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Abstract

In this paper, we introduce a new dataset, named In-
staOrder, that can be used to understand the geometrical
relationships of instances in an image. The dataset consists
of 2.9M annotations of geometric orderings for class-labeled
instances in 101K natural scenes. The scenes were anno-
tated by 3,659 crowd-workers regarding (1) occlusion order
that identifies occluder/occludee and (2) depth order that de-
scribes ordinal relations that consider relative distance from
the camera. The dataset provides joint annotation of two
kinds of orderings for the same instances, and we discover
that the occlusion order and depth order are complemen-
tary. We also introduce a geometric order prediction network
called InstaOrderNet, which is superior to state-of-the-art
approaches. Moreover, we propose a dense depth prediction
network called InstaDepthNet that uses auxiliary geometric
order loss to boost the accuracy of the state-of-the-art depth
prediction approach, MiDaS [54].

1. Introduction
Understanding a scene from an image is a fundamen-

tal problem in computer vision. Deep learning-based ap-
proaches have achieved great success in various tasks, such
as object detection [2, 13, 17, 18, 23, 37, 55, 56], semantic
segmentation [5, 6, 36, 42, 43, 48, 64, 65, 74, 81], instance
segmentation [11, 12, 22, 32, 41, 50, 51, 80] and depth esti-
mation [4, 14, 20, 29, 33, 39, 58, 61, 70, 78]. More recently,
approaches have inferred high-level information, such as
amodal segmentation [52, 73, 83, 84], physics [68], and 3D-
property recognition [10, 16, 25, 47, 59, 60, 72, 75]. More
importantly, many studies have emphasized the importance
of understanding relationships between objects to learn high-
level context [15, 27, 46, 49, 53, 85]. Given a natural image
(Figure 1a, b), examples of such understanding would be
‘Horse3 occludes Person2.’, ‘Horse1 and Person3 occlude
each other.’, or ‘Horse2 is closer than Person2.’.

For this purpose, we introduce a new large-scale dataset,
called INSTAORDER, for geometric scene understanding.
The dataset has extensive annotations on geometric order-
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Figure 1. Overview of the proposed INSTAORDER dataset. (a and
b) Example image of a cluttered scene and instance masks with
class labels. (c) Occlusion order. Arrows run from occluder to
occludee. (d) Depth order. Arrows point from close to far.

ings between class-labeled instances in the natural scenes.
INSTAORDER provides (1) Occlusion order that determines
objects that occlude others (occluders), and objects that are
occluded (occludees), and (2) Depth order that describes
which object is closer or farther to the camera. INSTAORDER
is the first dataset that provides these two kinds of orders
together from the same image.

The two types of geometric relations can be expressed us-
ing directed graphs (Figure 1c, d). Occlusion order and depth
order are complementary to each other, and neither alone can
fully depict the geometric relationship in the cluttered scene.
For example, Horse2 in the occlusion graph (Figure 1c) is
isolated, so Horse2’s depth is not clear without looking at the
depth order graph (Figure 1d). In contrast, looking only at
the depth order graph does not demonstrate whether Horse1
occludes Horse3, whereas the occlusion order graph does
provide such information. Compared with other datasets
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shown in Figure 2, INSTAORDER is the only large-scale and
comprehensive dataset that provides instance segmentation
mask, instance class label, occlusion, and depth order with
delicate annotation of ordering types as shown as bidirec-
tional edges and dashed edges.

INSTAORDER is built on the COCO 2017 [38] dataset. A
total of 3,659 crowd-workers annotated geometric ordering
for 100,623 images having 503,939 instances, for a total
of 2,859,919 depth and occlusion orderings. Such large-
scale annotation distinguishes INSTAORDER from the prior
datasets that only cover occlusion order [52, 84] or depth
order [7]. In addition to its scale, INSTAORDER introduces
richer annotation on ambiguous cases that had not been
addressed before [7, 52, 84]. For example, bidirectional or-
der covers the case (Figure 1) in which Horse3 and Person1
occlude each other. For depth order, in addition to {closer,
farther, or equal} orderings, we introduce distinct and over-
lapping depth orders. For example, some parts of Person1’s
left leg are closer than Horse3, whereas the right arm is far-
ther (Figure 1a). This case is annotated as overlap depth and
displayed as a dashed line (Figure 1d). The direction of the
dashed line indicates that some part of Person1 (left leg) is
nearer than any part of Horse3.

