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Abstract

Adversarial examples provoke weak reliability and po-
tential security issues in deep neural networks. Although
adversarial training has been widely studied to improve
adversarial robustness, it works in an over-parameterized
regime and requires high computations and large memory
budgets. To bridge adversarial robustness and model com-
pression, we propose a novel adversarial pruning method,
Masking Adversarial Damage (MAD) that employs second-
order information of adversarial loss. By using it, we can
accurately estimate adversarial saliency for model parame-
ters and determine which parameters can be pruned without
weakening adversarial robustness. Furthermore, we reveal
that model parameters of initial layer are highly sensitive
to the adversarial examples and show that compressed fea-
ture representation retains semantic information for the tar-
get objects. Through extensive experiments on three pub-
lic datasets, we demonstrate that MAD effectively prunes
adversarially trained networks without loosing adversarial
robustness and shows better performance than previous ad-
versarial pruning methods.

1. Introduction
Deep neural networks (DNNs) have achieved impressive

performances in a wide variety of computer vision tasks
(e.g., image classification [19,26], object detection [30,40],
and semantic segmentation [5, 18]). Despite the break-
through outcomes, DNNs are easily deceived from ad-
versarial attacks with carefully crafted perturbations [4, 9,
32, 50]. Injecting these perturbations into benign images
generates adversarial examples which hinder the decision-
making process of DNNs. Although the perturbations are
imperceptible to humans, they easily induce vulnerable fea-
tures in DNNs [22, 23]. Due to such fragility, various deep
learning applications have suffered from potential security
issues that induce weak reliability of DNNs [2, 44, 55].
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Accordingly, to achieve robust and reliable DNNs, a lot
of adversarial research have been dedicated to presenting
powerful adversarial attack and defense algorithms in the
sense of cat-and-mouse games. Among various methods,
adversarial training (AT) [3,9,27,32] has been widely stud-
ied to improve adversarial robustness so far, where DNNs
are trained with adversarial examples. Madry et al. [32]
have shown that adversarially trained models are robust
against several white-box attacks with the knowledge of
model parameters. Besides, recent studies [56,62] have fur-
ther enhanced the robustness by adding various regulariza-
tions to fully utilize not only the adversarial examples but
also benign examples for model generalization.

Orthogonal to the adversarial issue, most of the AT-
based methods work in an over-parameterized regime to
achieve the robustness, thus they induce higher compu-
tations and require larger memory budgets than benign
classifiers [32]. Thereby, applying AT-based methods to
resource-constrained devices is burdensome and known as
a critical limitation. To bridge adversarial robustness and
model compression, several studies [37, 45, 47, 52] have
introduced adversarial pruning mechanisms to reduce its
model capacity while preserving the adversarial robustness.

In standard training procedure, a promising prun-
ing method is to remove the lowest weight magnitudes
(LWM) [14, 15], assuming that small magnitudes affect the
least changes of the model prediction. Under its assump-
tion, Sehwang et al. [45] have proposed a 3-step pruning
method (pre-training, pruning, and fine-tuning) for the ad-
versarial examples. Several works [12, 59] further have
enhanced LWM pruning methods by employing alternat-
ing direction method of multipliers (ADMM) [63] or Beta-
Bernoulli dropout [31] to eliminate unuseful model param-
eters. Recently, Sehwag et al. [46] have argued that despite
successful results of LWM pruning, such heuristic pruning
methods cause performance degradation when integrated
with adversarial training. Accordingly, they have formu-
lated a way of finding importance scores [39] and removed
model parameters with low importance scores for adversar-
ial training loss. We further focus on how to reflect corre-
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lations of each model parameter to prune multiple param-
eters at once and theoretically formulate local geometry of
adversarial loss to identify which combinatorial model pa-
rameters affect model prediction in adversarial settings.

In this paper, we present a novel adversarial pruning
method, namely Masking Adversarial Damage (MAD) that
uses second-order information (Hessian) of the adversarial
loss with masking model parameters. Motivated by Op-
timal Brain Damage (OBD) [29] and Optimal Brain Sur-
geon (OBS) [17] employing Hessian of the loss function,
we devise a way of estimating adversarial saliency for
model parameters by considering their correlated conjunc-
tions, which can more precisely represent the connectivity
of model parameters for the adversarial prediction.

In recent works [49, 53], approximating Hessian of mul-
tiple parameters is regarded as computationally prohibitive.
Alternatively, computing each parameter’s importance and
sorting it with pruning statistics is a practical approach in
standard pruning. Bringing in such combinatorial problem
into adversarial settings, we aim to prune adversarially less
salient parameters that cannot arouse adversarial vulnera-
bility. To that end, we first optimize masks for DNNs to
be predictive to adversarial examples and approximate Hes-
sian of the adversarial loss by utilizing optimized masks. To
effectively compute Hessian, we introduce a block-wise K-
FAC approximation that can consider the local geometry of
the adversarial loss at multiple parameters points. Based on
the change of the adversarial loss along with mask-applied
parameters, we can track how sensitively specific conjunc-
tions of model parameters respond to adversarial examples
and compress DNNs without weakening the robustness.

