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Abstract

We propose a new algorithm for training deep neural
networks (DNNs) with binary weights. In particular, we
first cast the problem of training binary neural networks
(BiNNs) as a bilevel optimization instance and subsequently
construct flexible relaxations of this bilevel program. The
resulting training method shares its algorithmic simplicity
with several existing approaches to train BiNNs, in partic-
ular with the straight-through gradient estimator success-
fully employed in BinaryConnect and subsequent methods.
In fact, our proposed method can be interpreted as an adap-
tive variant of the original straight-through estimator that
conditionally (but not always) acts like a linear mapping in
the backward pass of error propagation. Experimental re-
sults demonstrate that our new algorithm offers favorable
performance compared to existing approaches.1

1. Introduction
Deploying deep neural networks (DNNs) to computing

hardware such as mobile and IoT devices with limited com-
putational and storage resources is becoming increasingly
relevant in practice, and hence training methods especially
dedicated to quantized DNNs have emerged as important
research topics in recent years [9]. In this work, we are par-
ticularly interested in the special case of DNNs with binary
weights limited to {+1,−1}, since in this setting the com-
putations at inference time largely reduce to sole additions
and subtractions. Very abstractly, the task of learning in
such binary weight neural networks (BiNNs) can be formu-
lated as an optimization program with binary constraints on
the network paramters, i.e.,

minw ℓ(w) s.t. w ∈ {−1, 1}d, (1)
= minw∈{−1,1}d E(x,y)∼pdata [ψ(f(x,w), y)] , (2)

1This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

where d is the dimensionality of the underlying parame-
ters (i.e. all network weights), pdata is the training distribu-
tion and ψ is the training loss (such as the cross-entropy or
squared Euclidean error loss). f(x;w) is the prediction of
the DNN with weights w for input x.

In practice, one needs to address problem settings where
the parameter dimension d is very large (such as deep
neural networks with many layers). However, address-
ing the binary constraints in the above program is a chal-
lenging task, which is due to the combinatorial and non-
differentiable nature of the underlying optimization prob-
lem. In view of large training datasets, (stochastic) gradient-
based methods to obtain minimizers of (1) are highly prefer-
able. Various techniques have been proposed to address the
above difficulties and convert (1) into a differentiable sur-
rogate. The general approach is to introduce real-valued
“latent” weights θ ∈ Rd, from which the effective weights
w = sgn(θ) are generated via the sign function (or a dif-
ferentiable surrogate thereof). One of the simplest and
nevertheless highly successful algorithms to train BiNNs
termed BinaryConnect [10] is based on straight-through
estimators (STE), which ignore the sign mapping entirely
when forming the gradient w.r.t. the latent weights θ (and
therefore the update of θ is based on ∇wℓ(w) instead of
∇θℓ(sgn(θ))). Although this appears initially not justified,
BinnaryConnect works surprisingly well and is still a valid
baseline method for comparison. More recently, the flex-
ibility in choosing the distance-like mapping leveraged in
the mirror descent method [30] (and in particular the en-
tropic descent algorithm [7]) provides some justification of
BinaryConnect-like methods [3] (see also Sec. 3.2).

In this work, we propose a new framework for training
binary neural networks. In particular, we first formulate
the training problem shown in (1) as a bilevel optimiza-
tion task, which is subsequently relaxed using an optimal
value reformulation. Further, we propose a novel scheme
to calculate meaningful gradient surrogates in order to up-
date the network parameters. The resulting method strongly
resembles BinaryConnect but leverages an adaptive variant
of the straight-through gradient estimator: the sign func-
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Figure 1. Adaptive straight-through estimation illustrated when s = tanh. ℓ′ is the incoming back-propagated error signal. Left: θ ≈ 0.
The finite difference slope (ŵ − w∗)/β matches the derivative of tanh very well. Middle: θ ≪ 0 ∧ ℓ′ < 0. A nearly vanishing derivative
of tanh is boosted and tanh becomes “leaky.” Right: θ ≪ 0∧ℓ′ > 0. No gradient “boosting” in this case. The case θ ≫ 0 is symmetrical.

tion is conditionally replaced by a suitable linear but data-
dependent mapping. Fig. 1 illustrates the underlying princi-
ple for the tanh mapping: depending on the incoming error
signal, vanishing gradients induced by tanh are condition-
ally replaced by non-vanishing finite-difference surrogates.
We finally point out that our proposed method can be cast as
a mirror descent method using a data-dependent and vary-
ing distance-like mapping.