We also propose new networks called InstaOrderNet and
InstaDepthNet. InstaOrderNet is used to recover instance-
wise orders from an image. We show that InstaOrderNet
achieves higher accuracy than state-of-the-art approaches,
such as PCNet-M [77] and OrderNetM+I [84]. InstaDepth-
Net is used to predict a dense depth map from an image.
With the proposed instance-wise disparity loss and the IN-
STAORDER dataset, InstaDepthNet can boost the accuracy
of MiDaS [54], a state-of-the-art depth estimation network.

The contributions of this paper are:

• We introduce the INSTAORDER dataset that provides
2.9M of comprehensive instance-wise geometric order-
ings for 101K natural scenes. INSTAORDER is the first
dataset of both occlusion and depth order from the same
image, with bidirectional occlusion order and delicate
depth range annotations.

• We discover that occlusion and depth order are comple-
mentary, and that instance-wise orders are helpful for
the monocular depth prediction task.

• We introduce InstaOrderNet for geometric order pre-
diction and show its superior accuracy over state-of-the-
arts. In addition, we introduce InstaDepthNet, which
demonstrates that the proposed auxiliary loss for geo-
metric ordering can boost the depth prediction accuracy
of the state-of-the-art approach, MiDaS [54].

• The INSTAORDER dataset, pre-trained model, and
toolbox are available at https://github.com/
POSTECH-CVLab/InstaOrder

2. Related Work
Datasets for occlusion orders. Understanding occlusion

is proven to improve the ability of scene understanding in
various computer vision tasks, such as detection [66, 79], in-
stance segmentation [30,76], depth estimation [44], and opti-
cal flow estimation [26,67]. Recently, the concept of amodal
perception has been emphasized, estimating the whole phys-
ical structure from a partial observation. Knowing occlusion
order is crucial when inferring amodal masks.

COCOA [84] is the first amodal dataset that contains
both modal and amodal segmentation masks and their pair-
wise occlusion orders. However, COCOA provides only
5,073 images, which is an insufficient number for data-
driven approaches. Moreover, COCOA is designed with one-
directional occlusion, and therefore splits instance masks
if two instances occlude each other. In this procedure, an-
notators assign arbitrary labels to the new masks instead
of assigning pre-defined class labels. KINS [52] provides
modal and amodal segmentation masks with relative occlu-
sion order. KINS consists of 14,991 images, and it is built
upon KITTI [16] dataset. Therefore, all of its images are of
driving scenes.

INSTAORDER is much larger than COCOA [84] and
KINS [52] (Table 1). In addition, INSTAORDER provides
bidirectional occlusion, whereas COCOA and KINS do not.
We observed that bidirectional order facilitates the under-
standing of scenes.

Occlusion order prediction. Tighe et al. [62] build a
histogram to predict occlusion overlap scores between two
classes and solve quadratic integer programs. Zhu et al. [84]
proposed OrderNetM+I that takes two masks and an image
patch as input then produces pair-wise occlusion order in a
supervised scheme. Zhan et al. [77] proposed PCNet-M that
recovers occlusion order in a self-supervised manner.

The proposed InstaOrderNeto and InstaOrderNeto,d can
identify instances of ‘no occlusion’, ‘unidirectional oc-
clusion’, and ‘bidirectional occlusion’. To the best of
our knowledge, it is the first attempt in the field to iden-
tify three types simultaneously. We experimentally show
that our InstaOrderNeto, InstaOrderNeto,d is more accurate
than OrderNetM+I [84] and PCNet-M [77] networks in CO-
COA [84], KINS [52] and INSTAORDER datasets.

Datasets for depth maps. Advances in depth sensors
have enabled extending 2D space to 3D space by collect-
ing large-scale RGB-D datasets. For indoor environments,
NYU Depth V2 [47], SUN3D [72], SUN RGB-D [59], Sce-
neNN [25], ScanNet [25] datasets exist. For outdoor en-
vironments, KITTI [16], Cityscapes [10], Waymo Open
Dataset [60], and BDD100K [75] datasets exist. Although
these datasets have enabled rapid progress in scene under-
standing, the scene types are restricted to either indoor or
driving scenes. As a result, those datasets do not cover nat-
ural scenes, in which diverse kinds of instances co-exist in
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Figure 2. Overview of prior work. (a) DIW [7] provides depth order of arbitrary points in a large-scale. (b) COCOA [84] and (c) KINS [52]
provide instance segmentation mask, instance class label, and instance-wise occlusion order.