For the proposed method, we thoroughly analyze ad-
versarial saliency and compressed feature representation,
and we reveal that: i) model parameters of initial layer
are highly sensitive to adversarial perturbation, ii) MAD
can retain semantic information of target objects even with
the high pruning ratio. Through extensive experiments on
MAD in three major datasets, we corroborate that MAD can
effectively compress DNNs without losing adversarial ro-
bustness and show better adversarial defense performance
than the previous adversarial pruning methods.

The major contributions of this paper are as follows:

• We present a novel adversarial pruning method, Mask-
ing Adversarial Damage (MAD) which can precisely
estimate adversarial saliency for model parameters us-
ing second-order information.

• By analyzing MAD, we investigate that the model pa-
rameters of initial layer are highly sensitive to adver-
sarial examples, and compressed feature representa-
tion retains semantic information of target objects.

• Through extensive experiments, we demonstrate the

effectiveness of compression capability as well as the
adversarial robustness for the proposed method.

2. Background and Related Work
In this section, we specify the notations used in our paper

and summarize the related works on adversarial training and
model compression.

Notations. Let x denote a benign image and y denote a
target label corresponding to the input image. Let D indi-
cate a dataset such that (x, y) ∼ D. A deep neural network
f parameterized by model parameters w is denoted by fw.
An adversarial example is represented by xadv = x + δ∗,
where δ∗ indicates adversarial perturbation as follows:

δ∗ = arg max
∥δ∥∞≤γ

L(fw(x+ δ), y), (1)

where L denotes a pre-defined loss function. In this paper,
we use the cross-entropy loss for image classification. We
regard δ as l∞ perturbation within γ-ball (i.e., perturbation
budget) to be imperceptible to humans such that ∥δ∥∞ ≤ γ.
Here, ∥·∥∞ describes l∞ perturbation magnitude.

2.1. Adversarial Training

Adversarial training [9, 27, 32] becomes one of the in-
tensive robust optimization methods in deep learning field,
which allows DNNs to learn robust parameters against ad-
versarial examples. In earlier work, Szegedy et al. [50] have
found that the specific nature of the adversarial examples is
not a random artifact of deep learning. Then, Goodfellow et
al. [9] have introduced a single-step attack of Fast Gradient
Sign Method (FGSM) that efficiently generates adversarial
examples using first gradient of loss on back propagation
and trained DNNs with FGSM-based adversarial examples
to have an additional regularization benefit.

Madry et al. [32] have studied adversarial robustness
in a model through the lens of robust optimization (min-
max game). Then, they have modified empirical risk min-
imization (ERM) to incorporate adversarial perturbations
and proposed an adversarial training with a multi-step at-
tack of Projected Gradient Descent (PGD). The formulation
of the min-max game for the robust optimization under l∞
can be written as:

w∗ = argmin
w

E(x,y)∼D

[
max

∥δ∥∞≤γ
L (fw(x+ δ), y)

]
. (2)

They draw a universal first-order attack through the inner
maximization problem while outer minimization iteratively
represents training DNNs with adversarial examples created
at inner maximization one. Through it, they have designed
a reliable method of adversarial training with PGD and em-
pirically demonstrated that the acquired model parameters
w∗ provide the robustness against a first-order adversary as
a natural security guarantee. It allows us to cast both attacks
and defenses into a common theoretical framework.
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2.2. Model Compression

Since DNNs generally have intrinsic over-parameterized
properties, they induce high computation and memory inef-
ficiency to apply on resource-limited devices [14]. There-
fore, several works [21, 29, 57] have proposed to prune
weight parameters based on the lowest weight magnitudes
(LWM). Besides, various approaches have been introduced
to improve model compression utilizing absolute weight
value [15], second-order information [7, 17], and alternat-
ing direction method of multipliers (ADMM) optimiza-
tion [63]. More recently, to estimate enhanced loss change
when removing a single parameter, several works based
on OBD [29] and OBS [17] have utilized layer-wise prun-
ing framework (L-OBS) [7], K-FAC approximation [53],
and Woodbury formulation (WoodFisher) [49] to effectively
compute (inverse) Hessian matrix.

In parallel with various model compression methods
for benign classifiers, achieving compression in adversar-
ial settings also has drawn attention to mitigating expensive
computational costs that upholds adversarial robustness of
DNNs. Several works [13, 54] have investigated the rela-
tionship between the adversarial robustness and model com-
pression and theoretically concluded that moderately com-
pressed model may improve adversarial robustness.