2. Related Work

The practical motivation for exploring weight quantiza-
tion is to reduce the computational costs of deploying (and
in some cases training) neural networks. This can be partic-
ularly attractive in the case of edge computing and IoT de-
vices [9]. Even when retaining floating point precision for
activations z, using binarized weights matrices W means
that the omnipresent product Wz reduces to cheaper addi-
tions and subtractions of floating point values.

Already in the early 1990s, [14,43] trained BiNNs using
fully local learning rules with layerwise targets computed
via node perturbations. In order to avoid the limited scala-
bility of node perturbations, [37] instead employed a differ-
entiable surrogate of the sign function for gradient compu-
tation. Recently the use of differentiable surrogates in the
backwards pass has been coined the Backward Pass Differ-
entiable Approximation (BPDA) in the context of adversar-
ial attacks [5]. However, the same principle is at the core
of many network quantization approaches, most notably the
STE for gradient estimation.

Recent approaches have mainly focused on variations
of the STE. A set of real valued (latent) weights are bi-
narized when computing the forward pass, but during the
backwards pass the identity mapping is used as its differ-
entiable surrogate (which essentially makes the STE a spe-
cial case of BPDA). The computed gradients are then used
to update the latent weights. The STE was presented by
Hinton (and acredited to Krizhevsky) in a video lecture in
2012 [19]. Subsequently it was employed for training net-
works with binary activations in [8], and to train networks
with binary weights (and floating point activations) in the
BinaryConnect (BC) model [10]. BinaryConnect also used

heuristics such as clipping the latent weights and employing
Batch Normalization [22] (including its use at the output
layer) to improve the performance of STE based training.
Further and recent analysis of the straight-through estima-
tor is provided in [47], where its origin is traced back to
early work on perceptrons Rosenblatt [35,36]. The STE has
also been applied to training fully binarized neural networks
(e.g. [21]). Moreover, Rastegari et al. [34] employ the STE
for training fully binarized as well as mixed precision net-
works, and achieve improved performance by introducing
layer and channel-wise scaling factors. An interesting line
of research [13, 42] has explored adapting the STE to learn
parameters of the quantization mapping (such as quantiza-
tion steps and bit-width subjected to a memory budget).

Subsequent approaches have focused on deriving simi-
lar but less heuristic learning algorithms for networks with
binary weights. ProxQuant (PQ) [6], Proximal Mean-Field
(PMF) [2], Mirror Descent (MD) [3] and Rotated Binary
Neural Networks (RBNN) [26] formulate the task of train-
ing DNNs with binary weights as a constrained optimiza-
tion problem and propose different conversion functions
used for moving between real-valued latent weights and bi-
narized weights. A common feature among these methods
is that they belong to the class of homotopy methods by
gradually annealing the conversion mapping. Qin et al [33]
introduce a novel technique for minimizing the information
loss (caused by binarization) in the forward pass, and also
aims to address gradient error by employing a gradually an-
nealed tanh function as a differentiable surrogate during the
backwards pass along with a carefully chosen gradient clip-
ping schedule. Similar to early research, [18] does not in-
troduce latent real-valued weights, but rather updates the
binary weights directly using a momentum based optimizer
designed specifically for BiNNs. Several authors have ap-
proached the training of quantized neural networks via a
variational approach [1, 27, 29, 40]. Among those, Bayes-
BiNN [29] is particularly competitive: instead of optimiz-
ing over binary weights, the parameters of Bernoulli distri-
butions are learned by employing both a Bayesian learning
rule [24] and the Gumbel-softmax trick [23, 28] (therefore
requiring an inverse temperature parameter to convert the
concrete distribution to a Bernoulli one).
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For additional surveys of weight quantization we refer
to the review papers [16, 32] as well as section III of [11].
For a review of the efficacy of various ad-hoc techniques
commonly employed for training BiNNs we refer to [4].

3. Background
After clarifying some mathematical notations we sum-

marize the mirror descent method (and its use to train
BiNNs) and the Prox-Quant approach in order to better
establish similarities and differences with our proposed
method later.

3.1. Notation

A constraint such as w ∈ C is written as ıC(w) in func-
tional form. We use ⊙ to denote element-wise multiplica-
tion and ⊘ for element-wise division. The derivative of a
function ℓ at w is written as ℓ′(w). Many mappings will
be piece-wise differentiable but continuous. Therefore, in
those cases ℓ′(w) is a suitable element in the sub- or super-
derivative. We use an arrow over some variable names (es-
pecially β⃗) to emphasize that this is a vector and not a scalar.
For the same reason we use e.g. s⃗ and ⃗sgn to indicate the
vectorized form of a scalar mapping s (or sgn) that is ap-
plied element-wise.