# Img Scene Source # of classes Depth order Occ. order # of annotations Year

DIW [7] 495K Natural Scenes Flickr Not available Two points per img Not available 495K 2016
COCOA [84] 5K Natural Scenes COCO [38] Not deterministic Not available ✓ (instance) 311K 2017
KINS [52] 15K Driving Scenes KITTI [16] 8 Not available ✓ (instance) 1.6M 2019
INSTAORDER 101K Natural Scenes COCO [38] 80 ✓ (instance) ✓ (instance) 2.9M Proposed

Table 1. Summary of related datasets available to the community. The colored cells indicate weak (∎◻), moderate (∎◻), or strong (∎◻) points of
each dataset. The proposed INSTAORDER provides the largest amount of occlusion and depth annotations for various classes.

an unconstrained setting. In addition, the depth value of
transparent, specular, or distant objects is often not reliable
because of the limitations of depth sensors.

Recent datasets obtained geometric information for di-
verse scene types by crowd-sourcing [7, 8] or by applying
photogrammetry methods [34, 35]. Stereo photos in the
web [69, 71] or 3D movies [54] are used as another type
of way to capture depth information. These datasets have
been applied successfully to estimate a dense depth map
from a single image, but they lack instance information and
instance-wise relationships. In addition, the dataset for train-
ing a model is not publicly available [54].

In contrast, INSTAORDER covers instance masks, class la-
bels, and instance-wise ordinal relationships. We experimen-
tally show that instance-wise depth order improved modern
monocular depth estimation networks like MiDaS [54].

3. INSTAORDER dataset

3.1. Data Collection

Parent dataset. We annotate occlusion and depth or-
ders upon COCO 2017 [38] dataset to get a benefit from
large-scale instance labeling of natural scenes. Several
other datasets also provide instance segmentation, such as
LVIS [21], ADE20K [82], Cityscapes [10]. We decided to
use COCO 2017 due to the following strengths: large-scale
image set, covering diverse natural scenes, many instances
in each image, and providing instance masks. We omit
instances smaller than 25 × 25 pixels from the annotation
because orders are often difficult to discern for tiny objects.
We also discard inappropriate images for annotation, such
as images with a single instance and collage images. As a

result, images and instance masks in COCO 2017 [38] train
set (96,552 images) and validation set (4,071 images) are
used for the annotation.

Annotation task. As Todd et al. [63] stated, humans
are good at judging relative depths. Inspired by this, our
annotation procedure is designed as the task of requesting
pairwise depth ordering between two instances in the same
image. Both occlusion and depth annotation tasks start with
guidelines, and then real examples appear as quizzes. Only
annotators who passed all quizzes were allowed to participate
in the annotation. Moreover, if a worker gives a wrong
answer multiple times, the worker is dismissed. We provide a
guideline to crowd-workers to annotate only the semantically
meaningful instances (Sec. A3.2 in the supplement).

Minimizing dataset biases. We build our dataset with
the following consideration to minimize dataset biases.

(1) Class balance. Our INSTAORDER dataset reuses the
images of the COCO 2017 [38] dataset, which was built
using a careful image category decision and image collec-
tion mechanism to minimize dataset biases. The candidate
image categories are gathered from frequently used words
or PASCAL VOC [45], and the decision is made by a vote
on how one category is distinguishable from others. The
COCO dataset is a collection of images from Flickr; to avoid
collecting iconic photos, the process searched for images
that had multiple keywords, such as ’dog + car’.

(2) Crowdsourcing. INSTAORDER is collected using a
sophisticated crowdsourcing engine. Thousands of people
participated in the annotation of occlusion order or depth
order, so the huge number of crowd-workers reduced the
bias in the ordering annotations. To minimize diverged an-
notations, we asked two random workers to annotate every
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Figure 3. Ordering types defined for the INSTAORDER dataset. (a) Camera looking at the scene of the two objects. (b) Occlusion ordering is
denoted considering the occluder and occludee. (c) Depth ordering. Distinct object pairs do not have overlapping depth regions, whereas
overlapping pairs do. See Sec. 3.2 for details.

pairwise ordering. If the annotation results from two workers
did not match, we invited additional workers until two of the
workers made the same decision. We use count to denote
the number of participants per question, and our dataset pro-
vides count along with the occlusion and depth orderings to
indicate the difficulty of the annotations.

3.2. Ordering Types

Given a scene observed using a camera (Figure 3a), we
identify occlusion and depth order. Occlusion order is de-
termined by identifying the occluder and the occludee (Fig-
ure 3b). We utilize ‘no occlusion’ (no edge connection
between A and B), ‘unidirectional occlusion’ (A occludes B:
A→B; or B occludes A: B→A), and ‘bidirectional occlusion’
(A and B occlude each other: A←→B).

