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Abstract
Generalized zero-shot learning (GZSL) requires a clas-

sifier trained on seen classes that can recognize objects
from both seen and unseen classes. Due to the absence
of unseen training samples, the classifier tends to bias
towards seen classes. To mitigate this problem, feature
generation based models are proposed to synthesize visu-
al features for unseen classes. However, these features
are generated in the visual feature space which lacks of
discriminative ability. Therefore, some methods turn to
find a better embedding space for the classifier training.
They emphasize the inter-class relationships of seen classes,
leading the embedding space overfitted to seen classes and
unfriendly to unseen classes. Instead, in this paper, we
propose an Intra-Class Compactness Enhancement method
(ICCE) for GZSL. Our ICCE promotes intra-class com-
pactness with inter-class separability on both seen and
unseen classes in the embedding space and visual feature
space. By promoting the intra-class relationships but the
inter-class structures, we can distinguish different classes
with better generalization. Specifically, we propose a Self-
Distillation Embedding (SDE) module and a Semantic-
Visual Contrastive Generation (SVCG) module. The former
promotes intra-class compactness in the embedding space,
while the latter accomplishes it in the visual feature space.
The experiments demonstrate that our ICCE outperforms
the state-of-the-art methods on four datasets and achieves
competitive results on the remaining dataset.

1. Introduction
Image classification tasks relying on large amounts of

labeled data [6, 16, 23] have made tremendous progress
due to the advancement of deep learning [13, 21, 55].
However, the data hunger nature of deep models leads
them to perform unsatisfyingly when some categories have

†Corresponding authors.

Figure 1. Motivation of this paper. (a) Existing methods
such as CE-GZSL [14], produce discriminative embeddings for
seen classes, but dispersed embeddings for unseen classes. (b)
Our ICCE promotes intra-class compactness with inter-class
separability for both seen and unseen classes in the embedding
space.

scarce or even no labeled data [47]. Zero-Shot Learning
(ZSL) [24, 35] is proposed to tackle this data absence
issue by recognizing objects from unseen classes. They
first learn a classification model on the seen classes, of
which the training samples are provided, then transfer the
model to unseen classes using the class-level semantic
descriptors [10, 24,31, 32], such as visual attributes [10, 24]
or word vectors [31, 32].

Unlike ZSL, Generalized Zero-Shot Learning (GZS-
L) [7, 50] has been proposed to identify test samples from
both seen and unseen classes, which is more challenging.
Since the training set only contains seen classes samples,
during testing, GZSL methods tend to misclassify unseen
classes samples into seen classes, which is the widespread
strong bias problem.

Recently, feature generation based GZSL methods [11,
14,15,26,28,38] have been proposed to mitigate the strong
bias problem by synthesizing training samples for unseen
classes conditioned on the semantic descriptors. Merging
the real seen training features and the synthetic unseen
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features, they obtain a fully-observed dataset to train a
GZSL classification model, such as a softmax classifier.
Early feature generation methods [11, 26, 28, 38] synthe-
size features in the visual features space which lacks of
discriminative ability [8,14]. Lately, some methods [14,15]
search for a new embedding space based on the inter-class
relationships for GZSL classifier training. Specifically,
RFF-GZSL [15] maps the visual features into a redundancy-
free space and uses center loss [48] to strengthen seen
classes relationships in that space. CE-GZSL [14] con-
ducts instance-level and class-level contrastive supervision
to improve the discrimination of the embedding space.
However, in the above methods, the embedding space
is strictly constrained by the relationships between seen
classes, which is unfriendly to the synthetic unseen classes
features. Moreover, the synthetic features of unseen classes
have various distributions, as a consequence, mapping them
into the embedding space will form confusing distributions.
As depicted in Fig. 1 (a), the embeddings of seen classes
have large inter-class distances, while the unseen classes
embeddings are overlapping and lack of discrimination.
Therefore, training the GZSL classifier in this kind of
embedding space will end with inferior performance. In-
stead, as the intra-class relationships are class-independent,
if we strengthen these relationships of seen classes, the
embedding space can also separate different classes but
with better generalization ability on unseen classes. As
depicted in Fig. 1 (b), although the inter-class relationships
are not highly restricted, a compact intra-class distribution
can help all the classes (seen and unseen) distinguish from
each other.

