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Abstract

The advent of large-scale training has produced a cor-
nucopia of powerful visual recognition models. However,
generative models, such as GANs, have traditionally been
trained from scratch in an unsupervised manner. Can the
collective “knowledge” from a large bank of pretrained vi-
sion models be leveraged to improve GAN training? If so,
with so many models to choose from, which one(s) should
be selected, and in what manner are they most effective?
We find that pretrained computer vision models can signif-
icantly improve performance when used in an ensemble of
discriminators. Notably, the particular subset of selected
models greatly affects performance. We propose an effec-
tive selection mechanism, by probing the linear separability
between real and fake samples in pretrained model embed-
dings, choosing the most accurate model, and progressively
adding it to the discriminator ensemble. Interestingly, our
method can improve GAN training in both limited data and
large-scale settings. Given only 10k training samples, our
FID on LSUN CAT matches the StyleGAN2 trained on 1.6M
images. On the full dataset, our method improves FID by
1.5 to 2× on cat, church, and horse categories of LSUN.

1. Introduction

Image generation inherently requires being able to cap-
ture and model complex statistics in real-world visual phe-
nomenon. Computer vision models, driven by the success
of supervised and self-supervised learning techniques [15,
17, 33, 66, 78], have proven effective at capturing useful rep-
resentations when trained on large-scale data [69, 92, 103].
What potential implications does this have on generative
modeling? If one day, perfect computer vision systems could
answer any question about any image, could this capability
be leveraged to improve image synthesis models?

Surprisingly, despite the aforementioned connection be-
tween synthesis and analysis, state-of-the-art generative ad-
versarial networks (GANs) [9, 39, 40, 101] are trained in an
unsupervised manner without the aid of such pretrained net-
works. With a plethora of useful models easily available in
the research ecosystem, this presents a missed opportunity
to explore. Can the knowledge of pretrained visual represen-
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Figure 1. Vision-aided GAN training. The model bank F con-
sists of widely used and state-of-the-art pretrained networks. We
automatically select a subset {F̂}Kk=1 from F , which can best dis-
tinguish between real and fake distribution. Our training procedure
consists of creating an ensemble of the original discriminator D
and discriminators D̂k = Ĉk ◦ F̂k based on the feature space of
selected off-the-shelf models. Ĉk is a shallow trainable network
over the frozen pretrained features.

tations actually benefit GAN training? If so, with so many
models, tasks, and datasets to choose from, which models
should be used, and in what manner are they most effective?

In this work, we study the use of a “bank” of pretrained
deep feature extractors to aid in generative model training.
Specifically, GANs are trained with a discriminator, aimed
at continuously learning the relevant statistics differentiating
real and generated samples, and a generator, which aims
to reduce this gap. Naı̈vely using such strong, pretrained
networks as a discriminator leads to the overfitting and over-
whelming the generator, especially in limited data settings.
We show that freezing the pretrained network (with a small,
lightweight learned classifier on top as shown in Figure 1)
provides stable training when used with the original, learned
discriminator. In addition, ensembling multiple pretrained
networks encourages the generator to match the real distri-
bution in different, complementary feature spaces.
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To choose which networks work best, we propose to use
an automatic model selection strategy, based on the linear
separability of real and fake images in the feature space, and
progressively add supervision from a set of available pre-
trained networks. In addition, we use label smoothing [72]
and differentiable augmentation [39, 101] to stabilize the
model training further and reduce overfitting.

We experiment on several datasets in both limited and
large-scale sample setting to show the effectiveness of our
method. We improve the state-of-the-art on FFHQ [41] and
LSUN [92] datasets given 1k training samples by 2-3× on
the FID metric [35]. For LSUN CATs, we match the FID
of StyleGAN2 trained on the full dataset (1.6M images)
with only 10k samples, as shown in Figure 2. In the full-
scale data setting, our method improves FID for LSUN
CATs from 6.86 to 3.98, LSUN CHURCH from 4.28 to
1.72, and LSUN HORSE from 4.09 to 2.11. Finally, we
visualize the internal representation of our learned mod-
els as well as training dynamics. Check out our code at
https://github.com/nupurkmr9/vision-aided-gan. Full version
of the paper is available at https://arxiv.org/abs/2112.09130.