Sehwang et al. [45] have demonstrated that LWM prun-
ing can increase adversarial robustness for the adversar-
ial examples. After that, LWM-based methods in adver-
sarial settings become a typical pruning approach. Ye et
al. [59] have improved LWM pruning method by employing
ADMM optimization. Gui et al. [12] have introduced a uni-
fied framework called ATMC including pruning, factoriza-
tion, and quantization using ADMM. Recently, Sehwang et
al. [46] have argued that such heuristic LWM-based meth-
ods provoke performance degradation and proposed a gen-
eralized formulation of computing weight importance for
adversarial loss using importance score optimization [39].
Madaan et al. [31] have defined adversarial vulnerability in
feature space and integrated it into adversarial training to
suppress feature-level distortions. In this paper, we propose
a method for estimating adversarial saliency using second-
order information, which serves as a key to prune parame-
ters without weakening adversarial robustness.

3. Methodology
3.1. Revisiting Second-order Information Pruning

Optimal Brain Damage (OBD). For well-trained
DNNs, Lecun et al. [29] have removed a single model pa-
rameter and computed a loss change obtained from the re-
moved single parameter. Their goal in pruning is to remove
parameters that do not significantly change the loss func-
tion. Thus, they can selectively delete each model param-
eter corresponding to small loss change with its theoretical

evidence of capturing sensitivity in DNNs. The loss change
can be written as a form of Taylor expansion:

∆L ≈ ∂L
∂w︸︷︷︸
≈0

∆w +
1

2
∆wTH∆w, (3)

where it satisfies ∆L = L(w + ∆w) − L(w), and w de-
notes local Maximum A Posteriori (MAP) parameters after
training DNNs with its convergence. Note that there is an
assumption that the first gradient of loss function closes to
zero due to using the well-trained DNNs with their local
MAP parameters around a local mode at w. Here, H indi-
cates Hessian matrix computed by the second derivative of
loss function L at model parameters w, such that it satis-
fies H = ∇2

wL. In calculating Hessian, Fisher information
is employed to approximate it: ∇2

wL ≃ ED[∇wL2]. (see
Appendix A)

However, due to the intractability of calculating full Hes-
sian matrix H in DNNs, they have focused on its diagonal
terms to approximate the loss change ∆L. The formulation
for estimating the loss change can be written as follows:

min
∆w∈Rd

1

2
∆wTH∆w, s.t. eTk∆w + wk = 0, (4)

where ek denotes a canonical basis vector in kth dimen-
sion. With only of the diagonal considered, the corre-
sponding solution for the loss change is deterministic to
∆LOBD = 1

2w
2
kHkk where a single parameter wk is pruned.

Once ∆LOBD is computed for all model parameters, then
model parameters are cut out in order of small loss change
by sorting ∆LOBD. Note that d specifies total size of model
parameters w in DNNs. In addition, Hessian is a symmetric
matrix having shape of Rd×d with positive semi-definite.

Optimal Brain Surgeon (OBS). OBD only addresses
diagonal terms in Hessian matrix assuming model parame-
ters are uncorrelated. Thereby, it is impossible to compute
the loss change considering correlated model parameters in
DNNs for generalization. To handle such limitation, Has-
sibi et al. [17] have proposed to compute the loss change
with regards to full Hessian matrix. Its corresponding solu-
tion is also deterministic to ∆LOBS = 1

2w
2
k/[H

−1]kk by La-
grangian relaxation (see Appendix B). After getting ∆LOBS
for all model parameters, OBS equally removes model pa-
rameters in order of the small loss change.

3.2. Masking Adversarial Damage (MAD)

Although its successful achievements in standard prun-
ing, it is difficult to directly apply it to adversarial pruning
due to one major reason. The main principle of possibly
computing the loss change ∆L in Eq. (3) is based on the
fact that L(w) is an important criterion to ensure highly
predictive DNNs. However, once adversarial examples are
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given, L(w) cannot be operated to be predictive anymore,
where the first order of Taylor expansion ∂L

∂w is no longer
zero in adversarial settings. It is attributed to the perfor-
mance degradation derived from the fragility of DNNs.

Hence, we need a highly optimized loss L(w) to con-
struct Eq. (3), which signifies still predictive on the adver-
sarial examples. Nonetheless, most of the existing adversar-
ially trained models do not reach satisfactory robustness un-
der adversarial attack scenario compared with their benign
accuracy. To tackle such a problem, we employ adaptive
masks directly multiplying to model parameters and opti-
mize them to meet local convergence to be a highly pre-
dictive model for adversarial examples. The formulation of
finding the masks can be written as follows:

m∗ = arg min
m∈Rd

max
∥δ∥∞≤γ

L(fwm
(x+ δ), y), (5)

where a model f is parameterized by mask-applied parame-
ters wm = w⊙m. Here,⊙ indicates the Hadamard product.
Note that dimension of model parameters w is same as that
of masks m, thus d equally represents total size of w and m
in DNNs. In addition, m belong to continuous real number
set in [0, 1]d ∈ Rd.