In this paper, we propose an Intra-Class Compactness
Enhancement method (ICCE) for GZSL. Our ICCE pro-
motes intra-class compactness with inter-class separability
on both seen and unseen classes in the embedding space
and visual feature space. By putting more emphasis on
intra-class relationships but the inter-class structures, we
can distinguish different classes with better generalization.
Specifically, we produce compact intra-class distributions
via a Self-Distillation Embedding (SDE) module and a
Semantic-Visual Contrastive Generation (SVCG) module.
The SDE module is built with a teacher-student structure,
which aligns the representations and the predicted logits
between two different samples from the same class. Using
SDE, we can reduce the intra-class variations and obtain
compact distribution for each class in the embedding s-
pace. The SVCG module is a conditional GAN, which
synthesizes compact distributed features for unseen classes
in the visual feature space with instance-wise semantic-
visual contrastive loss. The experiments demonstrate that
our ICCE outperforms the state-of-the-arts on four datasets
and achieves competitive results on the remaining dataset.

Our contributions are three-fold: (1) we propose an

Intra-Class Compactness Enhancement method (ICCE) for
GZSL. Our ICCE promotes intra-class compactness with
inter-class separability on both seen and unseen classes
in the embedding space and visual feature space; (2) we
propose a Self-Distillation Embedding (SDE) module to
learn an intra-class compact embedding space with repre-
sentation distillation loss and normalized logits distillation
loss; and (3) we propose a Semantic-Visual Contrastive
Generation (SVCG) module to synthesize compact intra-
class distributed features for unseen classes, with instance-
wise semantic-visual contrastive loss.

2. Related Work
Generalized Zero-Shot Learning (GZSL). Zero-Shot
Learning (ZSL) aims to train a classifier on seen classes to
recognize objects from unseen classes absent in the training
set. Provided with the semantic descriptors of both seen
and unseen classes, earlier ZSL methods [24, 37, 49, 59]
relate them with visual features in an embedding space.
They recognize unseen samples by searching their nearest
class-level semantic descriptor in this embedding space.
Unlike ZSL, which only recognizes unseen classes samples
in the test phase, the more challenging GZSL has been
proposed to identify test samples from both seen and
unseen classes. However, due to the imbalanced nature
of ZSL, the early ZSL methods tend to bias towards seen
classes under the GZSL scenario. To relieve the bias
problem, some methods [3,7,29] design new loss functions
to balance the predictions between seen and unseen classes,
while others [9, 22, 30] solve the GZSL problem by
regarding it as an out-of-distribution detection problem.
Recently, feature generation based methods have been
proposed to synthesize unseen classes features conditioned
on the semantic descriptors [26, 28, 39, 51]. After that, they
combine the generated unseen samples and the real seen
samples to train a softmax classifier. Specifically, RFF-
GZSL [15] and CE-GZSL [14] conjecture that the visual
feature space lacks of discriminative ability and searches
for a new embedding space for GZSL classifier training.
However, these methods both construct the embedding
space based on the class relevance of seen classes. As a
result, the embedding spaces are overfitted to seen classes,
leading to inferior generalization ability on unseen classes.
Instead, we reinforce the intra-class relationships but the
inter-class structures.
Knowledge Distillation. Knowledge distillation [17] aims
to train a smaller student network by mimicking a pre-
trained complex teacher network. The pioneering work [17]
is proposed to optimize the student network by encour-
aging the student to mimic the teacher’s output logits,
while follow-up studies utilize other learning objectives,
i.e., consistency on feature maps [18] and maximizing
the mutual information [42]. Recently, self-knowledge
distillation has been proposed in some image classification
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Figure 2. The architecture of the proposed ICCE. It contains a Self-Distillation Embedding (SDE) module and a Semantic-Visual
Contrastive Generation (SVCG) module. SDE contains a teacher-student architecture that learns intra-class compact distributions using
representation distillation loss (Lrd) and normalized logits distillation loss (Lnld). SVCG is a conditional GAN that synthesizes compact
distributed visual features with a novel instance-wise semantic-visual contrastive loss (Lsvc).

works [5,54,58]. The self-distillation mechanism enhances
the effectiveness of training a student network by utilizing
its knowledge. For example, [54] transfers knowledge
between different distorted versions of the same training
data. [5] simplifies self-supervised training by predicting
the output of a teacher network, which is built from past
iterations of the student network. We follow the teacher
updating strategy in [5] to build a self-distillation module
and reduce intra-class variations by aligning the feature dis-
tribution and probability distribution between two samples
from the same class.

3. Self-Distillation Embedding for GZSL
As shown in Fig. 2, our ICCE contains a Self-Distillation

Embedding (SDE) module which learns a compact intra-
class embedding space, and a Semantic-Visual Contrastive
Generation (SVCG) module which synthesizes the compact
distributed visual features. In this section, we define the
GZSL problem and introduce the proposed SDE and SVCG
of ICCE.

