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Abstract

Depth maps are used in a wide range of applications from
3D rendering to 2D image effects such as Bokeh. However,
those predicted by single image depth estimation (SIDE)
models often fail to capture isolated holes in objects and/or
have inaccurate boundary regions. Meanwhile, high-quality
masks are much easier to obtain, using commercial auto-
masking tools or off-the-shelf methods of segmentation and
matting or even by manual editing. Hence, in this paper, we
formulate a novel problem of mask-guided depth refinement
that utilizes a generic mask to refine the depth prediction of
SIDE models. Our framework performs layered refinement
and inpainting/outpainting, decomposing the depth map into
two separate layers signified by the mask and the inverse
mask. As datasets with both depth and mask annotations are
scarce, we propose a self-supervised learning scheme that
uses arbitrary masks and RGB-D datasets. We empirically
show that our method is robust to different types of masks and
initial depth predictions, accurately refining depth values in
inner and outer mask boundary regions. We further analyze
our model with an ablation study and demonstrate results
on real applications. More information can be found on our
project page.1

1. Introduction

Recent progress in deep learning has enabled the pre-

diction of fairly reliable depth maps from single RGB im-

ages [20, 31, 32, 47]. However, despite the specialized net-

work architectures [11,29,31] and training strategies [32,46]

in single image depth estimation (SIDE) models, the esti-

mated depth maps are still inadequate in the following as-

pects: (i) depth boundaries tend to be blurry and inaccurate;

(ii) thin structures such as poles and wires are often miss-

ing; and (iii) depth values in narrow or isolated background

regions (e.g., between body parts in humans) are often im-

precise, as shown in the initial depth estimation in Figure 1.

Addressing these issues within a single SIDE model can be

1https://sooyekim.github.io/MaskDepth/
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Figure 1. Our layered depth refinement result on an initial predic-

tion by DPT [31]. Aided by a high-quality mask M generated with

an auto-masking tool [33], our method is able to accurately refine

mask boundaries and correct depth values in isolated hole regions

between body parts. Regions in M and 1 − M are refined and

inpainted/outpainted separately with our layered approach.

very challenging due to limited model capacity and the lack

of high-quality RGB-D datasets.

Therefore, we take a novel approach of utilizing an ad-

ditional cue of a high-quality mask to refine depth maps

predicted by SIDE methods. The provided mask can be

hard (binary) or soft (e.g., from matting) and can be of

objects or other parts of the image such as the sky. As high-

quality auto-masking tools are very accessible nowadays,

such masks can be easily obtained with commercial tools

(e.g., removebg [33] or Photoshop) or off-the-shelf seg-

mentation models [14, 30, 52, 57]. Segmentation masks can

also be annotated by humans [7,41,49], and accurate datasets

are easier to obtain than RGB-D data, which facilitates the

training of auto-masking models.
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Figure 2. Refined depth maps with the guidance of a high-quality mask. (b) The initial depth prediction [31] has blurry boundaries and

misses isolated hole regions between human body parts. (c) Direct refinement by training on a paired dataset [34] improves the initial depth

but still has blurry boundaries. Layered refinement results in sharp edges due to the final compositing step using the mask, although (d)

naive in/outpainting [36] generates artifacts in the background. (e) Our method successfully corrects the inaccurate depth values while

in/outpainting each region with the guidance of the mask. Intermediate layered outputs are shown on the top right for the layered models.

However, even with such accurate masks, how to effec-

tively train the depth refinement model remains an open

issue. As shown in Figure 2(c), directly adding the mask as

an input channel to the refinement model still results in blur-

rier boundaries than the given mask. Therefore, we propose

a layered refinement strategy: The mask (M ) and inverse

mask (1−M ) regions are processed separately to interpolate

or extrapolate the depth values beyond the mask boundary,

leading to two layers of depth maps. As shown in Figure 2(e),

the refined output is the composite of the two layers using

the mask M , which fully preserves the boundary details of

the mask, as well as filling in the correct depth values for the

isolated background regions.

A naı̈ve baseline for layered depth refinement would be

using an off-the-shelf inpainting method to generate the

depth map layers for M and 1 − M . Unfortunately, as

shown in Figure 2(d), generic inpainting may not work well

for filling in large holes in a depth map. Moreover, deriving

an appropriate region for hole-filling on an imperfect initial

depth prediction based on the mask is a non-trivial problem.