Through the mask optimization, we can effectively ad-
dress the aforementioned issue to compute the loss change
in adversarial settings. Then, we can re-interpret the loss
change for the given adversarial examples as follows:

Lxadv(w)− Lxadv(wm∗) =
1

2
∆wTH∆w, (6)

whereLxadv(w) indicates an adversarial loss that have a high
value due to broken model predictions for the given adver-
sarial examples: xadv = x + δ∗. In addition, Lxadv(wm∗)
denotes a highly optimized adversarial loss against xadv,
which has a smaller value than previous one. Here, Hessian
H ∈ Rd×d represents second-order information helping to
build local geometry of the model parameters for capturing
adversarially saliency factors.

Compared with previous works [17, 29] that remove a
single parameter each, the procedures of Eq. (5) and Eq. (6)
enable to prune multiple parameters at once, which have
a great advantage of considering impacts of intrinsic cor-
related connectivity among multiple parameters for model
predictions. On the other hand, to feasibly make use of the
loss change, we should find out how to possibly calculate
a parameter variation, denoted by ∆w. In OBD and OBS,
they have the tractable constraint for the variation ∆w re-
moving a single model parameter: eTk∆w+wk = 0. There-
fore, they can approach the loss change by a deterministic
solution, as mentioned in Sec. 3.1.

However, we cannot straightforwardly get the determin-
istic solution for Eq. (6), since the masks are tangled with
the variation ∆w in DNNs. As long as such limitation ex-
ists, we should practically figure out ∆w with respect to the

masks m. Thus, we provide the following constraint equa-
tion for pruning multiple parameters at once:

w ⊙ (1−m) + ∆w = 0, (7)

where 0 indicates zero vector in Rd. For extreme mask case,
once kth(= 1, 2, · · · , d) mask denoted by mk get closes to
zero value such that wmk

= wkmk = 0, then Eq. (7) sat-
isfies wk + ∆wk = 0 which explicitly means that the kth

mask-applied parameter wmk
is removed to zero.

Conversely, once mk gets close to one value such that
wmk

= wk, then the constraint equation satisfies ∆wk =
0, which implies that wmk

is not a target to remove. If a
mask is above zero value within one, it provokes an effect
of smoothing a parameter variation ∆w, which signifies that
wmk

is not strictly erased yet some of them remains.
From these perspectives, masks can be formulated with

parameter variation ∆w, regarding correlation for all of the
model parameters in DNNs. To compromise it on the vari-
ation ∆w, we apply this constraint to Eq. (6). Then, we can
simply present the loss change in adversarial settings. At
this point, we define the overall procedures of computing
the loss change and pruning as Masking Adversarial Dam-
age (MAD). Here, the loss change of MAD ∆LMAD can be
formulated as:

∆LMAD =
1

2
[w ⊙ (1−m∗)]TH[w ⊙ (1−m∗)], (8)

where it satisfies ∆LMAD = Lxadv(w)− Lxadv(wm∗). Here,
we call the loss change ∆LMAD as adversarial saliency to
indicate its effect to model prediction. This mathematical
expansion of MAD is completely aligned with theoretical
analysis of Taylor expansion (see Appendix C).

Beyond its numerical loss change by itself, it provides us
internal information in DNNs about which model parame-
ter is a much or less adversarially important factor. Once
we compute adversarial saliency for all model parameters
and observe that some parameters have large saliency, we
infer that they easily flip model predictions for adversarial
examples, even with their small changes. Thus, they can be
regarded as salient factors to get a knowledge of the robust-
ness through adversarial training. On the other hand, in the
contrary case, we interpret that the model parameters with
small saliency are invariant to the model prediction. Hence,
we can think of they are insignificant against adversarial
examples. Accordingly, depending on the value size of ad-
versarial saliency, we can identify which model parameters
can be pruned without weakening adversarial robustness.

3.3. Block-wise K-FAC Approximation

In the previous section, we have focused on how to de-
velop the loss change ∆LMAD in adversarial settings and
how to compute variation ∆w despite the absence of a de-
terministic solution. However, there is another important is-
sue to compute second-order information as Hessian. This
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is because Hessian is a huge matrix in terms of total param-
eter dimension, thus it remains challenging to efficiently re-
duce computational cost. To address it, there have been sev-
eral methods of approximating Hessian by empirical Fisher
Information [1, 7, 10, 16, 42, 61], which can be written as:

H ≃ F =
1

N

N∑
n=1

{∇wLn}{∇wLn}T , (9)

where ∇wLn indicates ∇wL(fw(xn), yn) in nth data sam-
ple such that N represents the total number of data sam-
ples. F denotes Fisher information matrix to possibly
approximate Hessian in an empirical manner. Recently,
various efficient approximation to Hessian has been pro-
posed under Kronecker-Factored Approximate Curvature
(K-FAC) [11, 33, 53] and WoodFisher approximation [49].