3.1. Problem Definition

In ZSL, we have two sets of classes: S seen classes in
Ys and U unseen classes in Yu, and Ys ∩ Yu = ∅. We

define a training set Dtr = {(xi, yi)}Ni=1, containing N
labeled instances, where xi is a feature vector and yi is
the corresponding label from the seen class Ys. The test
set Dte = {xi}N+M

i=N+1 has M unlabeled instances. In
conventional ZSL, the instances in Dte only come from
unseen classes Yu. In GZSL, test samples are drawn from
both the seen and unseen classes. At the same time, the
class-level semantic descriptors (attribute) A = {ai}S+Ui=1

corresponding to S seen classes and U unseen classes are
also provided. Under the two different settings (ZSL and
GZSL), the attributes are provided during the whole training
process as the bridge from seen classes to unseen classes.

3.2. Self-Distillation Embedding

Our Self-Distillation Embedding (SDE) module is based
on the traditional semantic embedding model [2, 12, 37],
which uses an embedding function to project the visual
feature xi into an embedding space. But differently, we aim
to obtain compact intra-class distribution in this embedding
space for both seen and unseen classes. As the intra-class
relationships are independent of classes, a more compact
distribution within class can also separate different classes
but with better generalization ability. Therefore, we force
different samples from a same class to be closer in the
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embedding space. As shown in Fig 2, we build SDE with
a teacher-student architecture, which contains a teacher
network fθt and a student network fθs , where θt and θs
are their network parameters. The teacher and student
have the same structure which comprises three parts: an
embedding function Et/Es, a linear projector Ht/Hs, and
a classifier Ct/Cs. A straightway is letting θt and θs also
be the same, as traditional self-distillation methods [54, 57]
do. However, we experimentally find that it performs
poorly on the fine-grained datasets. Instead, we introduce a
momentum teacher [41], and its parameters θt are updated
with an exponential moving average of θs as follows:

θt ← ξθt + (1− ξ)θs, (1)

where ξ ∈ [0, 1] is the decay rate. The parameter of fθt
is an ensemble of the previous students’ weights. There-
fore, it can obtain a smooth representation and suppress
large variations of the embeddings for better knowledge
distillation. With the momentum teacher, we introduce
the representation distillation loss and the normalized logits
distillation loss to reduce the intra-class variations in the
representation level and prediction level.
Representation distillation loss. To minimize the repre-
sentation variations of two samples from the same class,
we force the student to produce the same projections as
the teachers. Given a seen class image Ii, we randomly
select another image I+i from the same class. Their visual
features xi and x+i are extracted by a fixed ResNet101 [16]
pre-trained on the ImageNet [23]. The student network
takes xi as input and produces an embedding zi = Es(xi)
and a projection qi = Hs(zi) = Hs(Es(xi)). Similarly,
the teacher network takes x+i as input and produces an
embedding z+i = Et(x

+
i ) and a projection q+i = Ht(z

+
i ) =

Ht(Et(x
+
i )). After that, we introduce the representation

distillation loss to minimize the difference between q̄i and
q̄i

+, which is formulated as:

Lrd(qi, q+i ) = 1− qi
T q+i

||qi||2 · ||q+i ||2
, (2)

where || · ||2 is the L2 norm. By minimizing the rep-
resentation distillation loss, we strengthen the intra-class
compactness on the representation level.
Normalized logits distillation loss. To eliminate the intra-
class variations on the prediction level, we reduce the
divergences between teacher and student logits distributions
(v+i and vi). Using the classifiers Ct and Cs, we obtain
v+i = Ct(q

+
i ) and vi = Cs(qi), respectively. The

traditional knowledge distillation methods [17, 57] usually
use a softmax layer to produce the posterior distribution pi,
e.g., given the input vi, the posterior distribution is:

pi
(k) =

exp(vi
(k)/τ)∑K

j=1 exp(vi(j)/τ)
, k = 1, 2, ...,K, (3)

where K is the class number, k is the class index. vi
(k)

and pi
(k) is the predicted logit value and the probability

of the kth class, respectively. τ > 0 is a temperature
scaling parameter that controls the sharpness of the output
distribution. Previous works spend a tremendous effort to
find a proper τ , e.g., DINO [5] sets a small τ to get a sharpen
distribution, while CS-KD [57] uses a relatively larger τ to
produce a softer distribution. In this paper, we find out that
τ also greatly impacts the GZSL classification performance.
Consequently, we investigate the effect of τ in Appendix
1.1 and find that τ can be considered compensation for
the magnitude of teacher logits. Therefore, we give the
following theorem to solve the hyperparameter searching
issue:
Theorem 1. If the magnitude of the teacher and student
logits are normalized, the temperature in Eq.3 needs no
more consideration (τ always equals to 1), that is:

pi
(k) =

exp(v̄i
(k))∑K

j=1 exp(v̄i(j))
, k = 1, 2, ...,K, (4)

where v̄i = vi
||vi||2 denotes the L2 normalized logits.