The hole-filling region often needs to be expanded to cover

uncertain regions along the mask boundary, as otherwise, the

erroneous depth values may propagate in the hole. However,

too much expansion will make the hole-filling task much

more challenging as it may overwrite the original depth

structure in the scene (see the 1−M layer in Figure 2(d)).

To address the challenge, we propose a framework for

degradation-aware layered depth completion and refinement,

which learns to identify and correct inaccurate regions based

on the context of the mask and the image. Our framework

does not require additional input or heuristics to expand the

hole-filling region. Furthermore, we devise a self-supervised
learning scheme that uses RGB-D training data without

paired mask annotations. We demonstrate that our method is

robust under various conditions by empirically validating it

on synthetic datasets and real images in the wild. We further

provide results on real-world downstream applications.

Our contributions are three-fold:

• We propose a novel mask-guided depth refinement

framework that refines the depth estimations of SIDE

models guided by a generic high-quality mask.

• We propose a novel layered refinement approach, gen-

erating sharp and accurate results in challenging areas

without additional input or heuristics.

• We devise a self-supervised learning scheme that uses

RGB-D training data without paired mask annotations.

2. Related Work
Single Image Depth Estimation Single image depth es-

timation (SIDE), also commonly termed monocular depth

estimation, aims to predict a depth map from an RGB im-

age. A common approach is to train a deep neural network

on RGB-D datasets to learn the non-linear mapping from

RGB to depth [20, 31, 32, 47]. As for the model architec-

ture, convolutional neural networks (CNNs) are a popular

choice [32, 47], with a transformer-based model [31] being

recently proposed to overcome the limited receptive field

size of CNNs. Transformer models [10, 37] leverage self-

attention [39], expanding the receptive field to the entire

image at every level. We also base our model architecture

on transformers to benefit from the enlarged receptive field.

For training SIDE models, datasets are often augmented

with synthetic datasets [4, 27, 43, 44, 50] and relative depths

computed from stereo images [20, 40, 46]. Numerous super-

vision schemes [1, 5, 12, 13, 24, 26, 45, 53, 55, 56] and loss

functions [17, 19, 20, 47] have been proposed to optimize

the model training for SIDE. Several methods [26, 42, 56]

attempt to exploit the relation between image segmentation

and SIDE, with Zhu et al. [56] proposing regularizing depth

boundaries with segmentation map boundaries in the loss

function to enforce sharper edges in the resulting depth maps.

However, even with sophisticated framework designs, cap-
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turing highly accurate depth boundaries remains a challenge

due to the ill-posed nature of the problem and the lack of

pixel-perfect ground truth depth data.

Depth Inpainting Inpainting depth maps is often neces-

sary in novel view synthesis for 3D photography to naturally

fill in disoccluded regions [16, 27, 35]. Such methods apply

joint RGB and depth inpainting in the background region

near object edges. Another line of research is depth com-

pletion, which aims to fill in unknown depth values from

sparsely known annotations. Imran et al. [15] proposed a

layered approach, extrapolating foreground and background

regions separately from LiDAR data. In our depth refine-

ment method, both the mask and inverse mask regions are

inpainted/outpainted while correcting inaccurate depth val-

ues and merged afterward to obtain accurate boundaries.

Depth Refinement In an inspirational work [25], Mian-

goleh et al. proposed boosting high-frequency details in

SIDE results by merging multiple depth predictions at var-

ious resolutions, exploiting the limited receptive field size

of CNNs. However, their merging algorithm tends to gener-

ate inconsistent depth values in foreground objects, and its

refinement degrades with recent transformer architectures

as it is based on a fundamental assumption related to CNNs.

Furthermore, capturing very thin boundaries and generating

accurate depth values in hole regions are still challenging.

In this paper, we explore a novel direction of using generic

masks as guidance for depth refinement. Unlike previous

methods that upscale or enhance details in the entire depth

map, we focus on delicately refining along the boundary

and hole regions of the mask. Handling such regions is

often important in downstream applications such as Bokeh

effect synthesis. Our method is generic and can refine depth

maps generated by any SIDE model regardless of the model

architecture, as long as the provided mask contains better

boundaries than the initial depth map. Note that our method

operates in the inverse depth space as many prior works

[25, 31, 32], although we continue using the term depth.