Depth order denotes the relative distances of two objects
from the camera. When an instance’s depth range covers the
other instance’s depth range (Figure 3a), it is ambiguous to
represent depth order with one of {closer, farther, equal};
thus, distinct, overlap label is needed. Depth order is anno-
tated with a tuple of (x,y), where x∈{closer, farther, equal}
and y∈{distinct, overlap}. Let’s denote instance A’s starting
depth as AS and ending depth as AE , where AS <= AE .
A→B (distinct) is when AE < BS . A←→B (distinct) is
when AS = BS = AE = BE . A pair of instances in the
same plane belong here (e.g. instances shown on TV). A⇢B
(overlap) is when (i) AS < BS < AE or (ii) AS = BS and
AE < BE . A⇠⇢B (overlap) is when AS = BS , AE = BE

and AS ≠ AE . Figure 3c shows such examples.

3.3. Statistics

INSTAORDER consists of 100,623 images with 503,939
instances that belong to 80 class categories, for a total of
2,859,919 instance-level occlusion and depth orders. Due
to the limited annotation budget, we randomly selected ten
instances if an image included more than ten instances. The
histogram of instance number per image is shown in (Fig-
ure 4a).
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Figure 4. Statistics of the INSTAORDER dataset. Sec. 3.3 for details.

The dataset was annotated by 1,549 crowd-workers for
occlusion order, and by 2,110 for depth order. Of the instance
pairs, 81% were accepted by the first two annotators for
occlusion ordering, whereas 75.4% were accepted by the
first two annotators for the depth ordering (Figure 4b). This
comparison indicates that depth ordering was slightly harder
to annotate than occlusion ordering.

INSTAORDER has a similar distribution of occlusion or-
der types to those of COCOA [84] or KINS [52] (Figure 4c).
In addition to unidirectional occlusion type, INSTAORDER
provides bidirectional occlusion order. On depth order an-
notations, 72.9% belonged to a distinct type and 27.2% be-
longed to an overlap type (Figure 4d). The majority of depth
orders belong to a ‘distinct’ and ‘not equal’ category (A→B
or B→A), composing 72.4% of total depth orders.
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3.4. Key Findings

Here we provide interesting observations from the IN-
STAORDER. These findings were observed in the compre-
hensive annotation of occlusion and depth order. Therefore,
we highlight that these are new findings not discussed in
previous literature [7, 52, 84].

(1) Occlusion order and depth order should be annotated
independently, because neither can indicate the other. We
cannot perfectly infer depth order from occlusion order and
vice versa. We demonstrate the claim with the correlation
(Figure 5) between occlusion and depth order in the IN-
STAORDER dataset. A pair of instances have occlusion and
depth orders, so we can calculate P(occ. order ∣ depth order);
the proportions of occlusion order types given depth order
types (Figure 5a). For example, P(No occ ∣ A→B) is 83%.
We can see that no “must happen correlation” occurs between
two order types. For example, all types of occlusion order
can occur when the depth order is A⇢B. Similar results are
obtained using the proportions of depth order types given oc-
clusion order type (Figure 5b). For reference, LabelMe [57]
uses heuristics to infer occlusion order from instance masks.
However, such heuristics are only applicable when masks
intersect. In the INSTAORDER dataset, only 16.4% of mask
pairs intersect, where we determine ‘intersect’ if two masks
overlap more than ten pixels. Therefore, we cannot apply
the heuristics to 83.6% of non-intersecting instance pairs.

(2) Occlusion order and depth order are complementary
to each other. We demonstrate this relationship in experi-
ments (Tables 2, 3). A network trained with both occlusion
and depth order is more accurate than baselines trained with
individual orders. We think utilizing both types of orders
eliminates cases that cannot happen. For example, (first col-
umn of Figure 5a) if the depth order is A→B, the occlusion
orders B→A and A←→B cannot occur. Therefore, joint use
of occlusion and depth orders provide rich supervision for
comprehensive scene understanding.

(3) Bidirectional occlusion order is helpful. We conduct
experiments with the INSTAORDER dataset to verify the
effect of bidirectional occlusion orders (Sec. A2.1 in the sup-
plement). The result indicates methods that can determine
bidirectional order distinguishes ambiguous cases better than
methods that cannot determine bidirectional order.

