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Abstract

In machine learning and computer vision, mean shift
(MS) qualifies as one of the most popular mode-seeking al-
gorithms used for clustering and image segmentation. It
iteratively moves each data point to the weighted mean of
its neighborhood data points. The computational cost re-
quired to find the neighbors of each data point is quadratic
to the number of data points. Consequently, the vanilla
MS appears to be very slow for large-scale datasets. To
address this issue, we propose a mode-seeking algorithm
called GridShift, with significant speedup and principally
based on MS. To accelerate, GridShift employs a grid-based
approach for neighbor search, which is linear in the number
of data points. In addition, GridShift moves the active grid
cells (grid cells associated with at least one data point) in
place of data points towards the higher density, a step that
provides more speedup. The runtime of GridShift is linear in
the number of active grid cells and exponential in the num-
ber of features. Therefore, it is ideal for large-scale low-
dimensional applications such as object tracking and image
segmentation. Through extensive experiments, we showcase
the superior performance of GridShift compared to other
MS-based as well as state-of-the-art algorithms in terms
of accuracy and runtime on benchmark datasets for image
segmentation. Finally, we provide a new object-tracking al-
gorithm based on GridShift and show promising results for
object tracking compared to CamShift and meanshift++.

1. Introduction

Mean Shift (MS) is a non-parametric, iterative mode-
seeking algorithm for cluster analysis. The well established
ability of MS to detect clusters effectively has placed it at
the center of several computer vision applications such as
unsupervised image and video segmentation [18, 19, 21, 22,
28], object tracking [7,15,17], and image processing [3,4].

*Corresponding Author

MS does not need the number of clusters to be specified be-
forehand. Moreover, it also makes no prior assumption on
the probability distribution of the data points. Because of
such attributes, MS is often preferred over other popular and
application-specific algorithms such as k-meanss [12, 27],
Spectral clustering [10], Felzenszwalb [8], and simple lin-
ear iterative clustering (SLIC) [1]. However, the itera-
tive process in MS is computationally expensive since the
asymptotic or bounded behavior of each iteration is of the
O(n2) order. In other words, the computational complexity
required for finding neighborhood data points for each point
is quadratic to the number of data points. Despite its supe-
rior performance in image segmentation, this high compu-
tational cost limits the application of MS to high-resolution
image segmentation. To address this issue, we put forth an
extended variant of MS, named GridShift (GS), with a time
complexity that is linear to the number of data points and
exponential to the number of features (dimension of data
points).

A popular color-based object tracking algorithm,
CamShift (CS) [2, 5], was derived from the MS algo-
rithm. Although it qualified as a popular unsupervised ob-
ject tracking procedure, CS has a few major drawbacks
which limit its applicability to real-world tracking prob-
lems. The main disadvantage is that it only utilized the
peak of the back-projected probability distribution. Con-
sequently, it cannot distinguish objects with similar colors
and it suffers from tracking failure caused by similar col-
ored objects around the searching window [14]. The other
issue is that CS often utilizes only one reference histogram
due to computational burden. As a result, changing appear-
ance or lighting conditions affect the tracking performance
of CS and it often fails to track the object. In this work, we
develop a new object-tracking algorithm based on the GS
algorithm by addressing these two issues.

In MS++ [14] and α-MS++ [20], the data space is parti-
tioned into grids, where each data point is associated with
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Original GridShift MeanShift++ Felzenszwalb SLIC Quickshift
0.028 s 1.168 s 0.231 s 0.223 s 11.489 s

0.110 s 4.643 s 1.542 s 0.982 s 54.951 s

0.036 s 1.126 s 0.357 s 0.322 s 16.832 s

Figure 1. Comparison of five algorithms on three baseline segmentation problems taken from [16]. GS returns qualitatively good image
segmentation results in all baseline images with lower runtime than other state-of-the-art algorithms: 40x, 10x, 8x, and 500x faster than
MS++, Felzenszwalb, SLIC, and Quickshift, respectively.
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Figure 2. Comparison of GS and CS on two baseline object tracking problems taken from [26]. Upper row: we are tracking the cyclist’s
face (target object shown by blue colored box). CS algorithm fails to track due to low lighting on the face and background with a high
density of green color. On the other hand, GS tracks the face accurately in all the video frames despite these issues. Last row: we are
tracking player Bolt (target object shown by Green color) during the race. Again CS fails to follow Bolt because of his clothes color, which
is yellow, and it is distracted by the other objects of yellow color. On the other hand, GS tracks the Bolt accurately without being affected
by the other objects of the same color in all video frames.