Detailed proof of theorem 1 can be found in Appendix
1.1. According to theorem 1, we obtain the soft probability
distributions of teacher and student as follows:

p+i
(k)

=
exp(v̄+

(k)

i )∑K
j=1 exp(v̄+

(j)

i )
, k = 1, 2, ...,K, (5)

pi
(k) =

exp(v̄
(k)
i )∑K

j=1 exp(v̄
(j)
i )

, k = 1, 2, ...,K, (6)

where v̄+i =
v+i

||v+i ||2
. We hope that projections from the

same class have the same predicted probability, therefore,
we introduce the normalized logits distillation loss:

Lnld(pi, p+i ) = DKL(p+i ||pi) =

K∑
k=1

p+i
(k)

log(
p+i

(k)

pi(k)
),

(7)
whereDKL(p+i ||pi) denotes the KL divergence between p+i
and pi. Through the normalized logits distillation, we pay
more attention on the intra-class compactness and disregard
the tuning process of τ . We also use the cross-entropy loss
to supervise the classifier using the class labels:

Lce(vi, yi) = − log(
exp(v

(yi)
i )∑K

k=1 exp(vi(k))
). (8)

Total loss of SDE. By integrating the losses in the repre-
sentation level and prediction level, the final optimization
objective of our SDE module is formulated as:

Lsd = E[Lrd(qi, q+i )] + βE[Lnld(pi, p+i )]

+γE[Lce(vi, yi)],
(9)
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where β and γ denote the loss weights. We minimize
Lsd with respect to student parameters, and the teacher
parameters are updated according to Eq. 1.

3.3. Semantic-Visual Contrastive Generation

The goal of SVCG module is to synthesize unseen class-
es features with compact intra-class distributions. SVCG
is a Conditional GAN (CGAN), which uses a generator G
to synthesize training features x̃ = G(a, ε), conditioned on
a Gaussian noise ε ∼ N (0, I) and a semantic descriptor
a. Meanwhile, a Discriminator D is trained with G to
distinguish a real pair (x, a) from (x̃, a). The G and D are
optimized by the WGAN loss with gradient penalty:

Lwgan = E[D(x, a)]− E[D(x̃, a)]−
λE[(||∇x̂D(x̂, a)||2 − 1)2],

(10)

where x̂ = αx + (1 − α)x̃ with α ∼ U(0, 1) and λ is the
penalty coefficient.

Using the CGAN, we can synthesize diverse and realistic
unseen classes features to train a GZSL softmax classifier.
However, the CGAN only considers the distribution rela-
tionships between synthetic and real pairs, and the pairwise
relationships between features and semantic descriptors,
i.e., data-to-class relationships. It misses an additional
opportunity to consider the relation information between
instances, i.e., data-to-data relationships. As a result,
the synthetic features of an unseen class may be widely
different with a loose intra-class distribution and many
outliers, which is not conducive to train an unbiased GZSL
classifier. To generate features with compact intra-class
distributions without sacrificing their diversity, we try to
maintain the data-to-data relationships and introduce an
instance-wise Semantic-Visual Contrastive Loss (Lsvc), as
shown in Fig. 3. In each training batch, we haveB synthetic
features {x̃i, yi}Bi=1 with their labels yi ∈ Ys , and B
real features {xj , yj}Bj=1 and yj ∈ Ys. To synthesize
more general features, we sample multiple real features
for one class in each training batch. Our objective is to
maximize the similarity between synthetic and real features
with the same label and minimize that when feature pairs
have different labels. To achieve this, for a pair of samples
x̃i and xj , we first calculate their similarity sij using the

cosine distance: sij =
x̃T
i xj

‖x̃i‖2‖xj‖2
. Then we treat our task

as a binary classification problem: samples from the same
class are classified to 1, otherwise 0. Lastly, we formulate
our objective Lsvc as:

Lsvc =
1

B2

B∑
i=1

B∑
j=1

(1yi=yj log(σ(sij))+1yi 6=yj log(1−σ(sij))),

(11)
where σ(·) is the sigmoid function.