4. Methods

This section introduces neural networks and a loss func-
tion that can be applied to the INSTAORDER dataset. We
present InstaOrderNet, which predicts instance-wise or-
ders. Then we introduce a depth map prediction network
InstaDepthNet, which gains accuracy with the proposed
instance-wise disparity loss. The details of the network
architecture are described in Sec. A4 in the supplement.

A    BA    B B    A A    B B    A A     B

A    B

A    B

No occ

B    A

(a) P(occ. order | depth order)

A    B

A    B

B    A

A    B

B    A

A    B

A    BA    BNo occ B    A

(b) P(depth order | occ. order)

Figure 5. (a) Proportion of occlusion order given depth order and
(b) vice versa. Each column is summed to one.

4.1. Order Prediction

Occlusion order. The proposed InstaOrderNeto takes
pairwise instance masks and an image patch as input, then
outputs occlusion order. InstaOrderNeto is largely inspired
by OrderNetM+I [84], so InstaOrderNeto uses the pre-trained
ResNet-50 [24] backbone as OrderNetM+I does.

OrderNetM+I [84] classifies three types of occlusion or-
der: {No occlusion, A→B, B→A}. The output dimension
of OrderNetM+I is [batch size, 3], trained with cross-
entropy loss. On the other hand, the output dimension of
InstaOrderNeto is [batch size, 2] and it is trained with
binary cross-entropy loss, Loo. InstaOrderNeto solves two
simple tasks: (1) ‘does A occludes B?’ and (2) ‘does B oc-
cludes A?’, answering two questions expresses four types of
occlusion order: {No occlusion, A→B, B→A, A←→B}.

Depth order. We introduce InstaOrderNetd to pre-
dict depth order. InstaOrderNetd takes pairwise instance
masks and an image as input then produces depth orders.
InstaOrderNetd uses pre-trained ResNet-50 backbone, and
it is trained with cross-entropy loss Ldo. The output dimen-
sion of the network is [batch size, 3], and three channels
stand for {A→B, B→A, A←→B}.

Occlusion and depth order. To demonstrate the effec-
tiveness of jointly using occlusion and depth order, we intro-
duce InstaOrderNeto,d, which takes pairwise instance masks
along with an image and produces both occlusion and depth
order. For a fair comparison, we build InstaOrderNeto,d with
the same neural architecture that was used in InstaOrderNeto

and InstaOrderNetd except for the last fully-connected (FC)
layer. Specifically, InstaOrderNeto,d consists of two FC lay-
ers placed in parallel; one predicts occlusion order, and one
predicts depth order (Figure A2 in the supplement).

4.2. Depth Map Prediction

We also propose InstaDepthNet to show how instance-
wise orderings can improve the state-of-the-art monocular
depth estimation approach, MiDaS [54]. InstaDepthNet
consists of two heads, one for instance-wise order prediction
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and the other for depth map prediction. The instance-wise
order prediction head is composed of ResNet-50 [24]. The
depth map prediction head is composed of MiDaS-v2 [54],
adopting pre-trained weights provided by authors.

The InstaDepthNet architecture (Figure A3 in the sup-
plement) has a modular design for the tasks. Therefore, the
ordering prediction heads can be used for the training, and
InstaDepthNet can produce a dense disparity map without
instance masks during test time. We propose two versions of
InstaDepthNet, such as InstaDepthNetd and InstaDepthNeto,d

depending on the ordering types for the supervision.
We apply four loss functions to train InstaDepthNet. For

the order prediction heads, we use binary cross-entropy loss
Loo for the occlusion order prediction head or cross-entropy
loss Ldo to the depth order prediction head.

For the depth map prediction head, we introduce instance-
wise disparity loss Ldisp. We denote depth order as dAB and
set it to {1, 0, -1} when depth order is {closer, equal, farther},
respectively. Disparity is inversely proportional to depth, so
when A is closer than B (dAB = 1), the disparity should be
bigger for A than for B. Ldisp penalizes violations of this
relation by applying the proposed loss function:

Ldisp=
1

2N
∑

i∈A∪B
{1(dABD

′
A(i) ≤ dAB max(D′

B))+

1(dABD
′
B(i) ≥ dAB min(D′

A))},
(1)

where i is a pixel in the area A ∪ B, D′
A is a predicted

disparity map of A, 1(⋅) is an indicator function, and
N is the number of pixels in A ∪ B. We apply Ldisp

to distinct pairs because these orders are clear to super-
vise. We also use edge-aware smoothness loss [19]: Ls =
1
N ∑i ∣∂xD′(i)∣ e−∥∂xI(i)∥ + ∣∂yD′(i)∣ e−∥∂yI(i)∥, where I is
an image, and ∂x and ∂y respectively are x- and y-directional
image gradient operators.