2. Related Work

Improving GAN training. Since the introduction of
GANs [30], significant advances have been induced by ar-
chitectural changes [40,41,67], training schemes [38,96], as
well as objective functions [4, 5, 21, 24, 54, 55]. The learning
objectives often aim to minimize different types of diver-
gences between real and fake distribution. The discrimina-
tors are typically trained from scratch and do not use pre-
trained networks. Especially for the limited data setting, the
discriminator is prone to overfit the training set [39, 90, 101].
Use of pretrained models in image synthesis. Pretrained
models have been widely used as perceptual loss func-
tions [23, 27, 37] to measure the distance between an output
image and a target image in deep feature space. The loss has
proven effective for conditional image synthesis tasks such as
super-resolution [47], image-to-image translation [14,62,86],
and neural style transfer [27]. Zhang et al. [98] show that
deep features can indeed match the human perception of
image similarity better than classic metrics. Sungatullina et
al. [80] propose a perceptual discriminator to combine per-
ceptual loss and adversarial loss for unpaired image-to-image
translation. This idea was recently used by a concurrent work
on CG2real [68]. Another recent work [26] proposes the use
of pretrained objects detectors to detect regions in the im-
age and trains object-specific discriminators. Our work is
inspired by the idea of perceptual discriminators [80] but dif-
fers in three ways. First, we focus on a different application
of unconditional GAN training rather than image-to-image
translation. Second, instead of using a single VGG model,
we ensemble a diverse set of feature representations that
complement each other. Finally, we propose an automatic

model selection method to find models useful for a given do-
main. A concurrent work [74] propose to reduce overfitting
of perceptual discriminators [80] using random projection
and achieve better and faster GAN training.

Loosely related to our work, other works have used pre-
trained models for clustering, encoding, and nearest neigh-
bor search during their model training. Logo-GAN [71] uses
deep features to get synthetic clustering labels for condi-
tional GAN training. InclusiveGAN [93] improves the recall
of generated samples by enforcing each real image to be
close to a generated image in deep feature space. Shocher
et al. [76] uses an encoder-decoder based generative model
with pretrained encoder for image-to-image translation tasks.
Pretrained features have also been used to condition the gen-
erator in GANs [13, 53]. Different from the above work, our
method empowers the discriminator with pretrained models
and requires no changes to the backbone generator.
Use of pretrained models in image editing. Pretrained
models have also been used in image editing once the genera-
tive model has been trained. Notable examples include image
projection with a perceptual distance [1,105], text-driven im-
age editing with CLIP [64], finding editable directions using
attribute classifier models [75], and extracting semantic edit-
ing regions with pretrained segmentation networks [106]. In
our work, we focus on using the rich knowledge of computer
vision models to improve model training.
Transfer learning. Large-scale supervised and self-
supervised models learn useful feature representations [11,
15, 34, 44, 66, 89] that can transfer well to unseen tasks,
datasets, and domains [22, 36, 43, 61, 70, 84, 91, 94, 95]. In
generative modeling, recent works propose transferring the
weights of pretrained generators and discriminators from a
source domain (e.g., faces) to a new domain (e.g., portraits of
one person) [31, 50, 56, 59, 60, 87, 88, 99]. Together with dif-
ferentiable data augmentation techniques [39, 83, 101, 102],
they have shown faster convergence speed and better sam-
pling quality for limited-data settings. Different from them,
we transfer the knowledge of learned feature representations
of computer vision models. This enables us to leverage the
knowledge from a diverse set of sources at scale.

3. Method
Generative Adversarial Networks (GANs) aim to approx-

imate the distribution of real samples from a finite training
set x ∼ PX . The generator network G, maps latent vectors
z ∼ P(z) (e.g., a normal distribution) to samples G(z) ∼
Pθ. The discriminator network D is trained adversarially to
distinguish between the continuously changing generated dis-
tribution Pθ and target real distribution PX . GANs perform
the minimax optimization minG maxD V (D,G), where

V (D,G) = Ex∼PX [logD(x)] + Ez∼P(z)[log(1−D(G(z)))].
(1)
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Figure 2. Performance on LSUN CAT and LSUN CHURCH. We compare with the leading methods StyleGAN2-ADA [39] and
DiffAugment [101] on different sizes of training samples and full-dataset. Our method outperforms them by a large margin, especially in
limited sample setting. For LSUN CAT we achieve similar FID as StyleGAN2 [42] trained on full-dataset using only 0.7% of the dataset.
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Figure 3. Training and validation accuracy w.r.t. training iterations
for our DINO [11] based discriminator vs. baseline StyleGAN2-
ADA discriminator on FFHQ 1k dataset. Our discriminator based
on pretrained features has higher accuracy on validation real images
and thus shows better generalization. In the above training, vision-
aided adversarial loss is added at the 2M iteration.