Except for the compactness constraint in the visual
feature space, we also require the projected embeddings

Figure 3. The diagram of our instance-wise Semantic-Visual
Contrastive loss (Lsvc). The synthetic features are forced to be
consistent with multiple real visual features having the same class
label.

of synthetic features to have small intra-class variations.
Note that the proposed self-distillation embedding module
can force the embeddings of two samples to be similar.
Hence, we borrow the teacher-student network in SDE to
achieve this goal, by forcing the generated feature and real
feature from the same class to be closer in the embedding
space. Specifically, given a fake sample x̃i generated by
G, we send it into the student network to produce q̃i =
Hs(Es(x̃i)) and ṽi = Cs(q̃i). After the L2 normalization
and softmax operation towards ṽi, we obtain the probability
distribution p̃i. Analogously, a positive real feature x+i
from the same class serves as the reference of x̃i and we
expect the feature projections and probability distributions
of them to be consistent. Hence, we conduct Lrd(q̃i, q+i ),
Lnld(p̃i, p+i ), and Lce(ṽi, yi) to compose the synthetic self-
distillation loss as the auxiliary task for training G:

Lsynsd = E[Lrd(q̃i, q+i )] + βE[Lnld(p̃i, p+i )]+

γE[Lce(ṽi, yi)].
(12)

For stable training of G, we freeze the entire SDE and
the loss only feeds back to G.

3.4. Optimization

Our ICCE simultaneously enhances intra-class com-
pactness in the embedding space and visual feature space
via a self-distillation embedding module and a semantic-
visual contrastive generation module. The overall objective
function of ICCE is formulated as:

min
G,Es,Hs,Cs

max
D
Lwgan + Lsd + ηLsynsd + ϕLsvc, (13)

where η andϕ are the hyper-parameters indicating the effect
of Lsynsd and Lsvc towards the generator.

In the end, we use generator G to synthesize features for
unseen classes and map them with real features from seen
classes to the embedding space using the student embedding
function Es. After that, we train a softmax classifier as our
final GZSL classifier.
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Method Venue AWA1 AWA2 CUB FLO APY
U S H U S H U S H U S H U S H
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DEVISE [12] NIPS’13 13.4 68.7 22.4 17.1 74.7 27.8 11.5 70.9 19.8 9.9 44.2 16.2 3.5 78.4 6.7
ESZSL [37] ICML’15 6.6 75.6 12.1 5.9 77.8 11.0 12.6 63.8 21.0 11.4 56.8 19.0 2.4 70.1 4.6
ALE [1] TPAMI’16 16.8 76.1 27.5 14.0 81.8 23.9 23.7 62.8 34.4 34.4 13.3 21.9 4.6 73.7 8.7
COSMO [4] CVPR’19 52.8 80.0 63.6 - - - 44.4 57.8 50.2 59.6 81.4 68.8 - - -
GXE [27] CVPR’19 62.7 77.0 69.1 56.4 81.4 66.7 47.4 47.6 47.7 - - - - - -
DAZLE [19] CVPR’20 - - - 60.3 75.7 67.1 56.7 59.6 58.1 - - - - - -
RGEN [53] ECCV’20 - - - 67.1 76.5 71.5 60.0 73.5 66.1 - - - 41.8 30.4 37.2
CN-GZSL [20] ICLR’21 63.1 73.4 67.8 60.2 77.1 67.6 49.9 50.7 50.3 - - - - - -
HSVA [40] NIPS’21 59.3 76.6 66.8 56.7 79.8 66.3 52.7 58.3 55.3 - - - - - -

G
en

er
at

iv
e

f-CLSGAN [51] CVPR’18 57.9 61.4 59.6 - - - 43.7 57.7 49.7 59.0 73.8 65.6 32.9 61.7 42.9
cycle-CLSWGAN [11] ECCV’18 56.9 64.0 60.2 - - - 45.7 61.0 52.3 59.2 72.5 65.1 - - -
f-VAEGAN-D2 [52] CVPR’19 - - - 57.6 70.6 63.5 48.4 60.1 53.6 56.8 74.9 64.6 - - -
LisGAN [26] CVPR’19 52.6 56.3 62.3 - - - 46.5 57.9 51.6 57.7 83.8 68.3 33.2 56.9 41.9
ZSML [45] AAAI’20 57.4 71.1 63.5 58.9 74.6 65.8 60.0 52.1 55.7 - - - 36.3 46.6 40.9
OCD-CVAE [22] CVPR’20 - - - 59.5 73.4 65.7 44.8 59.9 51.3 - - - - - -
RFF-GZSL [15] CVPR’20 59.8 75.1 66.5 - - - 52.6 56.6 54.6 65.2 78.2 71.1 - - -
TF-VAEGAN [33] ECCV’20 - - - 59.8 75.1 66.6 52.8 64.7 58.1 62.5 84.1 71.1 - - -
GCM-CF [56] CVPR’21 - - - 60.4 75.1 67.0 61.0 59.7 60.3 - - - 37.1 56.8 44.9
CE-GZSL [14] CVPR’21 65.3 73.4 69.1 63.1 78.6 70.0 63.9 66.8 65.3 69.0 78.7 73.5 - - -
FREE [8] ICCV’21 62.9 69.4 66.0 60.4 75.4 67.1 55.7 59.9 57.7 67.4 84.5 75.0 - - -
ICCE Ours 67.4 81.2 73.6 65.3 82.3 72.8 67.3 65.5 66.4 66.1 86.5 74.9 45.2 46.3 45.7