The final loss is λ0Loo + λ1Ldo + λ2Ldisp + λ3Ls.
{λ0, λ1, λ2, λ3} is set to {0, 1, 1, 0.1} for InstaDepthNetd,
and {1, 1, 1, 0.1} for InstaDepthNeto,d. We conduct an abla-
tion study on loss functions in Sec. A2.2 in the supplement.

5. Experiments

5.1. Occlusion Order Recovery

Baselines. We compare the performance of the pro-
posed InstaOrderNeto with OrderNetM+I [84] and PCNet-
M [77]. InstaOrderNeto can process bidirectional occlu-
sion order, whereas others cannot. Therefore we extend
OrderNetM+I to be able to predict bidirectional order and
named it as OrderNetM+I(ext.). For evaluating PCNet-M on
COCOA [84] and KINS [52] dataset, we use pre-trained
weights provided by the authors. We use the official source
code of PCNet-M for training and testing with INSTAORDER

COCOA [84] dataset KINS [52] dataset
Methods Recall ↑ Prec. ↑ F1 ↑ Recall ↑ Prec. ↑ F1 ↑
PCNet-M [77] 82.33 84.58 82.80 94.62 91.60 92.59
OrderNetM+I [84] 89.12 83.91 85.63 98.33 93.45 95.19
InstaOrderNeto 88.60 85.38 86.16 98.70 94.56 96.07

INSTAORDER dataset Input Output Occlusion acc. ↑

Methods
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D
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de
r

Recall Prec. F1

Area ✓ ✓ 56.33 71.55 59.67
Y-axis ✓ ✓ 44.84 57.34 47.30
PCNet-M [77] ✓ ✓ ✓ 59.19 76.42 63.02
OrderNetM+I(ext.) ✓ ✓ ✓ 84.93 78.21 77.51
InstaOrderNeto(M) ✓ ✓ 87.35 79.07 78.98
InstaOrderNeto(MC) ✓ ✓ ✓ 88.70 78.21 79.18
InstaOrderNeto(MIC) ✓ ✓ ✓ ✓ 89.38 79.00 79.98
InstaOrderNeto ✓ ✓ ✓ 89.39 79.83 80.65
InstaOrderNeto,d ✓ ✓ ✓ ✓ 82.37 88.67 81.86

Table 2. Occlusion order prediction results. We use COCOA [84]
and KINS [52] (top), and we use INSTAORDER (bottom) for the
experiments. We discuss methods highlighted in yellow in Sec. 5.1.

dataset. We implement OrderNetM+I from scratch, because
the official code is not available1.

Simple approaches. We also conduct experiments using
a simple heuristic proposed by Zhu et al. [84]. Specifically,
given a pair of masks, the simple approach determines the
occluder as the larger instance (the ’Area’ method) or as
the instance that is closer to the image bottom (the ’Y-axis’
method). This experiment is intended to show that the simple
prior cannot determine occlusion order well.

Datasets. The experiments were conducted with three
representative datasets that contain instance-wise occlusion
order: COCOA [84], KINS [52], and INSTAORDER. For
fairness, we train and test each method with the same dataset.
For example, the second column in Table 2 (top) indicates
all methods are trained and tested with the KINS dataset.

Results. To evaluate the occlusion order of every in-
stance pair, we use Recall, Precision and F1 score (Ta-
ble 2). In particular, we report the accuracy of the prediction
of which of the two instances is an occluder, as done by
OrderNetM+I [84] and PCNet-M [77]. PCNet-M is a network
trained in a self-supervised manner, whereas OrderNetM+I

and our InstaOrderNeto are trained in a supervised manner.
Interestingly, PCNet-M2 showed comparable accuracy to the
supervised methods on both the COCOA [84] and KINS [52]
datasets (Table 2, top).

When the INSTAORDER dataset was used (Table 2,

1On the COCOA dataset, our OrderNetM+I implementation achieves
89.1 recall, which is higher than the originally reported recall, 88.3.