3.2. Mirror Descent

In short, mirror descent [7, 30] successively generates
new iterates by minimizing a regularized first-order surro-
gate of the target objective. The most common quadratic
regularizer (which leads to the gradient descent method) is
replaced by a more general Bregman divergence penalizing
large deviations from the previous iterate. The main motiva-
tion is to accelerate convergence of first-order methods, but
it can also yield very elegant methods such as the entropic
descent algorithm, where the utilized Bregman divergence
based on the (negated) Shannon entropy is identical to the
KL divergence. Entropic descent is very natural when op-
timizing unknowns constrained to remain in the probability
simplex ∆. The algorithm repeats updates of the form

w(t+1) ← arg min
w∈∆

w⊤ℓ′(w(t)) + 1
ηDKL(w∥w(t)) (3)

with the associated first-order optimality condition

w
(t+1)
j ∝ w(t)

j e−ηℓ′(w(t))j . (4)

Reparametrizing w as w = σ(θ), where σ is the soft-arg-
max function, σ(u)j = euj/

∑
j′ e

uj′ , yields

θ(t+1) ← θ(t) − ηℓ′(w(t)) = θ(t) − ηℓ′(σ(θ(t))). (5)

Interestingly, mirror descent modifies the chain rule by by-
passing the inner derivative, since the update is based on

ℓ′(σ(θ(t))) and not on d
dθ ℓ(σ(θ

(t))) as in regular gradient
descent. Hence, mirror descent is one way to justify the
straight-through estimator. The entropic descent algorithm
is leveraged in [3] to train networks with binary (and also
generally quantized) weights. The soft-arg-max function σ
is slowly modified towards a hard arg-max mapping in order
to ultimately obtain strictly quantized weights.

3.3. ProxQuant

ProxQuant [6] is based on the observation that the
straight-through gradient estimator is linked to proximal op-
erators via the dual averaging method [44]. The proximal
operator for a function ϕ is the solution of the following
least-squares regularized optimization problem,

proxλϕ(θ) = argminθ′ λϕ(θ′) + 1
2∥θ

′ − θ∥2, (6)

where λ > 0 controls the regularization strength. If ϕ is a
convex and lower semi-continuous mapping, the minimizer
of the r.h.s. is always unique and proxλϕ is a proper func-
tion (and plays an crucial role in many convex optimization
methods). ProxQuant uses a non-convex mappings for ϕ,
which is far more uncommon for proximal steps than the
convex case (see e.g. [41] for another example). In order to
train DNNs with binary weights, ϕ is chosen as W-shaped
function,

ϕ(θ) =
∑d

j=1
min {|θj − 1|, |θj + 1|} . (7)

ϕ has 2d isolated global minima and is therefore not convex.
Note that proxλϕ(θ) is uniquely defined as long as all ele-
ments in θ are non-zero. The network weights are updated
according to

θ(t+1) ← proxλ(t)ϕ

(
θ(t) − ηℓ′(θ(t))

)
, (8)

and the regularization weight λ(t) is increased via an an-
nealing schedule, which makes ProxQuant an instance of
homotopy methods: strictly quantized weights are only ob-
tained for a sufficiently large value of λ(t).

4. Adaptive Straight-Through Estimator
In this section, we propose a new approach to tackle

the optimization problem given in (1). Reformulating
and relaxing an underlying bilevel minimization problem
was initially inspired by contrastive Hebbian learning for
DNNs [38,45,49] and is at the core of the proposed method.

4.1. Bilevel Optimization Formulation

We start by rewriting the original problem (1) as the fol-
lowing bilevel minimization program,

minθ ℓ(w
∗) s.t. w∗ = argminw E(w; θ) (9)
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where E(w; θ) can be any function that favors w∗ to be bi-
nary. Two classical choices for E are given by

Etanh(w; θ) = − 1
τ

∑
j
H
(
1
2 (1− wj)

)
− w⊤θ (10)

Ehard-tanh(w; θ) =
1
2τ ∥w∥

2 − w⊤θ + ı[−1,1]d(w), (11)

whereH is the Shannon entropy of a Bernoulli random vari-
able, H(u) = −u log u − (1 − u) log(1 − u). The min-
imizer w∗ for given θ is the tanh mapping in the case of
Etanh, w∗

j = tanh(θj/τ), and the second option yields the
hard-tanh mapping, w∗

j = Π[−1,1](θj/τ). τ > 0 is a pa-
rameter steering how well these mappings approximate the
sign function ⃗sgn(θ).

