, the overall loss can be summarized as
follow:

milg max Ladv + Lapp — AdivLaivs “)

s

where Ay, is the importance of weighting determining the
trade-off between diversity and realistic motion sequence
(see Section B of the appendix). The weighting factors of
the remaining loss terms are equally weighted in our exper-
iments.
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Motion Plausibility Generation Diversity Motion-Music Cons. User Study
FID, | FID,] FID,] Acc.? Dist,, ), T Disty, g T Disty, s T BeatAlign 1 MNET WinRate
AIST++ - - - 98.6 10.39 8.48 8.91 0.292 42.3%
Dancenet [66] 56.67 1647  38.49 43.6 2.10 2.64 2.76 0.220 90.38 %
DanceRevolution [21]  42.93 14.85 26.53 729 3.82 3.31 2.45 0.215 84.17 %
FACT [38] 33.08 11.82 11.37 76.1 5.83 5.28 5.31 0.241 62.39 %
MNET (ours) 29.52 9.36 7.90 83.7 6.93 6.77 6.32 0.246 -

Table 1. State-of-the-art comparison: We compare to the three recent methods. Our model generates plausible motion sequences than
other baselines in terms of FID, and better represents the style of the dance genres through the Acc. where the score evaluates the style
consistency of the generated dance. Our model shows more diversified dance motions when conditioned on different music and more
consistent results aligned with input music beat. | A lower value is better. T A higher value is better.

3.3. Implementation Details

In our experiments, we set the input of a seed motion
sequence as m = 120 frames (2 seconds) and a music se-
quence as n = 240 frames (4 seconds) following the previ-
ous setting [38], where the two sequences are aligned on the
first frame. The output of our generator is the future motion
sequence with m’ —m = 60 frames supervised by the pro-
posed losses. During inference, we continuously generate
future motions in an auto-regressive manner. The seed mo-
tion is replaced with newly generated motion and the music
is shifted 60 frames to feed into the generator at every step.

We use a 8-blocks transformer encoder for the discrim-
inator and we increase the number of blocks to 12 for the
transformer decoder in the generator. All the two trans-
formers have 8 attention heads with d = 512 hidden sizes.
We experimentally find that the increasing number of heads
does not improve the performance during conditional GAN
training, and we discuss it in Section B. Furthermore, we
use a relative positional encoding for all transformer archi-
tecture instead of an absolute positional encoding [12, 58].
Following [20, 39] a relative position bias B € RNa*Nkv jg
included in computing self-attention

Attention(Q, K, V) = SoftMax(QK ™ /Vd + B)V, (5)

where, Q € RNa*b KV € RNk *b are the query, key and
value metrices, and IV, is the query sequence of length and
Ny, is the key-value sequence of length, respectively.

We use the AdamW optimizer with a fixed learning rate
of A = le~* and all weights are randomly initialized. All
our experiments are trained with 10 mini-batch size. The
performance is sensitive to this parameter and we discuss
it in Section B. The training finishes after 500k steps on
8 GPUs with an accumulated VRAM 96GB. If hardware
permits, 16-bit precision training is enabled.

4. Experiments
4.1. Dataset and Baseline

AIST++ dataset. One of the biggest bottlenecks in the 3D
dance generation approaches is the data problem. To miti-

gate this issue, recent works [16,21,29,35] collected large
amounts of dance videos on the Internet, and extracted 3D
pose sequences with synchronized audios. However, most
of the data is not publicly released and may not be reli-
able because of the 2D to 3D depth ambiguity. In con-
trast, AIST++ [38] is a large-scale 3D human dance motion
dataset that is captured from calibrated multi-view videos.
The dataset has a wide variety of 3D motions paired with
music which contains 1408 sequences, 30 subjects, and
10 dance genres. All our experiments are performed on
AIST++ dataset.

Baseline. For the comprehensive evaluations, we mainly
compare our proposed method with FACT [38] which
shows current SOTA results for 3D dance generation. Fur-
ther, we employ SOTA 2D dance generation methods which
are Dancenet [66] and DanceRevolution [21]. We adopt
this with small modifications to generate 3D joint loca-
tions which enable the direct comparisons quantitatively
and qualitatively. These models are re-trained until conver-
gence following the same experimental settings proposed in
each study using the AIST++.