3. Proposed Method
We propose a layered depth refinement framework for

enhancing the initial depth prediction of SIDE models using

the guidance of a quasi-accurate mask and an RGB image.

3.1. Data Generation

Random composition With an RGB-D dataset consisting

of an RGB image I and its depth map D, a general depth re-

finement model can be optimized in a self-supervised way by

applying random perturbations P on D, which inversely sim-

ulate initial depth predictions. A neural network R can then

be trained to predict the refined depth map D̂ = R(P(D), I)
with an appropriate loss function L(D̂,D).

However, collecting a dataset for training a mask-guided

Figure 3. Data generation scheme. RGB-D patches are randomly

composited using an arbitrary binary mask. Perturbations are ap-

plied to simulate depth estimates, resulting in isolated regions being

covered up and thin structures being lost.

depth refinement model is challenging as datasets containing

masks along with the RGB-D information are scarce. Hence,

we devise a data generation scheme that does not require

paired depth and mask annotations. Specifically, a composite

depth map D′ is randomly synthesized from two arbitrary

depth maps D1 and D2 using an arbitrary binary mask M
with mij ∈ {0, 1}, by D′ = M · D1 + (1 − M) · D2.

Likewise, the corresponding composite RGB image I ′ is

computed by I ′ = M ·I1+(1−M) ·I2, where I1 and I2 are

the RGB images corresponding to D1 and D2, respectively.

Examples of D′ and I ′ are shown in Figure 3(a). Applying

perturbations to D′ leads to P(D′), and the mask-guided

refinement model Rm can then be trained with L(D̂′, D′),
where D̂′ = Rm(P(D′), I ′,M).

In this way, we can obtain a synthesized depth map D′

and an RGB image I ′ that are aligned to M from any RGB-

D dataset and arbitrary masks. Diverse types of masks can

be mixed and used, including object and stuff masks from

segmentation datasets [21, 54]. Furthermore, we can effort-

lessly acquire the ground truths for inpainting/outpainting

(D1 and D2), which are essential for our layered refinement

approach, explained in more detail in the next section.

Perturbations As shown in Figure 3(b), we apply three
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Figure 4. An overview of the proposed two-stage training strategy. In the first stage, the network is trained to complete regions with 0 based

on regions with 1 in the given mask. The mask is randomly flipped and the corresponding depth (D1 or D2) is given as the ground truth. In

stage II, we run the network twice to obtain D̂1 and D̂2 and merge them based on the mask to produce the refined output D̂′. The network

learns to remove perturbations while inpainting/outpainting the depth. During inference, the refined output is obtained following stage II.

types of perturbations on D′ to simulate typical inaccura-

cies in SIDE model predictions. First, random dilation and

erosion are applied in a random order so that the perturbed

depth map lacks thin structures, and its depth boundaries

are not always aligned with the RGB image or the mask. In

Figure 3(b), it can be observed that thin structures (hand of

the person) are lost, and isolated regions are covered up (be-

tween the arm and the main frame of the chair) after random

dilation and erosion. Second, we apply random amounts of

Gaussian blur on the depth map as estimated depth maps

tend to have blurry boundaries. Lastly, we design a human
hole perturbation scheme that detects isolated regions and

assigns a random value between the mean depth values sur-

rounding the hole and inside the original hole, simulating the

often-missing isolated regions inside human bodies in esti-

mated depth maps. More details of the perturbation scheme

are provided in the supplementary material.

3.2. Training Strategy

Two-stage training for layered refinement Although

depth refinement with an accurate mask may appear straight-

forward after data pairs are obtained with the proposed data

generation scheme, directly predicting the refined depth map

from concatenated RGB-D and mask inputs leads to sub-

optimal results, as shown in Figure 2. To explicitly benefit

from the accurate mask, we propose a layered refinement
approach that refines regions specified by M and 1 − M
separately and merges two individual results based on M . In

this way, the model can focus on correcting the depth values

in each region, and mask boundaries can be fully preserved

after the merging stage.