an appropriate grid cell. With an increase in iterations,
data points shrink towards their nearest mode; therefore, the
number of data points associated with an active grid cell is
also increased [6]. The shifted location of all associated
data points of a grid cell can be approximated as a single
point at the weighted mean of their shifted location (termed
centroid of that grid cell) [14, 20]. Thus, this motivates us
to develop a new grid-based framework, GridShift, different
than MS++ and α-MS++, where we apply shifting steps of
MS directly to approximated centroids of data points. Since
multiple data points have the same centroid, we can reduce
the computational cost by increasing iterations. Thus, the
proposed algorithm is faster than MS++ and α-MS++. Due
to the reduced computational time, GS may qualify as an

attractive alternative to the existing techniques in computer
vision applications because of the increasing resolution of
collected data from cameras and sensors and the growing
size of modern datasets.

Our major contributions are as follows:

• We propose a faster mode-seeking algorithm GS, for
unsupervised clustering of large-scale datasets with
lower dimensions (which could be very well suited for
applications such as image segmentation).

• To come out from the closed-loop iteration cycle, GS
does not require any stopping criteria.

• Empirical analysis indicates that GS provides better or
at least comparable clustering results to MS and MS++
with significantly faster computation speed.
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• An image segmentation experiment on the well-
accepted benchmark datasets suggests that GS may in-
deed outperform some of the popular state-of-the-art
algorithms in terms of accuracy and efficiency– yield-
ing speedup of 40x and 40000x as compared to MS++
and MS respectively.

• We also present a new object tracking algorithm
based on GS that gradually adapts to the changes in
scenes and color distribution. Our experiments sug-
gest that GS-based object tracking algorithm detects
objects more accurately than MS++ and CS-based ob-
ject tracking algorithm.

Before delving further into the details of GS, let us provide
two warm-up examples to illustrate its potential in image
segmentation and object tracking applications.

1) A Motivating Example for Image Segmentation: We
utilized three baseline images taken from [26] for unsu-
pervised image segmentation. For comparative analysis,
we consider the following algorithms as state-of-the-art:
Felzenszwalb [8], Quickshift [24], SLIC (k-means) [1], and
MS++ [14]. We show the outcomes of all these algorithms
in Figure 1. As shown in Figure 1, GS can produce a similar
segmentation result as MS++, but with a 40x speedup. As
compared to other algorithms, GS results in better segmen-
tation with faster computational speed. It is clear from this
example that GS provides better segmentation results than
other algorithms with lower runtime.

2) A Motivating Example for Object Tracking: For ob-
ject tracking, we employ CS and GS. In Figure 2, we show
the tracking result of these algorithms on two benchmark
problems taken from [26]. It is seen from Figure 2 that GS is
a more robust object tracking algorithm in a complex back-
ground environment, especially in large areas with a similar
color. On the other hand, CS fails to track in such situations
as its performance is highly dependent on the color of the
object.

2. The GridShift

In this section, we start by detailing the basic steps of GS
and then outline the primary differences between MS++ and
GS. Finally, we present an object tracking algorithm based
on GS.

2.1. Basic Implementation of the GridShift

Let X := {x1, x2, . . . , xn} be a dataset of n data points,
where xi ∈ R

d. This algorithm assumes that the whole
data space is partitioned into equal and disjoint grid cells
of predefined length h. We categorize these grid cells into
two types: active grid cells and inactive grid cells. The grid
cells with at least one data point as a resident are treated
as active; otherwise, they are considered inactive grid cells.
Here, we can label each active grid cell as a cluster where
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Figure 3. Demonstration of MS and GS parallelly for clustering
of a Gaussian distributed 2-D dataset. GS can approximate the
MS steps effectively despite reducing the number of centroids in
each iteration. Such reduction provides speed up in the runtime
compared to the original MS, MS++, and α-MS++.