Ideally, the discriminator should measure the gap be-
tween PX and Pθ and guide the generator towards PX . How-
ever, in practice, large capacity discriminators can easily
overfit on a given training set, especially in the limited-
data regime [39, 101]. Unfortunately, as shown in Figure 3,
even when we adopt the latest differentiable data augmenta-
tion [39] to reduce overfitting, the discriminator still tends
to overfit, failing to perform well on a validation set. In addi-
tion, the discriminator can potentially focus on artifacts that
are indiscernible to humans but obvious for machines [85].

To address the above issues, we propose ensembling a
diverse set of deep feature representations as our discrimi-
nator. This new source of supervision can benefit us in two
manners. First, training a shallow classifier over pretrained
features is a common way to adapt deep networks to a small-
scale dataset, while reducing overfitting [16, 29]. As shown
in Figure 3, our method reduces the discriminator overfit-
ting significantly. Second, recent studies [6, 95] have shown
that deep networks can capture meaningful visual concepts
from low-level visual cues (edges and textures), to high-level
concepts (objects and object parts). A discriminator built on
these features may better match human perception [98].

3.1. Formulation

Given a set of pretrained feature extractors F =
{Fn}Nn=1, which learns to tackle different vision tasks, we

train corresponding discriminators {Dn}Nn=1. We add small
classifier heads {Cn}Nn=1 to measure the gap between PX
and Pθ in the pretrained models’ feature spaces. During
discriminator training, the feature extractor Fn is frozen,
and only the classifier head is updated. The generator G is
updated with the gradients from D and the discriminators
{Dn} based on pretrained feature extractors. In this manner,
we propose to leverage pretrained models in an adversarial
fashion for GAN training, which we refer to as Vision-aided
Adversarial training:

min
G

max
D,{Cn}N

n=1

V (D,G) +

vision-aided adversarial loss︷ ︸︸ ︷
N∑

n=1

V (Dn, G) ,

where Dn = Cn ◦ Fn.

(2)

Here, Cn is a small trainable head over the pretrained
features. The above training objective involves the sum of
discriminator losses based on all available pretrained models
{Fn}. Solving for this at each training iteration would be
computationally and memory-intensive. Using all pretrained
models would force a significant reduction in batch size to fit
all models into memory, potentially hurting performance [9].
To bypass the computational bottleneck, we automatically
select a small subset of K models, where K < N :

min
G

max
D,{Ĉk}K

k=1

V (D,G) +

K∑
k=1

V (D̂k, G), (3)

where D̂k = Ĉk ◦ F̂k denotes the discriminator correspond-
ing to kth selected model, and k ∈ {1, . . . ,K}.

3.2. Model Selection

We choose the models whose off-the-shelf feature spaces
best distinguish samples from real and fake distributions.
Given the pretrained model’s features of real and fake images,
the strongest adversary from the set of models is F̂k, where

k = argmax
n

{max
C′

n

V (D′
n, G)},

where D′
n = C ′

n ◦ Fn.
(4)
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Algorithm 1 GAN training with Vision-aided Adversarial loss.

Input: G, D trained with standard GAN loss for baseline num-
ber of iterations. Off-the-shelf model bank F = {Fn}Nn=1.
Training data {xi}.

Hyperparameters: K: maximum number of pretrained models
to use. {Tk : k = 1 · · ·K}: training intervals before adding
next pretrained model.

1: Selected model set F̂ =Ø
2: for k = 1 to K do
3: Select best model F̂k ∈ F using Eqn. 4
4: F̂ = F̂ ∪ {F̂k}
5: D̂k = Ĉk ◦ F̂k ▷ Ĉk is a shallow trainable network
6: F = F \ F̂k

7: for t = 1 to Tk do
8: Sample x ∼ {xi}
9: Sample z ∼ P(z)

10: Update D, D̂j ∀j = 1, · · · , k using Eqn. 3
11: Sample z ∼ P(z)
12: Update G using Eqn. 3
13: end for
14: end for
Output: G with best training set FID

Here Fn is frozen, and C ′
n is a linear trainable head over

the pretrained features. In the case of limited real samples
available and for computational efficiency, we use linear
probing to measure the separability of real and fake images
in the feature space of Fn.