Table 1. Comparisons with state-of-the-art GZSL methods. U and S are the Top-1 accuracy of the unseen and seen classes, respectively. H
is the harmonic mean of U and S. The first nine methods are Non-Generative methods, and the following eleven methods are Generative
methods. The best and second best results are marked in bold and underline, respectively.

4. Experiments

Datasets. We conduct experiments on five widely used
ZSL datasets: Animals with Attributes 1&2 (AWA1 [25] &
AWA2 [50]), USCD Birds-200-2011 (CUB) [46], Oxford
Flowers (FLO) [34], and Attributes Pascal and Yahoo
(APY). AWA1 and AWA2 share the same 50 animal classes
with 85-dimensions attributes. AWA1 includes 30,475
images and AWA2 consists of 37,322 images; CUB con-
tains 11,788 images of 200 bird species; FLO consists of
8189 images from 102 flower classes and APY comprises
12,051 images of 32 diverse classes, e.g., buildings and
animals. We use hand-engineering attribute vectors in
AWA1, AWA2, and APY, and use the 1024-dimensional
attributes generated from textual descriptions [36] in CUB
and FLO. Note that AWA1, AWA2, and APY are coarse-
grained datasets, while CUB and FLO are fine-grained
datasets. We follow the setting of Proposed Split (PS) [50]
to split all classes on each dataset into seen and unseen
classes.
Evaluation Protocols. During testing, we measure the
average per-class Top-1 accuracy [50] of unseen class
for the conventional ZSL. Under the GZSL scenario, we
evaluate the top-1 accuracy on seen classes (S) and unseen
classes (U ), as well as their harmonic mean (defined as
H = 2× S × U/(S + U) ).
Implementation Details. In the pre-processing step, we
normalize the visual and semantic features into [0, 1] as
suggested in [26]. We design the embedding function
Et/Es as a 2048×2048 Linear layer with LeakyReLU acti-

Method AWA1 AWA2 CUB FLO APY

LATEM [49] 55.1 55.8 49.3 40.4 35.2
DEVISE [12] 54.2 59.7 52.0 45.9 39.8
SJE [2] 65.6 61.9 53.9 53.4 32.9
ALE [1] 59.9 62.5 54.9 48.5 39.7
ESZSL [37] 58.2 58.6 53.9 51.0 38.3

cycle-CLSWGAN [11] 66.3 - 58.4 70.1 -
DLFZRL [43] 71.3 70.3 61.8 - 46.7
GXE [27] 70.9 71.1 54.4 - 38.0
f-CLSWGAN [51] 68.2 - 57.3 67.2 -
f-VAEGAN-D2 [52] - 71.1 61 67.7 -
TF-VAEGAN [33] - 72.2 64.9 70.8 -
CE-GZSL [14] 71.0 70.4 77.5 70.6 -
HSVA [40] 70.6 - 62.8 - -

Our ICCE 74.2 72.7 78.4 71.6 49.5

Table 2. Results of conventional ZSL. The first five methods are
early conventional ZSL methods and following eight are recently
proposed GZSL methods. The best and second best results are
respectively marked in bold and underline.

vation. The projectorHt/Hs maps the embeddings into 512
dimension using a 2048 × 512 fully connected (FC) layer.
The classifierCt/Cs outputs logits on all classes (S and U ).
The architecture of our generatorG and discriminatorD are
both multilayer perceptrons (MLPs) containing a 4096-unit
hidden layer with LeakyReLu activation. We set mini-batch
to 512 for AWA1 and AWA2, 64 for CUB, FLO, and APY.
The input noise in the generator has the same dimension as
the corresponding attributes. All networks are optimized by
an Adam optimizer with β1 = 0.5, β2 = 0.999, and an
initial learning rate 0.0001. The penalty coefficient λ is set
to 10. We empirically set the loss weights η and ϕ to 0.001.
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Case SDE SVCG AWA1 AWA2 CUB FLO APY
Lrd Lnld Lsynsd Lsvc U S H U S H U S H U S H U S H