its resident data points are members of that cluster. These
grid cells have their own three attributes represented as hash
tables: centroid, number of resident data points, and a set of
resident data points. All active grid cells update their hash
tables in each iteration. Further, GS shifts the location of the
active grid cells according to their new centroids. During
shifting, some active grid cells may enlist the same location;
therefore, they merge into one. These steps are repeated till
convergence, i.e., no change in hash tables of all active grid
cells. After convergence, GS returns clustering results in
terms of active grid cells. A demonstration of the GS steps
is shown in Figure 3. We summarize the basic steps of GS
in Algorithm 1 and also discuss in more detail as follows.

i) Initialization of the active grid cells: For initialization,
we create three empty hash tables for each attribute of
active cells: S (store centroid), C (store number of res-
ident data points), and H (store resident data points).
We divide each data point by h for creating the initial
index of the active grid cells. After that, we calcu-
late the element-wise floor function, which returns a
d-dimensional integer vector. This d-dimensional vec-
tor represents the index of the active grid cell. All three
hash tables are updated using lines 3-11 of Algorithm
1.

ii) Update centroid of each active grid cell : To update
the centroid of an active grid cell, we utilize its neigh-
boring active grid cells. Here, neighboring grid cells
mean the grid cells that touch this active grid cell by a
side or a point, i.e., a grid cell with index j is consid-
ered as neighboring grid cell of the grid cell with index
i, if i = j + v, where v ∈ {−1, 0, 1}d. We update the
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centroid of an active grid cell using the weighted mean
of the centroid of all its neighboring grid cells, i.e.

S(j) ←
∑

(v∈{−1,0,1}d) wvS(j + v)∑
(v∈{−1,0,1}d) wv

, (1)

where,
wv = C(j + v). (2)

iii) Update of the location of the active grid cells: Each
active grid cell needs to update its location or index
due to the update of its centroid. The new location is
calculated using �S/h�.

iv) Merger of the some of the active grid cells: The active
grid cells that share the same location (index) need to
merge into one grid cell with updated attributes. The
centroid of the new grid cell is calculated using the
weighted mean of the centroids of all active grid cells
that are merged, i.e.

S(j) =
∑

i∈M C(i)S(i)∑
i∈M C(i) , (3)

where M is the set of indices of grid cells that are
merged into one. The other attributes are updated in
the following way:

C(j) =
∑
i∈M

C(i),

H(j) =
⋃
i∈M

H(i).
(4)

v) Stopping criterion: The algorithm comes out from the
iteration when attributes of the active grid cells will
not update, i.e., active grid cells will not have a single
neighboring active grid cell to update the grid cell’s
attributes.

It is worth noting that we optimize the basic steps of the
GS during the implementation in Algorithm 1 to reduce ex-
tra loops for improving the time complexity. According to
the steps used in Algorithm 1, the time complexity of GS is
O(m3d) per iteration, where m denotes the number of the
active grid cells and it remains non-increasing as the itera-
tions proceed.

2.2. GS-based Object Tracking Algorithm

GS can be a good candidate for object tracking due to its
effective mode-seeking behavior and faster runtime. More-
over, GS’s clustering results in grid cells are a suitable re-
placement for the back-projected probability distribution of
the histogram [14]. In Algorithm 2, we show the basic steps
of the proposed object tracking algorithm based on GS. The
basic steps of this algorithm are as follows.

Algorithm 1: GridShift
1 Input: side length of cells (bandwidth) h, Xn;
2 Initialize: Empty hash tables S (store centroid), C (store number of

resident data points), and H (store resident data points);
3 for i ∈ [1, n] do

4 if �xi/h� ∈ S.keys then

5 S (�xi/h�) ← C(�xi/h�)S(�xi/h�)+xi

C(�xi/h�)+1
;

6 C (�xi/h�) ← C (�xi/h�) + 1;
7 H (�xi/h�) ← H (�xi/h�) ∪ {i};
8 else

9 S (�xi/h�) ← xi;
10 C (�xi/h�) ← 1;
11 H (�xi/h�) ← {i};

12 do

13 S′ ← S, H′ ← H and C′ ← C;
14 Empty hast tables C and S;
15 for j ∈ S.keys do

16 S′(j) ←
∑
(v∈{−1,0,1}d) C′(j+v)S′(j+v)

∑
(v∈{−1,0,1}d) C′(j+v)