We split the union of real training samples {xi} and gen-
erated images {G(zi)} into training and validation sets. For
each pretrained model Fn, we train a logistic linear discrim-
inator head to classify whether a sample comes from PX
or Pθ and measure V (D′

n, G) on the validation split. The
above term measures the negative binary cross-entropy loss
and returns the model with the lowest error. A low validation
error correlates with higher accuracy of the linear probe,
indicating that the features are useful for distinguishing real
from generated samples and using these features will pro-
vide more useful feedback to the generator. We empirically
validate this on GAN training with 1k training samples of
FFHQ and LSUN CAT datasets. Figure 4 shows that the
GANs trained with the pretrained model Fn with higher
linear probe accuracy in general achieve better FID metrics.

To incorporate feedback from multiple off-the-shelf mod-
els, we explore two variants of model selection and en-
sembling strategies – (1) K-fixed model selection strategy
chooses the K best off-the-shelf models at the start of training
and trains until convergence and (2) K-progressive model se-
lection strategy iteratively selects and adds the best, unused
off-the-shelf model after a fixed number of iterations.
K-progressive model selection. We find including multi-
ple models in a progressive manner has lower computational
complexity compared to the K-fixed strategy. This also helps
in the selection of pretrained models, which captures differ-
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Figure 4. Model selection using linear probing of pretrained
features. We show correlation of FID with the accuracy of a logistic
linear model trained for real vs fake classification over the features
of off-the-shelf models. Top dotted line is the FID of StyleGAN2-
ADA generator used in model selection and from which we finetune
with our proposed vision-aided adversarial loss. Similar analysis
for LSUN CAT is shown in our arxiv paper.

ent aspects of the data distribution. For example, the first
two models selected through the progressive strategy are
usually a pair of self-supervised and supervised models. For
these reasons, we primarily perform all of our experiments
using the progressive strategy. We also show a comparison
between the two strategies in our arxiv version.
Discussion. The idea of linear separability as a metric
has been previously used for evaluating GAN via classifier
two-sample tests [52,100]. We adopt this in our work to eval-
uate the usefulness of available off-the-shelf discriminators,
rather than evaluating generators. “Linear probing” is also a
common technique for measuring the effectiveness of inter-
mediate features spaces in both self-supervised [15, 32, 97]
and supervised [3] contexts, and model selection has been ex-
plored in previous works to predict expert models for transfer
learning [25,58,65]. We explore this in context of generative
modeling and propose a progressive addition of next best
model to create an ensemble [12] of discriminators.

3.3. Training Algorithm

As shown in Algorithm 1, our final algorithm consists of
first training a GAN with standard adversarial loss [30, 42].
Given this baseline generator, we search for the best off-the-
shelf models using linear probing and introduce our proposed
loss objective during training. In the K-progressive strategy,
we add the next discriminator based on off-the-shelf model’s
features after training for a fixed number of iterations pro-
portional to the number of available real training samples.
The new discriminator is added to the snapshot with the best
training set FID in the previous stage. During training, we
perform data augmentation through horizontal flipping and
use differentiable augmentation techniques [39, 101] and
one-sided label smoothing [72] as a regularization. We also
observe that only using off-the-shelf models as the discrim-
inator leads to divergence. Thus, the benefit is brought by
ensembling the original discriminator and the newly added
off-the-shelf models. We show results with the use of three
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Dataset StyleGAN2 DiffAugment ADA Ours (w/ ADA) Ours (w/ DiffAugment)

+1st D +2nd D +3rd D +1st D +2nd D +3rd D

FF
H

Q 1k 62.16 27.20 19.57 11.43 10.39 10.58 12.33 13.39 12.76
2k 42.62 16.63 16.06 10.17 8.73 8.18 10.01 9.24 10.99

10k 16.07 8.15 8.38 6.90 6.39 5.90 6.94 6.26 6.43
L

SU
N

C
A

T 1k 185.75 43.32 41.14 15.49 12.90 12.19 13.52 12.52 11.01
2k 68.03 25.70 23.32 13.44 13.35 11.51 12.20 11.79 11.33