In order to apply a gradient-based learning method we
require that E is differentiable w.r.t. θ for all w. In the above
examples we have ∂

∂θE(w; θ) = −w. It will be sufficient for
our purposes to assume that E is of the form

E(w; θ) = −w⊤θ + G(w) (12)

for a coercive function G bounded from below. That is,
w and θ only interact via their (separable) inner product.
Further, it is sufficient to assume that G is fully separa-
ble, G(w) =

∑
j G(wj), since each latent weight θj can

be mapped to its binarized surrogate wj independently (an
underlying assumption in the majority of works but explic-
itly deviated from in [17]). Thus, the general form for E
assumed in the following is given by

E(w; θ) =
∑

j

(
G(wj)− wjθj

)
. (13)

Therefore in this setting the solution w∗ = (w∗
1 , . . . , w

∗
d)

⊤

is given element-wise,

w∗
j = argminwj G(wj)− wjθj . (14)

4.2. Relaxing by Optimal Value Reformulation

The optimal value reformulation (e.g. [31, 48]), which
is a commonly used reformulation approach in bilevel op-
timization, allows us to rewrite the bilevel problem (9) as
follows,

minθ,w ℓ(w) s.t. E(w; θ) ≤ minw′ E(w′; θ). (15)

Observe that the w∗ in the outer objective of (9) was re-
placed by a new unknown w, while the difficult equality
constraint in (9) has been replaced by a somewhat easier in-
equality constraint. Due to the separable nature of E in (13),
it is advantageous to introduce an inequality constraint for
each element wj . Thus, we obtain

minθ,w ℓ(w) s.t. E(wj ; θj) ≤ minw′
j
E(w′

j ; θj), (16)

where E (independent of j) is given as

E(wj ; θj) := G(wj)− wjθj . (17)

This first step enables us to straightforwardly relax (16) by
fixing positive Lagrange multipliers for the inequality con-
straints:

min
θ,w

ℓ(w) +
∑

j

1
βj

(
E(wj ; θj)−minw′

j
E(w′

j ; θj)
)
. (18)

We parametrize the non-negative multipliers via β−1
j for

βj > 0, which will be convenient in the following. Since
we are interested in gradient-based methods, we replace the
typically highly non-convex “loss” ℓ (which subsumes the
target loss and the mapping induced by the network) by its
linearization at w∗, ℓ(w∗) + (w − w∗)⊤ℓ′(w∗). Recall that
w∗ = argminw E(w; θ) is the effective weight used in the
DNN and is ideally close to ⃗sgn(θ). Overall, we arrive at
the following relaxed objective to train a network with bi-
nary weights:

L(θ) = ℓ(w∗)− (w∗)⊤ℓ′(w∗)

+
∑

j
min
wj

{
wjℓ

′
j(w

∗) + 1
βj
E(wj ; θj)

}
−
∑

j
min
wj

{
1
βj
E(wj ; θj)

}
, (19)

Using a linearized target loss above will be connected to a
perturbed chain rule in Section 4.3. The inner minimization
problems have the solutions

w∗
j = argminwj

E(wj ; θj) and

ŵj := argminwj βjℓ
′
j(w

∗)wj + E(wj ; θj). (20)

ŵ = (ŵ1, . . . , ŵd)
⊤ is based on a perturbed objective that

incorporates the local (first-order) behavior of the outer loss
ℓ. Both w∗ and ŵ implicitly depend on the current value
of θ, and ŵ depends on a chosen “step size” vector β⃗ :=
(βj)

d
j=1 with each βj > 0. If E(·; θ) is continuous at w =

w∗, then limβj→0+ ŵj = w∗
j . Further, if E is of the form

given in (12), then ŵ is as easy to compute as w∗ (proof in
the supplementary material):

Proposition 1. Let E(w; θ) = G(w) − w⊤θ and w∗ =
argminw E(w; θ) be explicitly given as w∗ = s⃗(θ). Then

ŵ = s⃗
(
θ − β⃗ ⊙ ℓ′(w∗)

)
. (21)

All of the interesting choices E lead to efficient forward
mappings s (like the choices Etanh and Ehard-tanh given ear-
lier that resulted in tanh and hard tanh functions).

4.3. Updating the latent weights θ

For a fixed choice of β⃗ = (β1, . . . , βd)
⊤ with βj > 0,

the relaxed objective L(θ) in (19) is a nested minimization
instance with a “min-min-max” structure. In some cases
it is possible to obtain a pure “min-min-min” instance via
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duality [49], but in practice this is not necessary. Let θ(t) be
the current solution at iteration t, then our employed local
model to determine the new iterate θ(t+1) is given by

Q(θ; θ(t)) =
∑

j

1
βj

(
E(ŵj ; θj)− E(w∗

j ; θj)
)

+ 1
2η∥θ − θ

(t)∥2, (22)

where w∗ = s⃗(θ(t)) and ŵ = s⃗(θ(t) − β⃗ ⊙ ℓ′(w∗)) are the
effective weights and its perturbed instance, respectively,
evaluated at θ(t). The last term in Q regularizes deviations
from θ(t), and η plays the role of the learning rate. Minimiz-
ing Q(θ; θ(t)) w.r.t. θ yields a gradient descent-like update,