;

17 if
⌊S′(j)/h

⌋ ∈ S.keys then

18 S (⌊S′(j)/h
⌋) ←

C(�S′(j)/h�)S(�S′(j)/h�)+S′(j)
C(�S′(j)/h�)+C′(j) ;

19 C (⌊S′(j)/h
⌋) ← C (⌊S′(j)/h

⌋)
+ C′(j);

20 H (⌊S′(j)/h
⌋) ← H (⌊S′(j)/h

⌋) ∪ H′(j);
21 else

22 S (⌊S′(j)/h
⌋) ← S′(j);

23 C (⌊S′(j)/h
⌋) ← C′(j);

24 H (⌊S′(j)/h
⌋) ← H′(j);

25 while (S.keys + v) ∩ S.keys == ∅, where
v ∈ ({−1, 0, 1}d − {0, 0, 0});

26 return H and S

Algorithm 2: GS-based object tracking
1 Input: Sequence of frames X0, X1, X2,. . ., XT ; Initial centre o;

Length l; Width w; Increment factor f ; Bandwidth h; and Termination
tolerance η;

2 Run GS on the color space of frame window W (o, l, w) ∩ X0;
3 Initialize: B ← {�c/h� : c ∈ C}, where C is the union of manually

selected clusters;
4 for i = 1, 2, . . . , T do

5 do

6 W ′ ← W (o, l/f, w/f);
7 R ← {x ∈ W ′ ∩ Xi : �x/h� ∈ B};
8 if R == φ then

9 l ← 1.1l;
10 w ← 1.1w;
11 else

12 o ← mean of (x, y)-position of R’s points in the frame
Xi;

13 B ← {�c/h� : c ∈ R};
14 if (max(l) − min(l)) < l then

15 l ← 0.99l;
16 else

17 l ← 1.01l;

18 if (max(w) − min(w)) < w then

19 w ← 0.99w;
20 else

21 w ← 1.01w;

22 while o converges with η;
23 emit W (o, l, w) for frame Xi;

i) Initialization: We apply GS on the color pixel of
the initial frame window W (o, l, w) ∩ Xo, where
W (o, l, w) represents a track window with center o,
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length l, and width w. GS returns different clusters
for different objects. We select clusters manually for
the targeted object. Generally, we often select clus-
ters with bigger size. After selecting the clusters, we
calculate the reference set of grid cells, R, where data
points of the selected clusters are the resident in the
given frame window. Further, we use this reference set
of grid cells to track the centers in the new frame.

ii) Calculation of new center: With the change of the
frame, the target object also changes the location. Ac-
cording to the change of location of the target object,
we need to calculate the new center of the window. The
new center for the given frame is calculated iteratively
till convergence. For this purpose, we create a track
widow W. After that, we find the data points, which
are the resident of the grid cells of the R, and create a
set B. then, we calculate the center by taking the mean
of (x,y)-position of B’s data points in the given frame.

iii) Update length and width of the tracking window:
Sometimes the object moves fast enough to drive out
the track window in the new frame due to the small
size of the track window. In such cases where B is
an empty set, we increase the length and width of the
search window by 1.1 times to increase the chances
of object tracking. On the other hand, the size of the
tracking object and its appearance change with frames’
changing. To adapt the tracking window accordingly,
we increase or decrease the length and/or width (shown
in lines 14-21 of Algorithm 2.)

The developed new scheme of object tracking is more ro-
bust and effective than the CS algorithm. Its low depen-
dency on the probability distribution of the color histogram
of the object and adaptation scheme of the tracking window
improves the performance in the object tracking (demon-
strated in motivating example 2 in Section 1).

3. Theoretical Analyses

In this section, we discuss the theoretical properties of
GS. Due to the page limit, we provide proofs of the corre-
sponding theorems in the supplementary file.

Before theoretical analysis, it is worth noting that GS
also uses grid-based partitioning of the data space similar to
MS++. Therefore, from Theorem 1 of [14], we can say that
the GS approach can statistically perform at least similar to
the other density function estimators.