baseline 57.7 81.9 67.7 56.5 81.1 66.6 70.7 58.5 64.0 62.4 80.5 70.3 16.6 74.8 27.1
(a) X 63.0 79.7 70.4 63.0 76.8 69.3 71.1 59.0 64.5 62.9 81.7 71.7 14.9 63.3 24.1
(b) X 60.8 80.6 69.3 49.8 84.1 62.6 70.6 56.2 62.6 60.7 81.9 69.7 18.1 68.2 28.6
(c) X X 64.5 82.8 72.5 62.0 85.3 71.8 69.3 61.0 64.9 66.8 79.3 72.5 33.5 51.2 40.5
(d) X X X 66.7 80.8 73.1 64.1 82.3 72.1 68.4 63.5 65.9 67.3 83.4 74.5 40.9 42.2 41.5
(e) X X X X 67.4 81.2 73.6 65.3 82.3 72.8 67.3 65.5 66.4 66.1 86.5 74.9 45.2 46.3 45.7

Table 3. Ablation study on the effectiveness of our proposed loss functions on five datasets, the best results are marked in bold.

Case Teacher AWA1 AWA2 CUB FLO APY
U S H U S H U S H U S H U S H

(1) Constant random 63.0 80.1 70.5 60.8 79.5 68.9 71.8 57.2 63.7 62.6 82.8 71.3 17.0 62.6 26.8
(2) Student copy 65.3 79.8 71.8 62.9 82.9 71.5 71.3 57.2 63.5 63.3 82.3 71.6 43.2 38.8 40.9
(3) Previous epoch 66.6 77.2 71.5 63.1 75.7 68.8 68.5 57.2 62.3 62.0 83.5 71.1 12.0 75.1 20.7
(4) Previous iter 65.3 79.0 71.5 62.9 81.4 70.9 73.0 56.3 63.6 63.3 84.5 72.4 31.2 29.7 30.5
(5) Momentum 67.4 81.2 73.6 65.3 82.3 72.8 67.3 65.5 66.4 66.1 86.5 74.9 45.2 46.3 45.7

Table 4. Evaluations of different teachers in SDE module. Our ICCE adopts the momentum teacher, the best results are marked in bold.

For AWA1 and AWA2, we set β = γ = 0.01. For CUB,
FLO, and APY, we set β = γ = 0.001.

4.1. Comparison with State-of-the-art Methods

In Table 1, we compare our ICCE with the state-of-
the-art GZSL methods, including non-generative methods
and generative methods. Compared to other generative
methods, our ICCE yields further improvements of 4.5%,
1.3%, 0.3%, 0.8% for harmonic mean on AWA1, AWA2,
CUB, and APY. Our ICCE achieves the second best H on
FLO. Notably, our method achieves the best results on the
unseen classes of AWA1, CUB, APY, and the second best
results on AWA2 and FLO. Meanwhile, for seen classes, we
achieve the best performance on AWA1, AWA2, and FLO.
It indicates that our ICCE performs well on seen classes
and can also generalize to unseen classes. Moreover, we
present the results of our method under the conventional
ZSL setting, as reported in Table 2. Our ICCE outperforms
the state-of-the-arts by at least 2.9%, 0.5%, 0.9%, 0.8% and
2.8% on AWA1, AWA2, CUB, FLO and APY. These results
consistently demonstrate that our ICCE is still effective in
conventional ZSL.

4.2. Ablation Study and Discussion

Importance of different components. Here we present
ablation experiments to demonstrate the impact of each
component in our ICCE. The baseline model is the same
as our ICCE but without the teacher branch in the SDE
module. We only use the classification loss Lce and
WGAN loss Lwgan to train our baseline model. Totally, we
conduct five other experiments using the entire architecture
of ICCE but with different loss functions: (a) only using
Lrd for representation distillation; (b) only adopting Lnld
for normalized logits distillation; (c) applying both Lrd and
Lnld for knowledge distillation; (d) adding Lsynsd to (c) for
the generation module training; (e) adding Lsvc to (d) for

the semantic-visual contrastive generation module training.
According to the results reported in Table 3, we have the
following observations:

(1) Our SDE module and the proposed knowledge distil-
lation losses can bring obvious performance improvements
(comparing baseline with (a), (b), and (c)), and using the
combination of Lrd and Lnld can achieve better results.
It indicates that reducing the intra-class variations in both
representation level and prediction level is more effective.

(2) With Lsynsd and Lsvc, we can further improve the
classification results on all datasets (comparing (c) with
(d) and (e)). It shows that using our SVCG module can
synthesize better features for unseen classes to train an
unbiased GZSL classifier.