We train our model in two stages shown in Figure 4. In

the first stage, the model Rm is trained for image comple-

tion by randomly providing M or 1−M and optimizing ei-

ther L(Rm(D′, I ′,M), D1) or L(Rm(D′, I ′, 1−M), D2).
Note that a single model is trained for both inpainting and
outpainting the depth input to always complete regions with

0 based on regions with 1 signified by the given mask M or

1 −M . Then in the second stage, we add perturbations P
and run the network twice with M and 1−M to obtain two

outputs D̂1 and D̂2, given by

D̂1 = Rm(P(D′), I ′,M) and (1)

D̂2 = Rm(P(D′), I ′, 1−M). (2)

Reasonable D̂1 and D̂2 are generated from the beginning

of the second stage as the model has been pretrained for

inpainting/outpainting in the first stage. Finally, D̂1 and D̂2

are merged to yield the refined output D̂′ as follows:

D̂′ = M · D̂1 + (1−M) · D̂2. (3)

Our model is optimized with three losses at this stage:

L(D̂1, D1), L(D̂2, D2), and L(D̂′, D′). As a result, the

network learns to remove perturbations while generating

completed depth maps under a unified framework. Although

we only utilize composite depth maps as input during train-

ing, the randomness in composition (random depth maps
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Figure 5. Our network architecture with DPT [31] as the backbone

model. We add a low-level encoder and a branch for the RGB input.

composited with a random mask) and random perturbations

lead to a robust model that generalizes well to real depth

estimations and diverse masks.

Loss function The loss L is comprised of three different

loss terms summed with unit scale: L1 loss, L2 loss, and

a multi-scale gradient loss with four scale levels [20]. The

gradient loss is adopted to enforce sharp depth boundaries.

3.3. Model Architecture

We base our model architecture on the dense prediction

transformer (DPT) [31] with four transformer encoder lev-

els [10] l ∈ {1, 2, 3, 4} and four fusion decoder levels. At

each encoder level, overlapping patches are extracted and em-

bedded to dimensions dl ∈ {64, 128, 320, 512} and fed into

tl ∈ {3, 4, 18, 3} transformer layers each with self-attention,

LayerNorm [3] and MLP layers. The spatial resolution is

decreased by a scale factor of sl ∈ {4, 2, 2, 2} at each level.

On the decoder side, features are fused with residual convo-

lutional units at each fusion level, followed by a monocular

depth estimation head at the end as in [31].

As shown in Figure 5, we insert an additional encoder

branch with a single transformer level to the original back-

bone so that D′ (or P(D′)) and M (or 1−M ) are concate-

nated and fed into the main branch, and I ′ concatenated with

M (or 1−M ) are fed into the additional branch. The outputs

are simply summed after the first transformer level. Addi-

tionally, a lightweight low-level encoder is introduced to

encode the low-level features of the input depth map. These

features are concatenated with the features from the main

decoder branch and entered into the head, ensuring that the

network does not forget the initial depth values.

4. Experiments
4.1. Implementation Details

We train our model for 500K iterations for the first stage

and another 500K iterations for the second stage following

the training strategy described in Sec. 3.2. We used a training

patch size of 320× 320 and a batch size of 32. The model

is optimized with AdamW [22] at an initial learning rate of

10−4, which is decreased by 1/10 at 60% and 80% of the

total number of iterations. Our model is implemented using

PyTorch and trained on 4 NVIDIA V100 GPUs.

For data augmentation, we apply random horizontal flip-

ping and resizing to the input depth maps and RGB images.

RGB images are further augmented with random contrast,

saturation, brightness, JPEG compression, and grayscale

conversions to make our model more robust to various types

of inputs. Our model is trained on diverse indoor and outdoor

natural RGB-D images, with depth maps scaled to [0, 10]
as in [51] and RGB images normalized using ImageNet [9]

mean and standard deviation. Furthermore, to benefit from

the proposed self-supervised learning scheme that supports

diversifying the types of masks, we sample 50% of masks

from diverse object masks, 20% from sky masks and 30%

from human masks, where humans with holes are selected

50% of the time (15% of all masks) during training.

4.2. Evaluation Datasets

For a quantitative evaluation, datasets with both depth

and mask annotations are needed to exclude potential errors

caused by inaccurate masking. Furthermore, the ground

truth depth should be accurate for reliable evaluations on

fine boundaries and object holes. Thus, we use Hypersim

(CC-BY SA 3.0 License) [34] and TartanAir (3-Clause BSD

License) [44], which are recently released synthetic datasets

that contain dense and accurate depth values and also have

instance segmentation maps. We select the first frame in each

camera trajectory per scene for Hypersim and the 100-th

frame for each trajectory in Easy difficulty per environment

for TartanAir as the test set, which results in 456 images and

206 images in total for Hypersim and TartanAir, respectively.