θ(t+1) = argmin
θ
Q(θ; θ(t)) = θ(t)−η

(
w∗−ŵ

)
⊘β⃗ (23)

for the assumed form of E in (12). Each element of (w∗ −
ŵ)⊘ β⃗, i.e. (w∗

j −ŵj)/βj , corresponds to a finite difference
approximation (using backward differences) of

− d
dβj

s
(
θ
(t)
j − βjℓ

′
j(w

∗)
)∣∣

βj=0+
(24)

with spacing parameter hj = βjℓ
′
j(w

∗). If s is at least one-
sided differentiable, then it can be shown that these finite
differences converge to a derivative given by the chain rule
when βj → 0+ [48],

1
βj

(
w∗

j − ŵj

) βj→0+→ − d
dβ s(θ

(t)
j − βjℓ

′
j(w

∗))
∣∣
βj=0+

= ℓ′j(s(θ
(t)
j ))s′(θ

(t)
j ) = d

dθj
ℓ(s(θ(t))). (25)

For non-infintesimal βj > 0 the finite difference slope
(w∗

j − ŵj)/βj corresponds to a perturbed chain rule,

1
βj

(
w∗

j − ŵj

)
= ℓ′j(w

∗)s′
(
θ
(t)
j − γjℓ

′
j(w

∗)
)

(26)

(recall that w∗ = s(θ(t))), where the inner derivative is
evaluated at a perturbed argument θ(t) − γ⃗ ⊙ ℓ′(w∗) for a
γ⃗ ∈ [0, β⃗]. This is a consequence of the mean value theo-
rem. Moreover, if each βj is a critical point of the mapping

β 7→ 1
β

(
w∗

j − ŵj

)
= 1

β

(
w∗

j − s(θ
(t)
j − βℓ

′
j(w

∗))
)
, (27)

then by using the quotient rule it is easy to see that γ⃗ = β⃗,
and therefore

1
βj

(
w∗

j − ŵj

)
= ℓ′j(w

∗)s′
(
θ
(t)
j − βjℓ

′
j(w

∗)
)
. (28)

Additionally, the relation in (26) can be interpreted as a par-
ticular instance of mirror descent (recall Sec. 3.2) as shown
in the supplementary material. Overall, the above means
that we can relatively freely select where s′ is actually eval-
uated. Since s is naturally a “squashing” function mapping

R to the bounded interval [−1, 1], gradient-based training
using s′ usually suffers from the vanishing gradient prob-
lem. Using the relaxed reformulation for bilevel programs
allows us to select βj to obtain a desired descent direction
as it will be described in Section 4.5.

The resulting gradient-based training method is summa-
rized in Alg. 1. The algorithm is stated as full batch method,
but the extension to stochastic variants working with mini-
batches drawn from pdata is straightforward. In the fol-
lowing section we discuss our choice of E and how to se-
lect suitable spacing parameters β⃗(t) > 0 in each iteration.
Since β⃗(t) is chosen adaptively based on the values of θ(t)

and ℓ′(w∗) and used to perturb the chain rule, we call the
resulting algorithm the adaptive straight-through estimator
(AdaSTE) training method. In the supplementary material
we highlight its relations with ProxQuant and mirror de-
scent training (and also discuss convergence properties).

Algorithm 1 AdaSTE training method.

1: Initialize θ(0), choose learning rates η(t), t = 1, . . .
2: for t = 1, . . . do
3: w∗ ← s⃗(θ(t))
4: Run regular back-propagation to determine ℓ′(w∗)

5: Determine β⃗(t) using (38)
6: ŵ ← s⃗

(
θ(t) − β⃗(t) ⊙ ℓ′(w∗)

)
7: θ(t+1) ← θ(t) − η(t)(w∗ − ŵ)⊘ β⃗(t)

8: end for

4.4. Our choice for the inner objective E

In this section we will specify our choice for E (and thus
the mapping s⃗ : θ 7→ argminw E(w; θ)). The straightfor-
ward options of Etanh and Ehard-tanh (Section 4.1) suffer from
the fact that the induced arg-min mappings coincide ex-
actly with the sign function only when the hyper-parameter
τ−1 → ∞. We are interested in an inner objective E that
yields perfect quanitized mappings for finite-valued choices
of hyper-parameters. Inspired by the double-well cost used
in ProxQuant [6], we design E as follows,

E(w; θ) = 1+µ
2 ∥w∥

2 − w⊤θ − µ(1+α)∥w∥1 + ı[−1,1]d(w),

(29)

where µ > 0 and α ∈ (0, 1) are free parameters. Note that
E is only piecewise convex in w for fixed θ, but it is fully
separable in wj with

E(wj ; θj) =
1+µ
2 w2

j − wjθj − µ(1+α)|wj |+ ı[−1,1](wj).