3.1. Convergence Guarantee

For any dataset X(= {x1, x2, . . . , xn}) ∈ R
d, let us

define a mapping g(t) : X ← C(t) at t-iteration such that
each data point xi ∈ X is assigned to one of the k(t) active

Dataset ARI AMI
GS MS++ α-MS++ GS MS++ α-MS++

Phone Accelerometer 0.0899 0.0897 0.0896 0.1923 0.1959 0.1921
(38.23s) (1599.34s) (475.58s) (45.34s) (2523.85s) (646.27s)

Phone Gyroscope 0.2401 0.2354 0.2355 0.1837 0.1835 0.1824
(110.43s) (5324.19s) (934.28s) (45.39s) (1723.19s) (780.35s)

Watch Accelerometer 0.1001 0.0913 0.0908 0.2314 0.2309 0.2301
(18.38s) (926.59s) (319.29s) (41.86s) (2500.97s) (658.37s)

Watch Gyroscope 0.1623 0.1593 0.1602 0.1422 0.1336 0.1397
(25.23s) (1247.08s) (416.85s) (11.53s) (484.27s) (180.24s)

Still 0.7896 0.7899 0.7901 0.8602 0.8551 0.8599
(0.17s) (8.23s) (3.12s) (0.12s) (6.23s) (2.62s)

Skin 0.3266 0.3264 0.3264 0.4251 0.4238 0.4234
(0.29s) (12.58s) (3.28s) (0.19s) (9.28s) (2.92s)

Wall Robot 0.1801 0.1788 0.1748 0.3356 0.3239 0.3336
(< 0.01s) (0.14s) (0.08s) (< 0.01s) (0.42s) (0.12s)

Sleep Data 0.1201 0.1181 0.1193 0.1117 0.1028 0.1056
(< 0.01s) (0.01s) (< 0.01s) (< 0.01s) (0.01s) (< 0.01s)

Balance Scale 0.0799 0.0883 0.0862 0.2301 0.2268 0.2274
(< 0.01s) (0.06s) (0.02s) (< 0.01s) (0.07s) (0.02s)

User Knowledge 0.3403 0.3398 0.3398 0.4108 0.4086 0.4083
(< 0.01s) (0.05s) (0.02s) (< 0.01s) (0.05s) (0.02s)

Vinnie 0.4568 0.4594 0.4597 0.3665 0.3666 0.3677

(< 0.001s) (< 0.01s) (< 0.01s) (< 0.001s) (< 0.01s) (< 0.01s)

PRNN 0.2093 0.2093 0.2093 0.2913 0.2912 0.2912
(< 0.001s) (0.01s) (< 0.01s) (< 0.001s) (< 0.01s) (< 0.01s)

Iris 0.6246 0.5681 0.5826 0.8014 0.7316 0.7427
(< 0.001s) (< 0.01s) (< 0.01s) (< 0.001s) (< 0.01s) (< 0.01s)

Transplant 0.7524 0.7687 0.7543 0.7248 0.7175 0.7217
(< 0.001s) (< 0.01s) (< 0.01s) (< 0.001s) (< 0.01s) (< 0.01s)

Table 1. Comparison of GS, MS++, and α-MS++ based on ARI
and AMI scores over 14 datasets. These scores are calculated af-
ter tuning the bandwidth on each dataset for each algorithm sepa-
rately. Best scores are reported in bold fonts. Compared to other
algorithms, GS provides the best scores in ARI and AMI scores
over most of the dataset with faster runtime speed. GS is 40x and
20x faster than MS++ and α-MS++, respectively.

grid cells (clusters) c(t)i ∈ C(t). Therefore,

C(t) = {c(t)1 , c
(t)
2 , . . . , c

(t)

k(t)}, and

c
(t)
i ∩ c

(t)
j = φ, ∀i, j ∈ {1, 2, . . . , k(t)}, i �= j.

(5)

Here, each active cell c(t)i has a set of 1-neighboring active
grid cells, Q(t)

ci ⊆ C(t).

Theorem 1. For any given dataset X ∈ R
d, the

{C(t)}t=1,2,... estimated by successive proposed grid cells
shifts attains convergence, i.e. C(i) == C(i++), where i is
a finite number.