2The recall reported in this paper is slightly different from the num-
bers appearing in PCNet-M because PCNet-M only consider neighboring
instance mask pairs. In contrast, we used all pairs for the evaluation.
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bottom), all InstaOrderNet versions achieved significantly
higher accuracy than the other methods. InstaOrderNeto is
a simple extension of OrderNetM+I, but achieves higher ac-
curacy because it converts multi-class classification to the
multi-label classification problem. InstaOrderNeto,d is more
accurate than InstaOrderNetd. We can infer that occlusion
and depth order are not independent, but provide complemen-
tary information for scene understanding. We observed that
the accuracy of PCNet-M depends on instance mask quality
and thus resulted in a low accuracy on the INSTAORDER
dataset. We show qualitative results on occlusion order pre-
diction (Figure 6a), and InstaOrderNeto showed the best
accuracy. Even though OrderNetM+I(ext.) is an extended
network to predict bidirectional occlusion order, but still
missed most bidirectional occlusion orders.

Various input/output configurations. We conduct ex-
periments with different types of inputs, such as image and
category labels (Table 2, bottom). When we provide a cat-
egory label to the mask, we assign appropriate category
IDs to the masked areas. For the occlusion order predic-
tion task, a network that uses the mask as a sole input
(InstaOrderNeto(M)) is even comparable to the network that
uses both mask and image (InstaOrderNeto); a similar re-
sult was reported by Zhu et al. [84]. We speculate that the
mask provides enough clues to determine occlusion order.
Moreover, we conduct an ablation study on bidirectional
occlusion order (Sec. A2.1 in the supplement).

5.2. Depth Order Recovery

Baselines. To the best of our knowledge, no existing
method directly analyzes depth ordering for instances. There-
fore, we propose two baselines that use a state-of-the-art
depth map estimation network, MiDaS-v2 [54], for the
comparison of depth order prediction accuracy. The base-
line approach, MiDaS(Mean), uses the instance-wise mean
of the disparity predicted by MiDaS-v2. Similarly, Mi-
DaS(Median) uses the instance-wise median value. This
choice is guided by an assumption that instance-wise mean
or median values represent instance-wise distance3. We com-
pare baselines with the proposed InstaOrderNetd (Table 3).
We also evaluate simple approaches (Area, Y-axis).

WHDR. We evaluate the results using Weighted Human
Disagreement Rate (WHDR) [3], which represents the per-
centage of weighted disagreement between ground truth d
and predicted depth order d′. The weights are proportional to
the confidence of each annotation. Here, we use the inverse
of count multiplied by the minimum number of participants.
We evaluate WHDR on each of {distinct, overlap, all} cat-
egories separately; which is defined as follows: WHDR =
∑AB wAB ⋅1(d′AB≠dAB)

∑AB wAB
, where wAB = 2

countAB
.

3Instance segmentation masks of COCO 2017 are not perfect, so for
reliability of comparison, we ignore the top and bottom 5% disparity values.
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Area ✓ ✓ 30.90 35.66 32.19
Y-axis ✓ ✓ 22.19 39.04 29.20
MiDaS(Mean) [54] ✓ ✓ 10.42 37.67 21.70
MiDaS(Median) [54] ✓ ✓ 10.31 36.08 20.92
InstaOrderNetd(M) ✓ ✓ 22.96 30.46 25.23
InstaOrderNetd(MC) ✓ ✓ ✓ 23.19 28.56 36.45
InstaOrderNetd(MIC) ✓ ✓ ✓ ✓ 13.33 26.60 17.89
InstaOrderNetd ✓ ✓ ✓ 12.95 25.96 17.51
InstaOrderNeto,d ✓ ✓ ✓ ✓ 11.51 25.22 15.99
InstaDepthNetd(Mean) ✓ ✓ ✓ ✓ 9.80 37.97 21.46
InstaDepthNetd(Median) ✓ ✓ ✓ ✓ 9.29 36.07 20.41
InstaDepthNetd ✓ ✓ ✓ ✓ 7.25 23.34 12.94
InstaDepthNeto,d ✓ ✓ ✓ ✓ ✓ 7.00 23.29 12.72

Table 3. Depth order prediction results. We train and test networks
with various input and output configurations. We discuss methods
highlighted in yellow in Sec. 5.2 and Sec. 5.3.

Results. Both MiDaS(Mean, Median) achieved notable
WHDR (Table 3) even though INSTAORDER is an unseen
dataset to MiDaS [54]. Although trained with the IN-
STAORDER dataset, InstaOrderNetd had inferior (higher)
WHDR than MiDaS(Mean, Median) for the distinct in-
stances. We observe that instance-wise depth ordering must
involve the disparity map prediction task, as InstaDepthNet
does. InstaDepthNet is trained for dense disparity map pre-
diction as well as order predictions. We believe that such
comprehensive tasks give plentiful supervision for distinct
instances and bring significant accuracy gain. As observed in
occlusion order recovery results, InstaOrderNeto,d is superior
to InstaOrderNetd; this indicates occlusion and depth order
are complementary information.