(30)

Via algebraic manipulations we find the following closed-
form expression for ŵj (where we abbreviate ℓ′ for ℓ′(w∗)),
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Figure 2. The graph of the mapping w∗ = s(θ) given in (31) for
α = 1/100 and three different values of µ.

ŵj = argminwj
βjℓ

′
jwj + E(wj ; θj)

= Π[−1,1]

(
θ̃j + µ(1 + α) sgn(θ̃j)

1 + µ

)
, (31)

with θ̃j := θj − βjℓ′j . In other words, the forward mapping
s⃗ : θ 7→ w∗ = s(θ) for our choice of E is given by

s⃗(θ) = Π[−1,1]d

(
θ + µ(1 + α) ⃗sgn(θ)

1 + µ

)
. (32)

The piece-wise linear graph of this mapping is illustrated
in Fig. 2 for α = 1/100 and three different choices of µ.
Let α ∈ (0, 1) be given, then s⃗(θ) attains only values in
{−1, 1}d even for finite µ, since

|θj |+ µ(1 + α)

1 + µ
≥ 1 ⇐⇒ |θj |+ µ(1 + α) ≥ 1 + µ

⇐⇒ |θj |+ αµ ≥ 1, (33)

which implies that any θj is always mapped to +1 or -1
when µ ≥ 1/α (and the exact values of µ and α do not
matter in this case). Consequently we have both the op-
tion to train with strictly binary weights from the begin-
ning, or to train via a homotopy method by adjusting α or µ.
Both choices lead to competitive results with the homotopy-
based method having a small advantage in some cases as
demonstrated in Section 5.

4.5. Adaptive choice for β

As indicated in Section 4.3, we can steer the modified
chain rule by selecting βj > 0 appropriately in order to
determine a suitable descent direction. Note that each el-
ement θj in the vector of parameters θ has its own value
for βj . Below we describe how βj is chosen when α
and µ satisfy µα ≥ 1. In this setting we always have
w∗

j = sgn(θj) ∈ {−1, 1} and ŵj = ⃗sgn(θj − βjℓ′j(w∗)) ∈
{−1, 1} (we ignore the theoretical possibility of θj = 0 or
θj − βjℓ′j(w∗) = 0). Our aim is to select βj > 0 such that
the slope induced by backward differences, 1

βj
(w∗

j − ŵj),

is as close to ℓ′j(w
∗) as possible. In the following we abbre-

viate ℓ′(w∗) to ℓ′. Since sgn is an increasing step-function
with derivative being zero almost everywhere, its finite dif-
ference approximation

1
βj

(
w∗

j − ŵj

)
= 1

βj

(
sgn(θj)− sgn(θj − βjℓ′j)

)
(34)

lies either in the interval [0, smax] or in [−smax, 0] for a suit-
able smax ≥ 0 (which is dependent on θj and ℓ′j). In par-
ticular, if θjℓ′j ≤ 0, then sgn(θj) = sgn(θj − βjℓ′j) for all
βj ≥ 0 and smax = 0. On the other hand, if θjℓ′j > 0, then
sgn(θj−βjℓ′j) ̸= sgn(θj) for βj > θj/ℓ

′
j and therefore

sup
βj>θj/ℓ′j

1
βj
|w∗

j − ŵj | =
2ℓ′j
θj
. (35)

If θj is close to 0, then the r.h.s. may grow arbitrarily large
(reflecting the non-existence of the derivative of sgn at 0).
Assuming that (w∗

j − ŵj)/βj should maximally behave like
a straight-through estimator (i.e. |w∗

j−ŵj |/βj ≤ |ℓ′j |, which
also can be seen as a form of gradient clipping), we choose

βj =
1

|ℓ′j |
max{2, |θj |} (36)

in order to guarantee that

1
βj
|w∗

j − ŵj | ≤ 2
βj
≤ 2|ℓ′j |

2 = |ℓ′j |. (37)

Overall, we obtain the following simple rule to assign each
βj for given θ and ℓ′:

βj ←

{
1

|ℓ′j |
max{2, |θj |} if θjℓ′j > 0

1 otherwise.
(38)

The choice of βj = 1 in the alternative case is arbitrary,
since (w∗

j − ŵj)/β = 0 for all values β > 0. Observe
that the assignment of βj in (38) selectively converts (w∗

j −
ŵj)/βj into a scaled straight-through estimator whenever
θjℓ

′
j > 0, otherwise the effective gradient used to update θj

is zero (in agreement with the chain rule).
In the supplementary material we discuss the setting

µα < 1, which yields in certain cases different expressions
for βj . Nevertheless, we use (38) in all our experiments.