Theorem 2. For any X , there exists T ∈ N such that
Q(t)

ci = c
(t)
i , ∀i ∈ {1, 2, . . . , k(t)} for all t ≥ T .

The above two theorems confirm that GS attains con-
vergence after a finite number of iterations when the active
grid cells do not have any other active members in their 1-
neighborhood to update their attributes any further.

3.2. Convergence Rate

In this subsection, we analyze the behavior of GS on
mode seeking of a dataset sampled from a Gaussian dis-
tribution. We will prove that the number of active grid cells
will form a non-increasing sequence, and centroids of these
active grid cells will shrink towards the mean of the distri-
bution with at least a cubic convergence rate.
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Let φ(x;μ,Σ) denotes a Gaussian probability den-
sity function, where μ and Σ are the mean and disper-
sion matrix of the density function, respectively. To re-
move the dependency on the random process, we con-
sider infinite samples generated from density q(x) =
φ(x; 0, diag(s21, s

2
2, . . . , s

2
d)).

Theorem 3. For dataset X = {x1, x2, . . . , xn}
where xi ∼ N (0, diag(s21, . . . , s

2
d)), let centroids

{c(t+1)
i }k(t+1)

i=1 ∼ ∫
yp(t)(y|c)dy, where p(t)() repre-

sents the distribution of {c(t+1)
i }k(t+1)

i=1 and p(t)(y|c) =

k(z − y)q(t)(y)/p(t)(z). Then (i) {c(t+1)
i }k(t+1)

i=1 ∼
N

(
0, diag

((
s
(t+1)
1

)2

, . . . ,
(
s
(t+1)
d

)2
))

, with

s
(t+1)
j =

(
1 + 2.25h2

s2

)−1

s
(t)
j and (ii) k(t+1) =

∏d
j=1

(⌊
6s

(t+1)
j

h

⌋
+ 1

)
, where {k(t)}∞t=1 is non-

decreasing sequence that converges to 1.

4. Experimental Results and Discussion

To verify the effectiveness of GS, we carry out
comparative experiments over three different scenar-
ios: clustering, image segmentation, and object track-
ing. Source code of GS can be downloaded from
https://github.com/abhisheka456/GridShift.

4.1. Clustering Application

In this experiment, we investigate the performance of GS
against MS++ and α-MS++ on various clustering datasets.
For a fair comparison, we considered the same datasets uti-
lized in the original MS++’s paper [14]. We implement GS
in Cython and the comparative study is performed using the
Cython implementation of MS++ provided in [14] and α-
MS++ done by us. Here, we skip the comparison between
GS and MS as MS++ and α-MS++ are the already available
faster variants of MS [14, 20].

We employ the following two indices: Adjusted Mu-
tual Information (AMI) [25] and Adjusted Rand Index
(ARI) [11], to determine the quality of the clustering re-
sults. These two indices are the popular way of analyzing
clustering performance by comparing the calculated labels
to actual labels of the clusters [13].

As discussed earlier, the computational complexity of
GS is linear to the number of active grid cells and expo-
nential with respect to the number of features. Therefore,
we implement our algorithm with MS++ and α-MS++ on
14 standard low-dimensional datasets where the number of
data points ranges from millions to 100 [14]. Note that five
datasets out of the 19 used in [14] were excluded from our
experiment because they were of very low scale (less than
150) in size. The outcomes in terms of AMI, ARI, and run-
time of all algorithms are depicted in Table 1. As shown in

Figure 4. Comparison of GS, MS++, and α-MS++ on four real-
world datasets over a wide bandwidth range. This figure shows
the behavior of all algorithms over the different settings of band-
width. We can see here that GS performs better than MS++ and
α-MS++ despite being faster over different bandwidth values.

Table 1, GS provides better results with 40x and 20x faster
runtime than MS++, and α-MS++, respectively, on most
datasets. Therefore, GS outperforms MS++ and α-MS++
on these datasets in terms of clustering quality and runtime
efficiency.