4.2. Quantitative Comparisons

To evaluate our approach, we measure (1) motion plau-

sibility, (2) generation diversity and (3) motion-music con-
sistency, following the [21, 37, 38]. For all criteria, our
model shows superior performance compared to baselines,
as shown in Table 1.
Motion plausibility. We measure geometric and kinematic
Fréchet Inception Distance (FID) for the motion plausibil-
ity. To measure the distribution of generated and ground-
truth dances, the two well-designed motion feature extrac-
tors [44,47] are employed that produces a kinetic feature
z), € R™ and a geometric feature z, € R33. Furthermore,
we train a style classifier on dance motions of 10 dance gen-
res and utilize it to extract a style feature z, € R>!? for the
given dances. We denote the FID based on these geomet-
ric, kinetic and style features as FIDy,, FID, and FIDy, re-
spectively. Besides, we use style classifier to measure the
prediction accuracy of the dance genres.
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Break (sg) Pop(s1) Lock (sz) Middle hip-hop (s3) LA style hip-hop (s4) House (s5) Waack (s¢) Krump (s7) Street jazz (sg) Ballet jazz (sg)
FID; | 26.31 23.44 30.10 31.48 29.85 30.75 29.10 22.49 34.18 32.72
FID, | 9.03 9.17 11.39 12.87 9.68 10.28 11.95 10.89 9.32 9.05
FID; | 10.82 9.85 9.39 7.65 7.37 742 8.39 9.18 8.27 7.06
Distg ;. T 5.11 5.79 3.68 3.97 4.71 4.75 4.16 6.56 3.66 5.17
Dist, 4 1 6.85 6.33 7.75 6.47 5.24 5.96 6.83 5.18 5.31 3.94
Dist, s T 3.75 3.19 4.68 5.35 5.17 3.79 2.35 2.97 3.62 4.81

Table 2. Comparisons on individual dance genres. We investigate motion plausibility and generation diversity quantitatively on individ-
ual dance genres. Our model synthesizes dance motions realistic and diverse for all dance genres. This indicates that the mapping network

effectively separates all domains.
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Generated 3D Dance Motions

Figure 3. Generation diversity: We illustrate the generation di-
versity using different kinds of music. We fix latent code and se-
lect the same dance genre (Break) during iterative inference. We
demonstrate that our model is capable of generating different ways
by capturing musical change. More results can be found in the sup-
plementary video.

However, measuring motion plausibility is hard for the
pluralistic dance generation, as our goal is to get diverse but
reasonable solutions for the given conditions. The ground-
truth dance is only one solution of many, and the metrics
that are calculated between the real and generate sequence,
are not measurable. Therefore, we generate 10 sequences
for each 10 dance genres from 20 kinds of music, producing
a total of 2000 samples. Similar to [63], we assume that our
top 1 sample for each dance genre (ranked by the multi-task
discriminator) is close to the original ground truth. We gen-
erate motion sequence with 7" = 1200 frames (20 seconds).
As shown in Table 1, all FID scores are recorded signifi-
cantly lower than our baselines which means that our gen-
erated samples are much closer to that of the real. Further-
more, the prediction accuracy of the dance genre achieves
83.7%.

Generation diversity. In contrast to the baseline methods,
our model not only generates multiple sequences by various
music but also produces multiple sequences for the same
music by sampling the style codes. We compute these di-
versity using the average Euclidean distance in the feature

Kinematic beats Music beats — Kinematic velocity

time

Figure 4. Motion-music consistency: We visualize an example of
beat alignment between music and generated dance. The orange
and green dashes on the graph indicate the extracted musical beats
and kinematic beats, respectively. The kinematic beats are com-
puted as the local minima of the kinetic velocity (blue line).

space. To measure the diversity by various music, we gen-
erate 40 motion sequences and compute the distance em-
ploying geometric, kinematic, and style features which are
denoted as Dist,, j, Dist,, 4 and Dist,, s, respectively. Our
model obtains a higher score for all metrics which means
that our model is more dependent on input music than the
baseline approaches and thus provides multiple dance mo-
tions for different music clips of the same style. Table 1
shows results of the diversity by various music. Figure 3 vi-
sualizes dance motions by various music. Similar to music
variation diversity, we calculate the diversity by style code
from the same music using the geometric, kinematic, and
style feature extractor. We generate 20 samples for each
dance genre from randomly selected 30 music clips and
compute distance in the three feature spaces, which are de-
noted as Dist, j, Dist, , and Dist, ,. Table 2 shows results
of the motion plausibility and generation diversity quantita-
tively on individual dance genres. The recorded scores for
all dance genres show similar values for all metrics which
represent that the style code for each dance genre is prop-
erly disentangled.