5. Experimental Results
In this section, we show several experimental results to

validate the performance of our proposed method and com-
pare it against existing algorithms that achieve state-of-the-
art performance for our particular problem settings. As
mentioned above, we only consider the training of networks
with fully binarized weights and real-valued activations.
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Implementation CIFAR-10 CIFAR-100 TinyImageNet
VGG-16 ResNet-18 VGG-16 ResNet-18 ResNet-18

Full-precision (†) 93.33 94.84 71.50 76.31 58.35
BinaryConnect (*) 89.75±0.26 91.92±0.23 54.61±2.37 68.67±0.7 -
BinaryConnect (†) 89.04 91.64 59.13 72.14 49.65
ProxQuant(†) 90.11 92.32 55.10 68.35 49.97
PMF(†) 91.40 93.24 64.71 71.56 51.52
MD-softmax (†) 90.47 91.28 56.25 68.49 46.52
MD-softmax-s (†) 91.30 93.28 63.97 72.18 51.81
MD-softmax-s (*) 91.39±0.30 93.10±0.17 64.42±0.37 71.87±0.25 -
MD-tanh (†) 91.64 92.27 61.31 72.13 54.62
MD-tanh-s (†) 91.53 93.18 61.69 72.18 52.32
MD-tanh-s (*) 91.40±0.30 93.23±0.15 62.93±0.60 71.96±0.18 -
BayesBiNN (*) 90.68±0.07 92.28±0.09 65.92±0.18 70.33±0.25 54.22
AdaSTE (w/o annealing) (*) 92.16±0.16 93.96±0.14 68.46±0.18 73.90±0.20 53.49
AdaSTE (with annealing) (*) 92.37±0.09 94.11±0.08 69.28±0.17 75.03±0.35 54.92

Table 1. Classification (test) accuracy for different methods. (*) indicates that experiments have been run 5 times using different random
seeds (except for TinyImageNet). (†) indicates that results are obtained from the numbers reported by [3].

Following previous works [3,6,29], we use classification
as the main task throughout our experiments. In particu-
lar, we evaluate the performance of the algorithms on the
two network architectures: ResNet-18 and VGG16. The
networks are trained and evaluated on the CIFAR10, CI-
FAR100 and TinyImageNet200 [25] datasets. We compare
our algorithm against state-of-the-art approaches, including
BinaryConnect (BC) [10], ProxQuant (PQ) [6], Proximal
Mean-Field (PMF) [2], BayesBiNN [29], and several vari-
ants of Mirror Descent (MD) [3]. We employ the same stan-
dard data augmentations and normalization as employed by
the methods we compare against (please refer to our sup-
plemental material for more details about the experimen-
tal setup). Our method2 is implemented in Pytorch and
is developed based on the software framework released by
BayesBiNN’s authors3 (more details regarding our imple-
mentation and additional Imagenette [20] results can be
found in the supplemental material).

5.1. Classification Accuracy

In Table 1, we report the testing accuracy obtained by
the considered methods. For PQ, PMF, the unstable ver-
sions of MD as well as for full-precision reference net-
works, we use the test accuracy reported in [3]. For BC,
the stable variants of MD (i.e. MD-softmax-s and MD-
tanh-s), we reproduce the results by running the source
code released by the authors4 (using the default recom-
mended hyper-parameters) for 5 different random initial-
izations, and reporting the mean and standard deviation ob-

2https://github.com/intellhave/AdaSTE
3https://github.com/team-approx-bayes/BayesBiNN
4https://github.com/kartikgupta-at-anu/md-bnn

tained from these runs. The same strategy is also applied
to BayesBiNN (hyper-parameters for BayesBiNN can be
found in the supplemental material), except for the Tiny-
ImageNet dataset where we only report results for a single
run (due to longer training time). We report the results for
our method using two settings:

• Without annealing: we fix α = 0.01 and µ = 1
α .

• With annealing: we also use α = 0.01 and set the
initial value µ to µ(0) = 1.0, then increase µ after each
epoch by a factor of γ, i.e. µ(t) ← γµ(t−1). γ is
chosen such that µ reaches 1/α after ≈ 200 epochs.