Other datasets such as Cityscapes [8] are not appropriate as

the ground truth depth is noisy, often inaccurate around edges

and misses thin structures. Additionally, we qualitatively

evaluate our refinement method on various freely licensed

images from the web [28,38] with an auto-masking tool [33].

Zero-shot cross-dataset transfer We follow the experi-

ment protocol in [32] for evaluation. None of the compared

methods or our method have seen the RGB-D images in

Hypersim [34] or TartanAir [44] during training. Predictions

are scaled and shifted using l2 minimization to match the

ground truth depth.

Inference using segmentation maps To use segmentation

maps in a mask-guided framework, we take the following

steps: (i) compute a binary mask Mi for each instance i with

more than 1% of the total number of pixels in the instance

segmentation map, (ii) run the model N times with Mi,

and (iii) merge the refined outputs D̂i per each pixel by

D̂ = argmaxD̂i
(|D′ − D̂i|), where D′ is initial depth.
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Method
Hypersim [34] TartanAir [44]

R3 ↑ MBE↓ εacc ↓ εcomp ↓ WHDR↓ RMSE↓ R3 ↑ MBE↓ εacc ↓ εcomp ↓ WHDR↓ RMSE↓
MiDaS v2.1 [32] - 0.0973 2.521 7.074 0.1496 0.0966 - 0.0596 3.483 6.913 0.1207 0.0533

+ Direct-composite 3.771 0.0941 1.915 6.233 0.1490 0.0961 5.897 0.0594 3.183 6.363 0.1209 0.0534

+ Direct-paired - - - - - - 3.507 0.0575 3.153 6.304 0.1196 0.0525
+ Layered-propagation 1.097 0.1044 1.942 6.284 0.1629 0.1028 3.642 0.0608 3.128 6.358 0.1255 0.0550

+ Layered-ours 2.332 0.1000 1.871 6.396 0.1560 0.0999 6.939 0.0580 3.243 6.437 0.1230 0.0539

+ Ours (proposed) 5.209 0.0906 1.888 5.931 0.1481 0.0958 16.569 0.0579 2.851 6.272 0.1207 0.0538

DPT-Large [31] - 0.0936 2.071 6.190 0.1347 0.0911 - 0.0496 2.574 5.677 0.1091 0.0414

+ Direct-composite 2.574 0.0891 1.599 5.411 0.1339 0.0903 4.773 0.0486 2.462 5.480 0.1086 0.0411

+ Direct-paired - - - - - - 2.413 0.0485 2.519 5.394 0.1105 0.0412

+ Layered-propagation 1.188 0.1007 1.792 5.636 0.1502 0.0986 2.347 0.0524 2.579 5.527 0.1162 0.0442

+ Layered-ours 1.996 0.0954 1.606 5.605 0.1433 0.0953 5.626 0.0484 2.447 5.342 0.1116 0.0423

+ Ours (proposed) 4.455 0.0840 1.491 5.087 0.1333 0.0896 8.767 0.0474 2.282 5.245 0.1078 0.0408

Table 1. Quantitative results on Hypersim [34] and TartanAir [44] comparing mask-guided depth refinement models. Best values in bold.

4.3. Evaluation Metrics

We evaluate the overall error of the output depth maps

with the RMSE and the Weighted Human Disagreement Rate

(WHDR) [6] measured on 10K randomly sampled point pairs.

To evaluate the boundary quality, we report the depth bound-

ary error [18] on accuracy (εacc) and completeness (εcomp).

In addition, we propose two metrics, mask boundary error

(MBE) and relative refinement ratio (R3). All metrics are

measured in the inverse depth space.