However, since classical loss change (Eq. (3)) for stan-
dard pruning has deterministic solutions for OBD and OBS,
the several works of approximating Hessian does not have
to fully compute the loss change. Instead, they figure out
the loss change of ∆LOBD = 1

2w
2
kHkk and ∆LOBS =

1
2w

2
k/[H

−1]kk, where diagonal elements of Hessian or in-
verse Hessian are only used. On the other hand, in order
to acquire precise ∆LMAD (i.e., adversarial saliency), we
should need to even consider off-diagonal terms in Hessian,
but using full Hessian gives a striking computational bur-
den. Hence, we introduce a block-wise K-FAC approxima-
tion to regard some blocks of the off-diagonal terms. The
following Lemma 1 describes K-FAC approximation, which
efficiently approximates Hessian in DNNs with convolution
layer. K-FAC for the fully-connected layer is described in
Appendix D, where the differences are dimension scales of
spatial size and its corresponding gradient.

Lemma 1 Kronecker-Factored Approximate Curvature.
At lth convolution layer in DNNs, let us define activation
map a ∈ Rcin×sa , weight matrixW ∈ Rcout×cink

2

, and layer
output z ∈ Rcout×sz such that it satisfies z =W∗a,∇WL =∑

i

[
∇ziL × aTi

]
, and F = E[{∇WL}{∇WL}T ], where i

denotes spatial index. Note that cin denotes channel number
of lth layer, cout denotes channel number of (l+1)th layer, sa
denotes spatial size of activation map a, sz denotes spatial
size of layer output z, and k denotes kernel size of weight.

F ≈
∑
i

E[{∇ziL}{∇ziL}T ]⊗
∑
i

E[aiaTi ] = Z ⊗A,

where Z ∈ Rcout×cout and A ∈ Rcink
2×cink

2

stand for corre-
lation of layer output z and activation map a, respectively.

Decomposing Fisher information matrix F into each
Kronecker Factor for the correlations Z and A with rela-
tively low dimension not only reduces storage cost but also
enables efficient computation. Then, we first expand the

adversarial saliency ∆LMAD using K-FAC, which can be
written in lth convolution layer as:

∆LMAD =
1

2
∆wTZ ⊗A∆w

=
1

2
Tr

[
∆w∆wTZ ⊗A

]
,

(10)

where the variation is denoted by ∆w = −w⊙ (1−m) for
MAD constraint, of which vector shape is Rd=coutcink

2

in the
convolution layer.

Here, we develop a block-wise K-FAC that allows for ef-
ficiently computing the adversarial saliency ∆LMAD. Since
we cannot use full Hessian for all model parameters due to
computational limitation and physical memory budget, we
instead deal with only of the diagonal terms in the corre-
lation Z of layer output z, where we consider off-diagonal
terms in Z as zero such that Zij = 0 (i ̸= j). Then, Fisher
information matrix can be described with the block-wise K-
FAC as follows:

F ≈ Z ⊗A =


Z11A 0 · · · 0

0 Z22A 0
...

... 0
. . . 0

0 · · · 0 ZrrA

 , (11)

where r = cout. By using this Fisher matrix F , we can
efficiently compute the adversarial saliency from Eq. (10),
which can be formulated as follows (see Appendix E):

∆LMAD =

r∑
i=1

Zii

2
Tr

[
∆Wi∆WT

i A
]
, (12)

where we reshape variation vector ∆w to variation matrix
∆W ∈ Rcink

2×cout such that ∆W = −W⊙ (1−M), where
mask matrix is also reshaped toM ∈ Rcink

2×cout . Note that
∆Wi denotes ith column vector in this variation matrix. In
Eq. (10), it hasO(c4outc

4
ink

8) computation complexity due to
full Hessian, but we can reduce it to O(c2outc

4
ink

8) by using
the block-wise K-FAC. We get a computational benefit per
convolution layer by c2out(= r2) as the matrix size of the
correlation Z for layer output z.

3.4. Pruning Low Adversarial Saliency

Based on Eq. (12), we finally get adversarial saliency
for the given adversarial examples. In practice, there arises
a natural phenomenon that the optimized mask m∗ over-
fits too much to specific samples of adversarial examples,
thus it cannot be generalized to other adversarial examples.
Therefore, after we optimize masks and compute the ad-
versarial saliency for each data sample, we average them to
generalize in all of the data samples. Then, by controlling
pruning ratio p%, we can readily prune model parameters
by eliminating them in order of low adversarial saliency.
Here, we describe Algorithm 1 to explain MAD in detail.
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Algorithm 1 Masking Adversarial Damage