The impact of the choice of µ on the shape of s⃗(θ) is illus-
trated in Fig. 2. Table 1 demonstrates that our proposed
algorithm achieves state-of-the-art results. Note that we
achieve highly competitive results even without annealing µ
(although annealing improves the test accuracy slightly but
consistently). Hence, we conclude that AdaSTE without an-
nealing (and therefore no additional hyper-parameters) can
be used as a direct replacement for BinaryConnect. Note
that we report all results after training for 500 epochs. In
the supplementary material, we will show that both Bayes-
BiNN and AdaSTE yield even higher accuracy if the models
are trained for higher number of epochs.

5.2. Evolution of Loss and Accuracy

We further investigate the behavior of the algorithms dur-
ing training. In particular, the evolution of training losses
and testing accuracies are of interest, since these quantities
are of practical interest.

In Fig. 3, we plot the testing accuracy obtained by our
method in comparison with BC, MD (using the tanh map-
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Figure 3. Testing accuracy achieved by the methods for the first 200 epochs with ResNet-18 (left) VGG16 (right) for CIFAR10 dataset
(plots for CIFAR100 can be found in the supplemental material).
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Figure 4. Training loss of the methods for the first 200 epochs with ResNet-18 (left) and VGG16 (right) on the CIFAR10 dataset (see
supplementary material for plots of the CIFAR100 dataset).

ping), and BayesBiNN for the first 200 epochs. For our
method, we show the performance for both settings with
and without annealing (as described earlier). To obtain
the plots for MD and BayesBiNN, we use the code pro-
vided by the authors with the default recommended hyper
parameters. For BC, we use the implementation provided
by the MD authors. As can be observed, AdaSTE quickly
reaches very high test accuracy compared to other ap-
proaches. The MD-tanh approach (using the recommended
annealing schedule from the authors [3]) only reaches satis-
factory accuracy after approximately 100 epochs. We also
try starting MD-tanh with a larger annealing parameter (i.e.
the β hyper-parameter in [3]), but that yields very poor re-
sults (see supplemental material for more details). AdaSTE,
on the other hand, is quite insensitive to the annealing de-
tails, and yields competitive results even without annealing.

Fig. 4 depicts the training loss of our methods compared
to BayesBiNN. We choose to compare AdaSTE against our
main competitor, BayesBiNN, as we have full control of
the source code to assure that both methods are initialized
with the same starting points. As can be seen, our method
quickly reduces the training loss, while BayesBiNN takes
longer for the training loss to converge. Note that Bayes-
BiNN leverages the reparametrization trick and relies there-
fore on weights sampled from respective distributions at
training time. In that sense AdaSTE is a purely determin-
istic algorithm, and the only source of stochasticity is the
sampled mini-batches. This might be a factor explaining

AdaSTE’s faster reduction of the training loss.

6. Discussion and Conclusion
In this work we propose AdaSTE, an easy-to-implement

replacement for the straight-through gradient estimator, and
we demonstrate its benefits for training DNNs with strictly
binary weights. One clear limitation in this work is, that
we focus on the binary weight but real-valued activations
scenario, which is a highly useful setting, but still prevents
low-level implementations using only xor and bit count op-
erations. Extending AdaSTE to binary activations seems
straightforward, but will be more difficult to justify theo-
retically, and we expect training to be more challenging in
practice. One obvious further shortcoming is our restriction
to purely binary quantization levels, in particular to the set
{+1,−1}. Generalizing the approach to arbitrary quantiza-
tion levels can be done in several ways, e.g. by extending
the W-shaped cost E in (30) to more minima or by moving
to higher dimensions (e.g. by modeling parameters in the
probability simplex).

Since weight quantization is one option to regulate
the Lipschitz property of a DNNs’ forward mapping (and
also its expressive power), the impact of weight quantiza-
tion [12, 39] (and more generally DNN model compres-
sion [15, 46]) on adversarial robustness has been recently
explored. Hence, combining our adaptive straight-through
gradient estimator with adversarial training is one direction
of future work.
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learning rule, 2021.

[25] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015.

[26] Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan
Wang, Yongjian Wu, Feiyue Huang, and Chia-Wen Lin. Ro-
tated Binary Neural Network. In H Larochelle, M Ranzato,
R Hadsell, M F Balcan, and H Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 7474–
7485. Curran Associates, Inc., 2020.

[27] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Ef-
stratios Gavves, and Max Welling. Relaxed quantization for
discretized neural networks. In International Conference on
Learning Representations, 2019.

468



[28] C Maddison, A Mnih, and Y Teh. The concrete distribu-
tion: A continuous relaxation of discrete random variables.
In Proceedings of the international conference on learning
Representations. International Conference on Learning Rep-
resentations, 2017.

[29] Xiangming Meng, Roman Bachmann, and Moham-
mad Emtiyaz Khan. Training binary neural networks us-
ing the Bayesian learning rule. In Hal Daumé III and Aarti
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