MBE computes the average RMSE on mask boundary

pixels over the N instances. Mask boundary M b
i is obtained

by subtracting the eroded Mi from Mi and dilating it with a

5× 5 kernel. The MBE is then given by

MBE =
1

N

∑N

i=1

√
1

N b
i

∑
(M b

i ·D −M b
i · D̂)2, (4)

where N b
i is the number of boundary pixels for each instance

i. With εacc, εcomp and MBE, we can comprehensively

measure the boundary accuracy of the refined depth map:

εacc and εcomp focusing on depth boundaries and MBE on

the mask boundaries of depth maps. Furthermore, we define

R3 (relative refinement ratio) as the ratio of the number of

pixels improved by more than a threshold t to the number of

pixels worsened by more than t, in terms of absolute error.

We set t = 0.05 and compute R3 of refined results over

initial results by base models [31, 32]. R3 is a meaningful

indicator for assessing the refinement performance.

4.4. Compared Methods

To evaluate the refinement performance, we apply our

method to the initial depth predictions of two SIDE models:

CNN-based MiDaS v2.1 [32] and SOTA transformer-based

DPT-Large [31]. Since there are no existing methods that per-

form mask-guided depth refinement, we set up the following

baselines using masks for comparison:

• Direct-composite produces the refined output without

layering and is trained on the same dataset as ours (with

composite images and the mask).

• Direct-paired also refines without layering but is trained

on paired RGB-D and masks in Hypersim [34]. Hence,

we only evaluate on TartanAir [44] for this method.

• Layered models (Layered-propagation and Layered-

ours) either apply a propagation-based image comple-

tion algorithm [36] or use our model from stage I train-

ing, once with the dilated mask for inpainting and the

second time with the eroded mask for outpainting. The

inpainted/outpainted results are then merged with the

mask, similar to our proposed approach.

The network architecture used for Direct-composite and

Direct-paired is the same as our encoder-decoder-style trans-

former model in Figure 5. For the layered models, we set the

dilation and erosion kernel to 5× 5 for evaluation with seg-

mentation maps. For images in the wild, we manually tweak

the kernel sizes for each image to obtain the best results.

Additionally, we compare to bilateral median filtering

(BMF) with parameters from [35] (previously used for re-

fining depth maps in [23, 35]) and Miangoleh et al.’s recent

depth refinement method [25]. These approaches do not use

masks as guidance. For all compared methods, we use the

officially released code and weights.

4.5. Analysis

In Table 1, we provide the quantitative results on mask-

guided refinement methods. Our method improves both

MiDaS v2.1 [32] and DPT-Large [31] on all edge-related

metrics (εacc, εcomp and MBE) and results in high R3 values

of at most 16.569. WHDR and RMSE values are not very

discriminative between mask-guided refinement methods
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Figure 6. Qualitative results on Hypersim [34]. The relative improvement maps visualize where the refinement method improved and

worsened the initial depth estimation by [32] or [31]. Our method focuses on the edges and hole regions, accurately refining fine structures.

as they measure the average error over all pixels, whereas

mask-guided refinement methods aim at refining along mask

boundaries and leave most internal regions as is. Our method

outperforms all baselines in R3 and MBE, demonstrating the

power of our layered refinement approach.

In Table 2, we compare to automatic depth refinement

methods without mask-guidance. Conventional image filter-

ing fails to enhance the edge-related metrics. Miangoleh et
al.’s method [25] is at times better on the global edge metrics

(εacc and εcomp) as it enhances all edges in the depth map.

However, as it also carries the risk of distorting the original

values, R3 values tend to be lower compared to ours, which

mostly refines along mask boundaries and leaves other re-

gions intact. Furthermore, as [25] heavily relies on the base

model’s behavior, its generalization capability is limited for

other architecture types such as a transformer [31]. Our

method works well regardless of the base model architecture

and generalizes well to both datasets, leading to the best

metric values when coupled with [31].

In Figure 6, we show the qualitative results on Hypersim

[34]. We also visualize the relative improvement maps show-

ing where the absolute error decreased compared to the base

model MiDaS v2.1 [32] or DPT [31]. Our method focuses

on refining edges and hole regions and leaves most other

Hypersim [34] TartanAir [44]

R3 ↑ MBE↓ εacc ↓ εcomp ↓ R3 ↑ MBE↓ εacc ↓ εcomp ↓
[32] - 0.0973 2.521 7.074 - 0.0596 3.483 6.913