10k 18.59 12.56 13.25 8.37 7.13 6.86 8.19 7.90 7.79

L
SU

N
C

H
U

R
C

H 1k - 19.38 19.66 11.39 9.78 9.56 10.15 9.87 9.94
2k - 13.46 11.17 5.25 5.06 5.26 6.09 6.37 5.56

10k - 6.69 6.12 4.80 4.82 4.47 3.42 3.41 3.25

Table 1. FFHQ and LSUN results with varying training samples from 1k to 10k. FID↓ is measured with complete dataset as reference
distribution. We select the best snapshot according to training set FID, and report mean of 3 FID evaluations. In Ours (w/ ADA) we finetune
the StyleGAN2-ADA model, and in Ours (w/ DiffAugment) we finetune the model trained with DiffAgument while using the corresponding
policy for augmentation. Our method works with both ADA and DiffAugment strategy for augmenting images input to the discriminators.

pretrained models and observe minimal benefit with the pro-
gressive addition of next model if the linear probe accuracy
is low and worse than the models already in the selected set.

4. Experiments
Here we conduct extensive experiments on multiple

datasets of different resolutions with the StyleGAN2 archi-
tecture. We show results on FFHQ [41], LSUN CAT, and
LSUN CHURCH datasets [92] while varying training sample
size from 1k to 10k, as well as with the full dataset. For
real-world limited sample datasets, we perform experiments
on the cat, dog, and wild categories of AFHQ [18] dataset at
512 resolution and METFACES [39] at 1024 resolution.
Baseline and metrics. We compare with state-of-the-
art methods for limited dataset GAN training, StyleGAN2-
ADA [39] and DiffAugment [101]. We compute the com-
monly used Fréchet Inception Distance (FID) metric [35]
using the clean-fid library [63] to evaluate models. We
also report KID [8], precision and recall [46] metrics for the
experiments in our arxiv version.
Off-the-shelf models. We include eight large-scale self-
supervised and supervised networks. Specifically, we per-
form experiments with CLIP [66], VGG-16 [78] trained
for ImageNet [19] classification, and self-supervised mod-
els, DINO [11] and MoBY [89]. We also include face pars-
ing [48] and face normals prediction networks [2]. Finally,
we have Swin-Transformer [51] based segmentation model
trained on ADE-20K [104] and object detection model
trained on MS-COCO [49]. Full details of all models are
given in the arxiv version.
Vision-aided discriminator’s architecture. For dis-
criminator D̂k based on pretrained model features, we
extract spatial features from the last layer and use a small
Conv-LeakyReLU-Linear-LeakyReLU-Linear
architecture for binary classification. In the case of big
transformer networks, such as CLIP and DINO, we
explore a multi-scale architecture that works better. For all
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Figure 5. LSUN CAT, FFHQ, and LSUN CHURCH paired sam-
ple comparison in 1k training dataset setting. For each dataset,
the top row shows the baseline StyleGAN2-ADA samples, and
the bottom row shows the samples by Our method for the same
randomly sample latent code. We fine-tune the StyleGAN2-ADA
model with our vision-aided adversarial loss. For the same latent
code image quality improves with our method on average.

experiments, we use three pretrained models selected by
the model selection strategy during training. Details about
the architecture, model training, memory requirements, and
hyperparameters are provided in the arxiv version.
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and is selected first, then ViT (CLIP) and then Swin-T (MoBY).
As we train with vision-aided discriminators, linear probe accuracy
decreases for most of the pretrained models. Similar trend for all
our experiments are shown in the arxiv version.