Motion-music consistency. As a skilled choreographer
moves rhythmically in accordance with the music beat, the
outputs of a well-trained dance generation model require
consistency between motion beat and music beat. We eval-
uate the motion to music consistency using the Beat Align-
ment Score introduced in [38]. The Beat Alignment Score
is defined as the average distance between kinematic beat
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Figure 5. Qualitative result: We illustrate the diversity of our generations for the two aspects. The left visualizes outputs guided by latent
codes. Note that the motions in each row share a music and dance genres with different latent codes. The right visualize outputs guided by
style codes. Note that the motions in each row share music and latent codes but the style codes are differently selected by multiple branches
of the mapping net during iterative inferences. More results can be found in the supplementary video.

and its nearest music beat

m

1
BeatAlign = — —
eatAlign = — ; exp(

minyy e gy |[t7 — t411?

202

), (6)

where B* = {t¥} is the kinematic beats which are the lo-
cal minima of the kinetic velocity, BY = {t¥} is the music
beats which are extracted using Librosa [43] and ¢ is a nor-
malize parameter where we set ¢ = 3 in all experiments.
As shown in Table 1, our model shows superior music and
motion consistency compared to these baselines. Further,
we show the visualization of motion beat and music beat
consistency in Figure 4.

4.3. Qualitative Results

Here, we visualize several examples from our generation
for the two perspectives: latent-code guided generation and
style-code guided generation. Then, we compare the user
preferences of our methods with baseline approaches. We
further discuss qualitative comparison in Section C.
Latent-code guided generation. The left of Figure 5 pro-
vides visualized examples guided by different latent codes.
We show the 3 generations per dance genres. Our model
takes 3 differently sampled noises through the mapping net-
work and selects one dance genre among several branches,
where each style code represents the same dance genre but
is born in different latent codes. We demonstrate that the
proposed model generates different ways to distinguish the
different latent codes in the same dance genres.

Style-code guided generation. The right of Figure 5 pro-
vides visualized examples guided by different style codes.
After the model is trained, we generate continuous motion
in an auto-regressive manner at test time. To show the out-

puts synthesized by style codes, we fixed latent codes and
change the style codes by selecting different branches of the
mapping network during the repeated future motion genera-
tion process. By doing so, our generation can only focus on
the variation of the style codes, whose domain-specific in-
formation is already taken care of by the mapping network.
We observe that our method successfully renders distinctive
styles sequentially across all dance genres.

User study. We compare the user preference of our method
with baseline approaches. For user study, each subject is
asked to select one between our results and one randomly
selected counterparts for the question of “which person is
dancing more plausible to the music?”. 23 subjects partic-
ipated in the user study. As shown in Table 1, our method
obtains the majority of votes compared to all baselines. Fur-
ther, it is noteworthy that the preference between AIST++
and generated motions is competitive.

4.4. Ablation Study

In this section, we verify the choice and effect of our con-
tributions separately. We conduct the following ablation ex-
periments in architecture design and loss study. The effec-
tiveness is measured using the motion plausibility (FIDy),
generation diversity (Dist,, ), and motion-music consis-
tency (BeatAlign).