+ BMF 0.7784 0.0974 2.574 7.089 1.032 0.0597 3.489 6.947

+ [25] 4.671 0.0923 1.551 5.837 4.721 0.0602 3.605 7.287

+ Ours 5.209 0.0906 1.888 5.931 16.569 0.0579 2.851 6.272

[31] - 0.0936 2.071 6.190 - 0.0496 2.574 5.677

+ BMF 0.9444 0.0937 2.094 6.203 0.6875 0.0497 2.667 5.836

+ [25] 1.843 0.0905 1.681 5.633 4.013 0.0496 2.414 5.569

+ Ours 4.455 0.0840 1.491 5.087 8.767 0.0474 2.282 5.245
BMF: Bilateral Median Filtering

Table 2. Comparison to automatic refinement methods. Our method

refines mask boundaries and leaves other regions intact whereas

[25] refines all regions at the risk of distorting original values.

regions untouched, whereas Miangoleh et al.’s method [25]

often worsens homogeneous regions. Compared to other

baselines, our layered refinement approach within a unified

framework helps to correct low-level details effectively.

Images in the wild We further evaluate our model on real

images in the wild to assess its generalization ability and

robustness. Comparisons to baselines are shown in Figure 2

and more results are shown in Figures 1, 7, and 8. Our

method is able to generate sharp depth maps consistent with
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Figure 7. Refined results on real images with various masks.

Stage I Stage II HP R3 ↑ MBE↓ εacc ↓ εcomp ↓
DPT-Large [31] - 0.0936 2.071 6.190

� 1.996 0.0954 1.606 5.605

� 2.016 0.0890 1.915 5.320

� � 2.613 0.0861 1.670 5.161

� � 5.384 0.0846 1.438 5.100

� � � 4.455 0.0840 1.491 5.087
HP: Hole Perturbation

Table 3. Ablation study on Hypersim [34]. Best values in bold.

the mask for various real images. All portrait images are

free-licensed images from unsplash [38] and pixabay
[28], and masks are generated with removebg [33]. Sky

images are licensed by Adobe Stock [2], and their masks are

annotated using a commercial photo editing tool.

Ablation study We provide an ablation study of our model

in Table 3 by removing different components in our frame-

work. Stage I helps start from better-initialized parameters,

and Stage II is necessary to train our model for layered re-

finement under a unified framework. Ablating either of them

results in performance degradation. Although the quantita-

tive results with or without hole perturbations are similar,

hole perturbations are crucial in improving holes in humans.

Results on downstream applications More accurate

depth maps can improve the outcomes of downstream ap-

plications. In Figure 8(a), edges and holes are improved

with our refined depth map in point cloud representations

of a novel view. In Figure 8(b), we apply Bokeh effect [48]

using initial and refined depth maps. Inaccurate depth values

in the initial prediction result in an unnatural sharp back-

ground region. With our refined depth map, it is corrected

and blurry.

Analysis on mask quality We provide a visual compar-

ison using different masks coupled with the same image

and a numerical analysis with degraded masks in the supple-

mentary material. We show that our method can improve

the depth quality as long as the given mask contains more

accurate details than the original depth map.

Original RGB Image Bokeh Effect with DPT Bokeh Effect with Ours

(a) Point Cloud Representation

With DPT

(b) Bokeh Effect

With Ours With DPT With Ours

Figure 8. Point cloud and Bokeh effect [48] using initial depth by

DPT [31] and refined depth by Ours. Better viewed with zoom-in.

5. Conclusion
Although depth maps are widely used in many practi-

cal applications, obtaining sharp and accurate depths from

a single RGB image is highly challenging. In this paper,

we presented the novel problem of mask-guided depth re-

finement and proposed a layered refinement approach that

can be trained in a self-supervised fashion. Our method

can significantly enhance initial depth maps quantitatively

and qualitatively. We extensively validated our method by

comparing it to mask-guided depth refinement baselines and

existing automatic refinement methods. Furthermore, we ver-

ified that our method works well on real images with various

masks and improves the results of downstream applications.

We believe that our method can be potentially extended to

other types of dense predictions such as normals and opti-

cal flow. More results are provided in the supplementary

material.

Limitations Since our method relies on a high-quality

mask for refinement, its refinement performance is bounded

by the mask quality. Although many auto-masking tools

are available, capturing extremely fine-grained details may

require manual work. Furthermore, as our method refines

along mask boundaries, initially wrong depth values inside

objects are likely to be left unaltered.
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