4.1. FFHQ and LSUN datasets

Table 1 shows the results of our method when the training
sample is varied from 1k to 10k for FFHQ, LSUN CAT,
and LSUN CHURCH datasets. The considerable gain in FID
for all settings shows the effectiveness of our method in the
limited data scenario. To qualitatively analyze the difference
between our method and StyleGAN2-ADA, we show ran-
domly generated samples from both models given the same
latent code in Figure 5. Our method improves the quality of
the worst samples, especially for FFHQ and LSUN CAT.
Figure 6 shows the accuracy of linear probe over the pre-
trained models’s features as we progressively add the next
discriminator. To analyze the overfitting behavior of discrim-
inators, we also evaluate its training and validation accu-
racy across iterations. Compared to the baseline StyleGAN2-
ADA discriminator, our vision-aided discriminator shows
better generalization on the validation set specifically for
limited-data regime as shown in Figure 3.
Full-dataset training. In the full-dataset setting, we fine-
tune the trained StyleGAN2 (config-F) [42] generator with
our method. Table 2 shows the comparison of StyleGAN2
and ADM [20] with our method trained using three vision-
aided discriminators. We report both FID and Perceptual
Path Length (PPL) [41] (W space) metric. On LSUN CAT,
our method improves FID from 6.86 to 3.98, on LSUN
CHURCH from 4.28 to 1.72, and on LSUN HORSE from
4.09 to 2.11. For FFHQ dataset, our method improves the
PPL metric from 144.62 to 127.58 and has similar perfor-
mance on FID metric. Perceptual path length has been shown
to correlate with image quality and indicates a smooth map-
ping in generator latent space [42]. We also compare the
generator trained with our method to StyleGAN2 using GAN
dissection [7] in the arxiv version.
Human preference study. As suggested by [45] we per-
form a human preference study on Amazon Mechanical Turk
(AMT) to verify that our results agree with the human judg-

Dataset StyleGAN2 (F) Ours (w/ ADA) ADM

FID ↓ PPL ↓ FID ↓ PPL ↓ FID ↓
FFHQ-1024 2.98 144.62 3.01 127.58 -
LSUN CAT-256 6.86 437.13 3.98 420.15 5.57∗

LSUN CHURCH-256 4.28 343.02 1.72 388.94 -
LSUN HORSE-256 4.09 337.98 2.11 307.12 2.57∗

Table 2. Results on full-dataset setting. we improve the FID metric
on LSUN categories by a significant margin. On the FFHQ dataset
we improve the PPL metric. ∗ means directly reported from the
ADM paper [20].
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Figure 7. Qualitative comparison of our method with
StyleGAN2-ADA on AFHQ. Left: randomly generated samples
for both methods. Right: For both our model and StyleGAN2-ADA,
we independently generate 5k samples and find the worst-case sam-
ples compared to real image distribution. We first fit a Gaussian
model using the Inception [81] feature space of real images. We
then calculate the log-likelihood of each sample given this Gaussian
prior and show the images with minimum log-likelihood (maxi-
mum Mahalanobis distance).

ment regarding the improved sample quality. We compare
StyleGAN2-ADA and our method trained on 1k samples of
LSUN CAT, LSUN CHURCH, and FFHQ datasets. Since
we fine-tune StyleGAN2-ADA with our method, the same
latent code corresponds to similar images for the two mod-
els, as also shown in Figure 5. For randomly sampled latent
codes, we show the two images generated by our method
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Dataset Transfer StyleGAN2 StyleGAN2-ADA Ours (w/ ADA)

FID ↓ KID ↓ Recall ↑ FID ↓ KID ↓ Recall ↑ FID ↓ KID ↓ Recall ↑

AFHQ DOG
✗ 22.35 10.05 0.20 7.60 1.29 0.47 4.73 0.39 0.60
✓ 9.28 3.13 0.42 7.52 1.22 0.43 4.81 0.37 0.61

AFHQ CAT
✗ 5.16 1.72 0.26 3.29 0.72 0.41 2.53 0.47 0.52
✓ 3.48 1.07 0.47 3.02 0.38 0.45 2.69 0.62 0.50

AFHQ WILD
✗ 3.62 0.84 0.15 3.00 0.44 0.14 2.36 0.38 0.29
✓ 2.11 0.17 0.35 2.72 0.17 0.29 2.18 0.28 0.38

METFACES ✓ 57.26 2.50 0.34 17.56 1.55 0.22 15.44 1.03 0.30

Table 3. Results on AFHQ and METFACES. Our method, in general, results in lower FID and higher Recall. In transfer setup we fine-tune
from a FFHQ trained model of similar resolution with D updated according to FreezeD technique [56] similar to [39]. We select the snapshot
with the best FID and show an average of three evaluations. KID is shown in ×103 units following [39].