Architecture design. For the dance generation, the
attention-based approach (i.e., Transformer) has demon-
strated advantages over several architectural designs such
as a simple autoencoder or a GRU-based recurrent neural
network in several previous studies [35, 50]. However, the
challenge is that GAN training tend to unstable when cou-
pled with transformer architecture [24, 33]. Here, we in-
vestigate the backbone of transformer-based GAN design
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x W ﬁ mi Generator  Discriminator FID, | Dist,, , T BeatAlign 1
’ﬂ fm TN a f—mﬁ .G Figure 6 (a) MNET 35.27 5.32 0.225
. A ER Y Figure 6 (b)) MNET 59.84 391 0.206
[ Transformer Encoder A Transformer Encoder MNET Motion-dis. 29.40 6.20 0.239
T F R x o ¥ R ¥ MNET MNET 29.52 6.93 0.246
X "2'"’,‘%]] @],Y%D%ﬂ ) (raf e fenf b )+ -
| Table 3. Ablation study of architecture design: We compare
[ Mapping Network } Mapping Network ] plausible architectural designs regarding both generator and dis-
T criminator.
Latent code Latent code
zEN(,I) z€N(O,I)
(a) (b)

Figure 6. Generator architecture: The two plausible baseline
architectures. (a) embeds style code by concatenating with input
conditions. (b) replaces normalization with self-modulated layer
norm in the transformer architecture.

in terms of both generator and discriminator.

Designing a generator based on the transformer is a non-
tribial task. The challenge comes from properly embedding
the latent code in the dense attention process. We first dis-
cuss two plausible baseline architectures, as shown in Fig-
ure 6. Both baselines employ a transformer encoder and
generate motions from embeddings. Figure 6 (a) takes the
style codes by concatenating with input conditions. Alter-
natively, Figure 6 (b) embeds the style code by replacing
the layer norm [5] in transformer architecture with a self-
modulated layer norm (SLN) [33]

SLN(hy,s) = v(s) ® hla K + Bi(s), @)
where 14 and o are the mean and variance of the summed
inputs within the layer, and ~; and /5; compute learnable
parameters controlled by the style code s. These models
are trained with the same setting as the proposed approach.
Table 3 shows the quantitative performances under differ-
ent generator architectures. We find that Figure 6 (a) works
well but shows a large performance gap with our proposed
generator. Figure 6 (b) underperforms other architectures
due to training instability which means that SLN interacts
poorly with self-attention. Besides, our generator works to-
gether with the motion-discriminator which captures the se-
quential motion using GRUs [26]. The results show the pro-
posed method are compatible with both transformer-based
and RNN-based discriminators.

Loss study. Here, we investigate the influence of the objec-
tive function in our transformer GAN. For all experiments,
we fix the original adversarial loss and add the proposed
loss functions in succession. As shown in Table 4, when
using a single adversarial loss, our model is not sufficient to
learn the high kinematic complexity (A) where the outputs
produce motions with significant jitter. In contrast, when we
use appearance loss (B and C), the performance improved

FID, | Dist,, ;T BeatAlign

A Adversarial Loss L4 59.58 4.57 0.197
B + Pose Parameters £, 33.84 4.20 0.239
C + Vertex Coordinates L, 31.71 4.39 0.215
D + Diversity L gy 29.88 6.71 0.207
E + Style-Focusing L, 29.52 6.93 0.246

Table 4. Ablation study of loss function: We compare quantita-
tive scores by adding loss functions with different configurations.

significantly, especially for FID,. This suggests that the
appearance loss effectively constraints the pose space, but
limits diversity by collapsing the sampled latent code into
a similar space. We then improved this baseline by adding
diversity loss (D). However, there is a trade-off between di-
versity and realistic motion sequence according to weight-
ing parameters \g;, of diversity loss. We empirically deter-
mine the \y;, and discuss it in Section C. Finally, we intro-
duce regularization to disentangle the style codes of differ-
ent dance genres (E), improving results further.

5. Conclusion

We propose a new Transformer-based GAN model to
generate music-conditioned pluralistic dance motions syn-
thesized by multiple dance genres, translating a motion of
one dance genres to diverse motions of a target dance gen-
res, and supporting multiple target dance genres. We pro-
vide a detailed discussion to assess different components of
our proposed approach quantitatively and qualitatively. The
experimental results show that our model can generate mo-
tions with rich styles across multiple domains, remarkably
outperforming the baselines in terms of both automatic met-
rics and human evaluation. Currently, our model requires
seed motion to generate future motion. Exploring how to
generate diverse dance motions without seed motion is a
more practical usage and exciting direction.
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