We also analyze the effect of the bandwidth setting on
the performance of GS, MS++, and α-MS++ in terms of
clustering accuracy and runtime. We depict the outcome of
this analysis in Figure 4. As shown in Figure 4, GS provides
better clustering results than other algorithms over different
bandwidth settings with faster runtime. This analysis indi-
cates that GS returns more accurate clustering results than
MS++ and α-MS++. The main reason behind the better
performance of GS is that it updates centroids of active grid
cells sequentially, which generate gradient-ascent shifting
steps more stably in the next iteration.

4.2. Image Segmentation

In this section, we analyze the performance of GS com-
pared to algorithms on unsupervised image segmentation.
We consider the following algorithms as state-of-the-art:
Quickshift [24], SLIC (k-means) [1], and MS++ [14]. For
Quickshift, and SLIC, we use Python SciKit-Image Li-
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Figure 5. Comparison of all algorithms on image segmentation of
BSDS500 benchmark images using the two popular metrics ARI
and FM. For each contender, we plot bars of GS winning, con-
tender winning, and both are similar within 1% of their scores for
AMI and FM separately. Here, GS performs better than other al-
gorithms in most cases.

brary [23], and Cython implementation [14] of MS++ is uti-
lized here. In this experiment, we skip the MS algorithm as
the performance of MS++ is similar to MS, but with 10000x
speedup.

We experiment on an image segmentation benchmark
dataset BSDS500 for quantitative performance analysis of
GS compared to other state-of-the-art algorithms. This
benchmark dataset was also used in MS++ paper [14] and
it has 500 images with six different human-labeled segmen-
tation. To make an objective comparison, we have tuned
all parameters of image segmentation (unsupervised) algo-
rithms, including GS’s h. For the image segmentation ex-
periment, we convert all images into 3-dimensional NumPy
arrays of (R, G, B) values of pixels. We implement GS
along with MS++, α-MS++, MS, SLIC, and Quickshift
on each image and calculate ARI and Fowlkes-Mallows
(FM) [9] clustering scores for each human-labeled segmen-
tation separately. For comparison, we take average scores
of ARI and FM based on all six human-labeled segmenta-
tions. Note that we performed the GS image segmentation
with both (r, g, b) and (r, g, b, x, y) inputs. However, the
results were not significantly different. Therefore, we only
reported results with (r, g, b) cases. GS with (r, g, b, x, y)
performed similarly to GS with (r, g, b) on 488 and 492 out
of 500 BSDS500 images in terms of ARI and FW, respec-
tively. In Figure 5, we show the performance comparison of
GS with other algorithms in terms of these scores, and we
also report the average runtime of all algorithms in Table
2. As shown in Figure 5 and Table 2, GS provides better
results than other algorithms in most cases. Moreover, it is
faster than other algorithms: 80x, 40x, 50000x, 2.5x, and
900x faster than MS++, α-MS++, MS, SLIC, and Quick-
shift, respectively.

4.3. Object Tracking

This section demonstrates the robustness of the GS-
based object-tracking algorithm compared to CS and
MS++. In this experiment, we consider three visual tracker
benchmark problems from [26]. In object tracking, Note

Algorithm Average Runtime (seconds)
GridShift 0.031

MS++ 2.561
α-MS++ 1.281

MS 1690.213
SLIC (k-meanss) 0.078

Quickshift 28.031

Table 2. Comparison of the runtime of all algorithms on image
segmentation of BSDS500 benchmark images. The average run-
time of GS is better than other contenders by 80x, 40x, 50000x,
2.5x, and 900x than MS++, α-MS++, MS, SLIC, and Quickshift,
respectively.

that we have tuned the parameters of GS, MS++, and CS
separately for each video sequence dataset, not for each
frame of the sequence individually. In Figure 6, we de-
pict the performance of these algorithms on the benchmark
problems. As shown in Figure 6, CS is often unable to track
an object when its surroundings have objects with similar
colors. MS++ and GS, on the other hand, do not rely on
surroundings because they can adjust color distributions by
adding neighboring similar grid cells by finding them in lin-
ear time. MS++ and GS are thus more robust to changes
in lighting and colors. Nevertheless, MS++ cannot adapt
the tracking window to fast-moving objects. Consequently,
it loses the object, or the tracking window shrinks. Due
to this issue, MS++ is unsuitable for real-life applications
with fast-moving objects. The tracking window adaptation
scheme in GS resolves this issue. Therefore, GS can track
these fast-moving objects accurately by updating the track-
ing window when it misses them, or when their sizes change
during scene changes. By analyzing the performance of
all algorithms, we can conclude that GS is a better visual
tracker than MS++ and CS.