Method Bridge AnimalFace Cat AnimalFace Dog

FID ↓ KID↓ FID ↓ KID ↓ FID↓ KID↓
DiffAugment 54.50 15.68 43.87 7.56 60.50 20.13
ADA - - 38.01 5.61 52.59 14.32

O
ur

s +1st D 44.18 9.27 30.62 1.15 34.23 2.01
+2nd D 33.89 2.35 28.01 0.37 33.03 1.37
+3rd D 34.35 2.96 27.35 0.34 32.56 1.67

Table 4. Low-shot generation results on 100-shot Bridge
dataset [101], AnimalFace cat and dog [77] categories. Our method
significantly improves FID and KID compared to leading methods
for few-shot GAN training. KID is shown in ×103 units.

and StyleGAN2-ADA for six seconds to the test subject and
ask to select the more realistic image. We perform this study
for 50 test subjects per dataset, and each subject is shown a
total of 55 images. On the FFHQ dataset, human preference
for our method is 53.8% ± 1.3. For the LSUN CHURCH
dataset, our method is preferred over StyleGAN2-ADA with
60.5%± 1.7, and for the LSUN CAT dataset 63.5%± 1.6.
These results correlate with the improved FID metric. We
also show FID evaluation using features of SwAV [10] model
which was not used during our training [45,57] and example
images from our study in the arxiv version.

4.2. AFHQ and METFACES

To further evaluate our method on real-world limited sam-
ple datasets, we perform experiments on METFACES (1336
images) and AFHQ dog, cat, wild categories with ∼ 5k im-
ages per category. We compare with StyleGAN2-ADA under
two settings, (1) Fine-tuning StyleGAN2-ADA model with
our loss (2) Fine-tuning from a StyleGAN2 model trained
on FFHQ dataset of same resolution (transfer setup) using
FreezeD [56]. The second setting evaluates the transfer learn-
ing capability when fine-tuned from a generator trained on
a different domain. Table 3 shows the comparison of our
method with StyleGAN2 and StyleGAN2-ADA on multiple
metrics. We outperform or perform on-par compared to the
existing methods in general. Figure 7 shows the qualitative
comparison between our method and StyleGAN2-ADA.

Model FFHQ 1k LSUN CAT 1k

Selection +1st D +2nd D +3rd D +1st D +2nd D +3rd D

Best 11.43 10.39 10.58 15.49 12.90 12.19
Random 15.48 12.54 11.92 19.02 15.12 14.28
Worst 15.48 15.45 13.88 19.02 17.53 17.66

Table 5. FID↓ metric for models trained with different model
selection strategies in K-progressive vision-aided training. 1st

Row: model selection with best linear probe accuracy. 2nd Row:
randomly selecting from the bank of off-the-shelf models. 3rd Row:
model selection with least linear probe accuracy.

4.3. Low-shot Generation

To test our method to the limit of low-shot samples, we
evaluate our method when only 100-400 samples are avail-
able. We finetune StyleGAN2 model with our method on
AnimalFace cat (169 images) and dog (389 images) [77],
and 100-shot Bridge-of-Sighs [101] datasets. For differen-
tiable augmentation, we use ADA except for the 100-shot
dataset where we find that DiffAugment [101] works better
than ADA [39], and therefore employ that. Our method leads
to considerable improvement over existing methods on FID
and KID metrics as shown in Table 4. We show latent space
interpolations and nearest neighbour test in our arxiv paper.

4.4. Ablation Study

Our model selection vs. random selection. We showed
earlier in Figure 4 that FID correlates with model selec-
tion ranking in vision-aided GAN training with a single
pretrained model. To show the effectiveness of model se-
lection in K-progressive strategy, we compare it with (1)
random selection of models during progressive addition and
(2) selection of models with least linear probe accuracy. The
results are shown in Table 5. We observe that using any of
the pretrained models from the model bank already provides
benefit in FID, but with our model selection, it can be im-
proved further. More details regarding selected off-the-shelf
models are provided in the arxiv version.
Role of data augmentation and label smoothing. Here,
we investigate the role of differentiable augmentation [39,83,
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Figure 8. Ablation of augmentation and label smoothing on FFHQ and LSUN CAT with 1k training samples and LSUN CAT full-dataset
setting. We show the plot of FID w.r.t training iterations when ADA [39] augmentation and label smoothing [72] are individually removed
from our training. Without differentiable augmentation, our model training quickly collapses in limited sample setting. Even for full-dataset,
using differentiable augmentation for vision-aided discriminator results in better FID. Label smoothing has a reasonable effect in case of
LSUN CAT 1k and is marginally helpful for FFHQ 1k. We also change the augmentation technique to DiffAugment [101] for both original
and vision-aided discriminator and observe that it performs comparable to ADA [39].