Require: pruning ratio p%
1: for (x, y) ∼ D do ▷ Finding Adversarial Saliency
2: xadv ← attack(x, y) ▷ PGD Attack
3: m∗ ← arg min

m∈Rd
L(fwm

(xadv), y) ▷ Finding Masks

4: for lth layer index do
5: ∆W(l) ← −W(l) ⊙ (1−M∗(l)) ▷ Constraint
6: for ith channel index do ▷ Block-wise K-FAC
7: B(l)ii ←

Z(l)
ii

2 {∆W
(l)
i }{∆W

(l)
i }TA(l)

8: end for
9: ∆L(l)

MAD ← ∆L(l)
MAD + 1

N diag(B(l)) ▷ Average
10: end for
11: end for
12: Sorting ∆LMAD and Pruning p% parameters
13: for epoch do ▷ Adversarial Training (α : lr)
14: for (x, y) ∼ D do
15: xadv ← attack(x, y) ▷ PGD Attack
16: w ← w − α ∂

∂wL(fw(xadv), y) ▷ Update
17: end for
18: end for

4. Experiments

4.1. Implementation Details

Datasets and Networks. We conduct exhaustive experi-
ments on three datasets and three networks. For dataset, we
use CIFAR-10 [25] and SVHN [34] which are well known
as standard low dimensional datasets which equally have
32×32 dimensional images with 10 classes. In addition,
to demonstrate generalization of MAD in a larger dataset,
we adopt Tiny-ImageNet [28] with 64×64 pixels, which
is a small subset of ImageNet separated in 200 different
classes. For the three datasets, we train the following three
networks: VGG-16 [48], ResNet-18 [20], and WideResNet-
28-10 [60].

Mask Optimization. First, we adversarially train the
networks based on a standard adversarial training (AT) [32].
After we complete to adversarially train the networks, we
perform mask optimization in Eq. (5) to find out adversarial
saliency for model parameters. To do this, we make use of
Adam [24] with a learning rate of 0.1 and momentum of
0.9 for each data sample. In addition, we use 20 iterations
to optimize masks, which allows sufficient convergence to
predict well for adversarial examples. Note that since we
also observe that in a standard network, mask optimization
does not work well for the given adversarial examples [23],
thus we cover the adversarially trained network only.

Pruning by MAD. We prune model parameters in order
of low adversarial saliency. In addition, we adversarially
train the networks under a sparse network across a pruning
ratio p%. For the setting of adversarial training, we follow

the conventional settings for l∞ perturbation budget 8/255.
In addition, we generate adversarial examples by PGD at-
tack [32] with random restarts, where we set attack steps to
10 and set attack step size to 0.0069 in training. Especially,
since adversarially training Tiny-ImageNet is a computa-
tional burden, we employ fast adversarial training [58] with
FGSM attack [9] where the step size is set to 1.25× 8/255.
For training hyper-parameter, we set a learning rate of 0.1
with SGD [43] in 60 epochs, and we early stop [41] to re-
duce overfitting harming adversarial robustness. In addi-
tion, we take a step scheduler to lower the learning rate by
0.1 times on each 30 and 45 epoch, and we set the weight
decay parameter to 2× 10−4.

Adversarial Attacks. To fairly validate adversarial
robustness, we adopt three standard attacks: FGSM [9],
PGD [32], CW∞ [4], and two more recent advanced attacks
with a budget-aware step size-free: AP (Auto-PGD) and
parameter-free: AA (Auto-Attack) introduced by Francesco
et al. [6]. In inference, PGD and AP have 30 steps with
random starts where PGD has 0.0023 step size and AP has
momentum coefficient ρ = 0.75. In addition, we use CW∞
attack on l∞ perturbation budget 8/255 by employing PGD
gradient clamping with CW objective [4] on κ = 0.

4.2. Validating MAD

Adversarial Robustness. To validate the effective-
ness of MAD, we compare adversarial robustness with ad-
vanced recent defense methods: TRADES [62], MART [56]
and strong baselines for adversarial pruning: LWM [45],
ADMM [59], and HYDRA [46]. To fairly compare the
performance, the defense methods and the baselines are
aligned with our experiment setup, so that we build them
equally based on adversarially trained model (AT) on PGD
attack [32]. Tab. 1 demonstrates two perspectives: i) MAD
mostly outperforms the robustness of the baselines. ii) De-
spite using 10% of model parameters, MAD shows less per-
formance degradation of the robustness than the baselines
compared by the best performance with full parameters. For
all of the conducted attacks, MAD has 4.2(%) and 1.9(%)
degradation for CIFAR-10 and SVHN each on average of
three networks. For the baselines, HYDRA has 7.2(%) and
6.1(%) degradation, ADMM has 8.7 and 8.3, and LWM has
9.4 and 8.4 for CIFAR-10 and SVHN. Besides, for benign
accuracy, MAD has 0.4(%) and 0.4(%) degradation, HY-
DRA has 3.4 and 4.1, ADMM has 1.4 and 0.3, and LWM
has 4.8 and 3.9. Moreover, we also compare the robustness
of MAD in Tiny-ImageNet with that of the baselines. As
illustrated in Tab. 2, we corroborate that MAD also works
well in a larger dataset, while preserving the robustness.