We also undertook the experiment on the full OTB100
dataset [26]. We show a detailed comparison of GS with
the recently developed tracking algorithm on OTB100s in
Table 3.

Table 3. Comparative performance on OTB100.
Tracker AUC P Tracker AUC P

Supervised Learning-based Trackers
GCT (CVPR, 2019) 0.647 0.853 SiamRPN (CVPR, 2018) 0.637 0.851

GradNet (ICCV, 2019) 0.639 0.861 ACT (ECCV, 2018) 0.625 0.859
Unsupervised Learning-based Trackers

USOT (ICCV, 2021) 0.589 0.806 USOT* (ICCV, 2021) 0.574 0.775
LUDT (IJCV, 2021) 0.602 0.769 LUDT+ (IJCV, 2021) 0.639 0.843

AlexPUL (CVPR, 2021) 0.551 – USOT-GS (Ours) 0.651 0.872

Unsupervised Iterative-based Trackers
DSST (2014) 0.518 0.689 KCF (2015) 0.485 0.696

MS++ (CVPR, 2021) 0.326 0.538 GS (Ours) 0.638 0.866

Here, we list results on OTB100 in terms of area under
the curve (AUC) and average distance precision (P) at 20
pixels. In Table 3, we highlight performance of GS against
12 state-of-the-art tracking models. As per the results, GS
remains consistently superior to its peers. Moreover, we
will also show how GS can provide user-independent labels
for unlabeled training datasets. We have incorporated GS
as candidate box generation in the USOT tracker (ICCV,
2021), named USOT-GS. As per Table 3, USOT-GS per-
forms better than USOT and USOT* on OTB100 datasets.
GS’s tracking accuracy is competitive with the current state-
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Figure 6. Comparison of meanshift++, camshift, and GridShift on object tracking. Here, camshift fails to track an object in both cases
because the user has to provide color ranges for the object to the algorithm for creating a color histogram. However, this information is
generally incomplete, biased, and inaccurate. On the other hand, MS++ and GS use grid cells of the color pixels of objects found after
image segmentation. Although MS++ performs better than camshift, it cannot track fast-moving objects after some frames as it cannot
adapt the tracking window effectively. GS performs better than both algorithms as it gains more stability after incorporating the proposed
tracking window adaptation scheme.

of-the-art due to the following reasons. (1) To detect the tar-
get object in subsequent sequences, GS uses the grid cells
bin, which is the result of clustering the target object. On
the other hand, a color histogram requires a precomputed
mask or color range that is entirely based on the input of
the user, which can be flawed and even, biased. In this case,
grid cells can serve as a better alternative to detect targets.
(2) Secondly, because GS achieves speedup in clustering, it
may adapt the color distribution or scene changes by find-
ing and adding new grid cells to reference grid cell bins in
linear time, thus, being more robust. (3) We also suggest
a window size adaptation scheme to gradually update the
window box as objects move closer or farther away from
the window.

5. Conclusion

We introduce a simple yet faster mode-seeking algo-
rithm, GS, for low-dimensional large-scale datasets. We im-
plement this algorithm in unsupervised clustering and im-

age segmentation applications. GS functions better than
MS++ in terms of accuracy and efficiency, while GS is
40x faster than MS++ (40000x faster than MS). More-
over, GS provides better results than other popular image-
segmentation algorithms like SLIC, Quickshift, and Felzen-
szwalb regarding accuracy and computation time.

We also propose a new object-tracking algorithm based
on GS. The performance of the proposed algorithm is
better than the popular CamShift algorithm and MS++ as
it can adapt color distribution gradually with scene change
effectively by recalculating the grid cell for the newer
frames. Hence, GS can apply for modern computer vision
problems due to lower computational cost, and also it
provides more accurate results.

Acknowledgements: This work was supported
by the Basic Science Research Program through
the National Research Foundation of Korea
(NRF) funded by the Ministry of Education
(2021R1I1A3049810).

8138



References

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien
Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic superpix-
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