Method FFHQ
1k

LSUN CAT
1k

LSUN CAT
1.6M

StyleGAN2-ADA 19.57 41.14 6.86
Ours (w/ ViT (CLIP)) 11.63 15.49 4.61

Ours w/ fine-tune ViT (CLIP) ✗ ✗ ✗
Ours w/ ViT random weights 19.10 33.77 6.35
Ours w/ multi-discriminator 17.59 37.01 ✗
Longer StyleGAN2-ADA 19.07 39.36 6.52

Table 6. Additional ablation studies evaluated on FID↓ metric.
Having two discriminators during training (frozen with random
weights or trainable) or standard adversarial training for more itera-
tions leads to only marginal benefits in FID. Thus the improvement
in our method is through an ensemble of original and vision-aided
discriminators. ✗ means FID increased to twice the baseline, and
therefore, we stop the training run.

101, 102] which is one of the important factors that enable
the effective use of pretrained features. Label smoothing [72]
further improves the training dynamics, especially in a lim-
ited sample setting. We ablate each of these component and
show its contribution in Figure 8 on FFHQ and LSUN CAT
dataset in 1k sample setting, and LSUN CAT full-dataset
setting. Figure 8 shows that replacing ADA [39] augmen-
tation strategy with DiffAugment [101] in our method also
performs comparably. Moreover, in the limited sample set-
ting, without data augmentation, model collapses very early
in training, and FID diverges. The role of label smoothing is
more prominent in limited data setting e.g. LSUN CAT 1k.
Additional ablation study. Here we further analyze the im-
portance of our design choice. All the experiments are done
on LSUN CAT and FFHQ. We compare our method with
the following settings: (1) Fine-tuning ViT (CLIP) network
as well in our vision-aided adversarial loss; (2) Randomly
initializing the feature extractor network ViT (CLIP); (3)
Training with two discriminators, where the 2nd discrimina-
tor is of same architecture as StyleGAN2 original discrimi-
nator; (4) Training the StyleGAN2-ADA model longer for

the same number of iterations as ours with standard adver-
sarial loss. The results are as shown in Table 6. We observe
that the baseline methods provide marginal improvement,
whereas our method offers significant improvement over
StyleGAN2-ADA, as measured by FID. We show more abla-
tion experiments and results with BigGAN [9] architecture
in our arxiv version.

5. Limitations and Discussion

In this work, we propose to use available off-the-shelf
models to help in the unconditional GAN training. Our
method significantly improves the quality of generated im-
ages, especially in the limited-data setting. While the use of
multiple pretrained models as discriminators improves the
generator, it has a few limitations. First, this increases mem-
ory requirement for training. Exploring the use of efficient
computer vision models [73, 82] will potentially make our
method more accessible. Second, our model selection strat-
egy is not ideal in the low-shot settings when only a dozen
samples are available. We observe increased variance in the
linear probe accuracy with sample size ∼ 100 which can lead
to ineffective model selection. We plan to adopt few-shot
learning [28, 79] methods for these settings in future.

Nonetheless, as more and more self-supervised and su-
pervised computer vision models are readily available, they
should be used to good advantage for generative modeling.
This paper serves as a small step towards improving genera-
tive modeling by transferring the knowledge from large-scale
representation learning.
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sano Pinto, Daniel Keysers, and Neil Houlsby. Deep en-
sembles for low-data transfer learning. arXiv preprint
arXiv:2010.06866, 2020. 4

[59] Atsuhiro Noguchi and Tatsuya Harada. Image generation
from small datasets via batch statistics adaptation. In ICCV,
2019. 2

[60] Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros,
Yong Jae Lee, Eli Shechtman, and Richard Zhang. Few-
shot image generation via cross-domain correspondence. In
CVPR, 2021. 2

[61] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic.
Learning and transferring mid-level image representations
using convolutional neural networks. In CVPR, 2014. 2

[62] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-
Yan Zhu. Semantic image synthesis with spatially-adaptive
normalization. In CVPR, 2019. 2

[63] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On buggy
resizing libraries and surprising subtleties in fid calculation.
arXiv preprint arXiv:2104.11222, 2021. 5

[64] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In ICCV, 2021. 2

[65] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, Cedric
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