Ablation Study. Despite its theoretical evidence of cap-
turing adversarial saliency and its experimental improve-
ments to the robustness, it is necessary to investigate that
removing model parameters in reverse order induces much
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CIFAR-10 SVHN

Method AT TRADES MART LWM ADMM HYDRA MAD AT TRADES MART LWM ADMM HYDRA MAD

Model Sparsity 0% 90% 0% 90%

VGG

Params 14.7M 1.5M 14.7M 1.5M

Clean 81.3 80.2 80.2 76.0 79.0 76.4 81.4 93.2 91.8 91.7 88.4 92.4 87.9 92.8
FGSM 55.2 54.3 57.9 50.3 52.6 50.4 57.0 67.1 66.5 68.4 62.4 65.2 61.2 68.2
PGD 50.2 50.5 54.2 46.8 47.4 47.4 51.8 56.0 57.3 60.4 53.3 54.9 54.6 58.4
CW∞ 48.6 48.1 48.8 43.0 45.0 44.8 47.1 52.3 52.6 52.2 49.7 49.5 49.6 52.0
AP 48.7 49.0 52.3 42.7 44.8 46.8 50.0 52.4 54.1 57.0 49.1 48.7 51.8 54.1
AA 45.9 46.1 47.0 42.4 42.9 43.5 45.1 48.5 49.9 49.0 48.2 46.9 47.5 50.8

ResNet

Params 11.2M 1.1M 11.2M 1.1M

Clean 84.2 82.4 83.3 79.4 83.4 80.9 82.7 93.7 93.1 92.6 90.4 93.8 90.5 93.3
FGSM 58.1 57.9 60.3 55.0 56.7 56.4 58.4 75.3 81.3 81.7 68.9 72.0 70.6 74.4
PGD 53.3 54.4 56.4 51.5 50.9 52.5 53.0 59.6 63.0 65.0 58.8 57.7 59.2 60.6
CW∞ 52.4 52.2 52.8 48.9 49.2 49.6 56.1 56.7 59.3 58.6 52.7 52.6 55.1 69.8
AP 51.8 53.2 55.1 48.2 48.8 51.8 51.6 54.4 55.4 58.3 51.8 51.2 56.2 58.9
AA 49.4 50.6 51.2 47.8 46.9 47.6 48.2 50.5 49.4 49.4 51.6 48.7 51.0 53.2

WRN

Params 36.5M 3.7M 36.5M 3.7M

Clean 87.6 86.9 87.2 85.6 87.4 87.4 88.0 94.0 92.9 92.5 91.1 94.0 91.0 93.8
FGSM 61.7 61.6 63.6 60.3 59.8 61.6 61.9 73.6 74.0 76.9 68.9 70.6 69.0 74.9
PGD 55.2 56.3 57.6 53.3 52.3 54.0 55.2 59.9 60.9 64.5 59.4 58.6 60.3 61.2
CW∞ 55.1 56.3 55.7 54.0 52.6 54.4 54.4 57.5 57.7 57.8 54.8 54.7 56.4 57.5
AP 53.9 55.1 55.5 51.8 52.1 52.5 53.2 56.0 57.7 60.4 53.5 54.3 58.1 59.6
AA 52.7 53.9 53.0 48.2 49.4 50.8 51.5 52.7 54.1 53.3 51.2 52.0 54.4 55.1

Table 1. Comparing adversarial robustness by pruning ratio 90% (Sparsity) on low dimensional datasets: CIFAR-10 and SVHN trained
with VGG-16, ResNet-18, and WideResNet-28-10. The bold expression denotes the best performance within the same sparsity. In addition,
Params indicates the number of non-zero model parameters.

Model Method Clean FGSM PGD CW∞ AP AA

VGG
LWM 44.9 20.1 17.5 12.4 12.4 11.6
HYDRA 46.1 20.6 17.8 12.8 14.8 11.8
MAD 47.0 21.5 18.9 14.4 15.0 12.7

ResNet
LWM 47.4 22.7 20.6 15.4 15.3 13.8
HYDRA 49.7 23.9 21.0 15.6 18.0 14.2
MAD 50.7 25.4 21.9 17.3 18.5 15.6

WRN
LWM 52.5 24.7 20.6 16.7 16.7 12.2
HYDRA 53.5 24.8 21.0 16.4 17.3 14.5
MAD 55.9 27.6 23.4 19.8 19.8 17.2

Table 2. Comparing adversarial robustness by pruning ratio 90%
(Sparsity) on a larger dataset: Tiny-ImageNet. All descriptions in
this table are same as those of Tab. 1.