(3) Our ICCE benefits from the combination of SDE
and SVCG. Therefore, learning compact intra-class distri-
butions in both embedding space and visual feature space is
necessary for GZSL.
Effectiveness of momentum teacher. In Table 4, we
compare five different strategies to build the teacher from
previous instances of the student. (1) Constant random:
the weights of the teacher network are randomly initialized
and fixed during training; (2) Student copy: the weights
of the teacher are the same as that of the student; (3)
Previous epoch: use student network from previous e-
poch as the teacher; (4) Previous iteration: use student
network from previous iteration as the teacher; (5) Our
momentum teacher. As illustrated in Table 4, we observe
that teacher updating strategies effect the results of GZSL
classification, while updating too often or too slowly yields
inferior performance. Our momentum teacher ensembles
historical students’ parameters and is more effective than
other versions of teachers.
Influence of number of synthetic instances. In Fig.4, we
study the impact of different numbers of synthetic instances
per unseen class. The accuracy of unseen classes on
five datasets increases along with the number of synthetic
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(a) AWA1 (b) AWA2 (c) CUB (d) FLO (e) APY

Figure 4. The GZSL results with respect to different numbers of the synthesized samples for each unseen class.

AWA1 AWA2 CUB FLO APY
U-R@1 S-R@1 H-R@1 U-R@1 S-R@1 H-R@1 U-R@1 S-R@1 H-R@1 U-R@1 S-R@1 H-R@1 U-R@1 S-R@1 H-R@1

CE-GZSL 75.1 83.8 79.2 88.7 86.1 87.4 65.3 40 49.6 85.2 81.5 83.3 71.0 87.9 78.6
ICCE(Ours) 83.9 84.2 84.0 91.4 86.3 88.8 66.4 41.3 50.9 86.4 81.7 84.0 73.5 88.3 84.0

Table 5. The Recall at 1 (R@1) rates (%) of CE-GZSL and our method on five datasets. U-R@1 and S-R@1 denote R@1 rates of unseen
and seen class, respectively. H-R@1 is the harmonic mean of U-R@1 and S-R@1.

samples, which shows that our ICCE has compensated
for the absence of unseen classes features. Our method
achieves the best results when synthesizing 24,00, 5000,
400, 800, and 500 samples per unseen classes for AWA1,
AWA2, CUB, FLO, and APY, respectively.
Effectiveness of Intra-class Compactness. We first
present a visualization analysis of the embeddings in
Fig. 5. Specifically, we project the embeddings obtained by
CE-GZSL and our ICCE onto two principal components
using t-SNE [44]. As illustrated in Fig. 5(a), in CE-GZSL,
the embeddings of seen classes are discriminative, while
the unseen classes obtain confusion distributions, which
indicates that the embedding space cannot effectively
generalize to unseen classes. On the contrary, our
ICCE promotes intra-class compactness with inter-class
separability on both seen and unseen classes in the
embedding space.

Moreover, we use the Recall at k (R@k) [60] metric to
quantitatively analyze intra-class compactness. Recall at
k is the percentage of test samples with at least one from
the same class in k nearest neighbors in the embedding
space. We utilize the Euclidean distance here and adopt
k = 1, i.e., R@1. The results of seen, unseen classes
and their harmonic mean are denoted as S-R@1, U-R@1,
and H-R@1, respectively. Note that the larger value of
R@1 implies smaller intra-class variations. As illustrated
in Table 5, the R@1 values of our ICCE are all larger than
CE-GZSL. It verifies that our ICCE reduces the intra-class
variations for both seen and unseen classes. Combining
the analysis of the GZSL classification performances, we
conclude that enhancing intra-class compactness is better
for GZSL.

5. Conclusion
In this paper, we propose an Intra-Class Compactness

Enhancement method (ICCE) for GZSL. Our ICCE en-
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(a) CE-GZSL [14] (b) Our ICCE

Figure 5. 2D Projection of the embeddings by using t-SNE. The
results are obtained from CE-GZSL [14] and our ICCE on AWA1
testing set. Red numbers denote the unseen classes, black numbers
denote the seen classes. Please zoom in for a better view.

hances intra-class compactness with inter-class separabil-
ity on both seen and unseen classes in the embedding
space and visual feature space. Specifically, we have
proposed a self-distillation embedding module to reduce
the intra-class variations in the representation level and
prediction level. Moreover, we have introduced a semantic-
visual contrastive generation module to synthesize intra-
class compact features for unseen classes. By enhancing
the intra-class relationships but the inter-class structures, we
can distinguish different classes with better generalization.
The experiments on five benchmarks show that our ICCE
has outperformed the state-of-the-arts on four datasets and
achieved the second best result on the remaining dataset.
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