When the image is not used as an input, the accuracy
degrades (InstaOrderNetd(M, MC)). The results are different
from the previous experiment with occlusion order. We think
the image gives a global context to determine relative depth
order correctly. Qualitative results on depth order prediction
(Figure 6b) indicate InstaDepthNetd is better at figuring out
tricky relations, such as Truck⇢Person.

5.3. Depth Map Prediction

Testing with InstaOrder dataset. We further demon-
strate that occlusion and depth orders can be used to increase
the accuracy of a depth estimation network. We compare the
disparity map predicted by MiDaS [54] and InstaDepthNetd

using (Sec. 5.2 Baselines) the mean and median scheme.
(Table 3) InstaDepthNetd(Mean, Median), were both more
accurate than MiDaS(Mean, Median).

We compare the qualitative result of the disparity map
estimated by MiDaS-v2 with InstaDepthNetd (Figure 6c).
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Figure 6. Qualitative results on the (a) occlusion, (b) depth order prediction. (c) Disparity maps generated by MiDaS-v2 [54] and our
InstaDepthNetd on INSTAORDER (left) and DIW [7] (right). Red ellipses: unreasonable predictions; green ellipses: reasonable predictions.
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MiDaS-v2 [54] ✓ ✓ 64,723 9,718 13.06
InstaDepthNetd ✓ ✓ 65,317 9,124 12.26

KITTI [16] Error ↓ Accuracy ↑
Methods Abs Rel Sq Rel RMSE log δ <1.25 δ <1.252 δ <1.253

MiDaS-v2 [54] 0.16 1.47 0.20 0.81 0.95 0.98
InstaDepthNetd 0.15 1.27 0.20 0.80 0.95 0.99

Table 4. Evaluation of predicted disparity maps using unseen
datasets (top table: DIW [7], bottom table: KITTI [16]).

Human annotation in INSTAORDER for challenging objects
(transparent glasses) and instance-wise depth order helps to
correct wrong disparity prediction.

Testing with unseen datasets. First, we compare the
depth order accuracy on the DIW [7] dataset (Table 4, top).
We compare InstaDepthNetd, which was trained on the IN-
SATAORDER dataset, whereas MiDaS-v2 was trained using
numerous 3D movies. InstaDepthNetd showed superior dis-
parity maps (Figure 6c, right); this result supports the value
of the proposed INSTAORDER dataset and the instance-wise
disparity loss (Eq. 1).

We also test two approaches with the KITTI dataset [16]
(Table 4, bottom). The predicted disparity maps of both
approaches are not on a metric scale, so we adopt per-image
median ground truth scaling [20], and report statistical met-
rics [14] (details in Sec. A1 in the supplement). Overall,
InstaDepthNetd was slightly better than MiDaS.

Limitation. InstaDepthNetd did yield some problem-
atic results (Figure 6c, red ellipse in the middle example).
The confusion occurs because instance masks in our parent

dataset, COCO 2017 [38] do not fully segment objects that
have holes. We leave this problem to future work.

6. Discussion

We introduce INSTAORDER dataset and propose various
order prediction networks. Our dataset has several benefits
compared to DIW [7], COCOA [84], or KINS [52] in terms
of scale, classes, and order types. We demonstrate the effec-
tiveness of jointly using occlusion order and depth order. We
show that the state-of-the-art depth map prediction approach
can be improved by using the proposed auxiliary loss for
instance-wise ordering.

We plan to study the benefit of INSTAORDER for the tasks
beyond depth estimation. For example, as panoptic segmen-
tation studies [9, 31, 40] gain accuracy by figuring out the
occlusion order between objects, INSTAORDER can bene-
fit the task by explicitly reasoning the occlusion order. In
addition, INSTAORDER can help image captioning or VQA
tasks. Specifically, (Figure1c,d) ”Horse1” and ”Person3” are
occluding each other, then we can infer they are interacting.
Moreover, we can make a question and answer like ”Who
is behind Person 1?”. Image generation studies [1, 28] use
scene graphs for generating images. It would be interesting
to create images by considering occlusion, depth order, and
scene graph. Moreover, as Zhan et al. [77] manipulate im-
ages by controlling occlusion order, INSTAORDER can also
be used for image manipulation.
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