performance degradation. If it is correct, then we can ex-
hibit adversarial saliency is operated well empirically in ad-
versarial settings. Tab. 3 shows the comparison of the ro-
bustness with three different cases. First one is randomly
eliminating them (Random), and second is removing them
in order of high adversarial saliency (∆LMAD ↑). Lastly, it
is the case of MAD (∆LMAD ↓). The result in Tab. 3 con-
firms that pruning model parameters in order of low adver-
sarial saliency actually improves the adversarial robustness,
and its reverse order pruning significantly loses the robust-
ness. Furthermore, we wonder how MAD performs when
model parameters are extremely pruned to 99%. Thereby,
comparing MAD with the baselines, we validate the robust-
ness across pruning ratio from 0% (full parameters) to 99%
(extremely few parameters). According to Fig. 2, we ob-
serve that MAD shows better robustness than the baselines
as the pruning ratio increases.

Sparsity Method Clean FGSM PGD CW∞ AP AA

90%
Random 70.5 46.7 43.5 41.2 42.7 39.7
∆LMAD ↑ 69.6 46.1 43.1 40.1 41.7 38.7

∆LMAD ↓ 81.4 57.0 51.8 47.1 50.0 45.1

99%
Random 46.3 35.6 31.3 30.1 31.6 28.4
∆LMAD ↑ 53.2 36.3 33.9 31.2 33.2 30.1

∆LMAD ↓ 61.5 43.0 41.0 60.0 39.8 35.0

Table 3. Ablation study results for the comparison of adversarial
robustness in three different cases on pruning ratio 90% and 99%.
The validation is experimented on CIFAR-10 for VGG-16.

In Appendix F, we additionally experiment on Block-
wise K-FAC to validate where the adversarial improvement
of MAD derives from. Also, we discuss the violation of
standard baselines (OBD/OBS) in adversarial settings.

4.3. Analyzing Adversarial Saliency

After we obtain an adversarially pruned model using
MAD, what is our next question is “How is adversarial
saliency distributed according to certain model parame-
ters?” To understand and track such sensitivity for adversar-
ial examples, we plot adversarial saliency ∆LMAD from the
model parameters of initial layer to the last layer in Fig. 1.
As in the figure, we observe the most salient parameters
peak in the initial layers, sometimes referred as stem. In
standard training, it is well known that stem plays an impor-
tant role to capture local features such as colours and edges,
which will be integrated to recognize global objects [38].

Based on the perspective of adversarial training consid-
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Figure 1. The shape of adversarial saliency to the whole model parameters in VGG-16 for CIFAR-10, SVHN, and Tiny-ImageNet.

Figure 2. Ablation study results of adversarial robustness across
varying pruning ratio. The experiments are conducted on CIFAR-
10 and SVHN for VGG-16 and ResNet-18. Note that NP indicates
AT with pruning ratio of 0%, “Non-pruned”.

ered as ultimate data augmentation [51], adversarial per-
turbation set is regarded as an invariant factor that the ro-
bust network should be independent of. From our pruning
method, we observe that the model parameters of the stem
layer are highly fragile in the parameter space, and they eas-
ily affect adversarial loss the most. Concurrently, it also
indicates that training stem parameters invariant to the ad-
versarial perturbation set is another decisive key of pruning
approaches in adversarially trained networks and enhancing
adversarial robustness.

4.4. Understanding Compressed Features

We have demonstrated the effectiveness of MAD in the
model compression while retaining adversarial robustness.
Then, we want to know if the compressed features can be
identified in the intermediate feature space. Recently, sev-
eral works [8, 23] have introduced a way of understanding
adversarial feature representation using direct feature visu-
alization methods [35, 36]. We adopt Olah et al. [36] to
analyze the feature representation of our pruned model and
compare them with non-pruned model (AT) in Fig. 3.

As seen in this figure, we have observed that MAD can
retain the semantic information of the intermediate feature
representation, even with the high pruning ratio. Compared
with the visualization results of the non-pruned model,
MAD seemingly loses some feature representation, but still
shows the recognizable quality in the semantic information
of target objects regardless of the high pruning ratio.
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Figure 3. Feature visualization results of Tiny-ImageNet that in-
clude semantic information for target objects. We compare MAD
with non-pruned model (AT) for VGG-16. We set the pruning ra-
tio of MAD as 90% and illustrate successfully defended cases.

5. Discussion and Conclusion
Discussion. Adversarial attacks can potentially cause

negative impacts on various DNN applications due to high
computation and its fragility. By pruning model param-
eters without weakening adversarial robustness, our work
contributes important societal impacts in this research area.
Furthermore, in our promising observation that model pa-
rameters of initial layer are highly sensitive to adversarial
loss, we hope to progress in another future direction of uti-
lizing such property to enhance adversarial robustness.

Conclusion. To achieve adversarial robustness and
model compression concurrently, we propose a novel ad-
versarial pruning method, Masking Adversarial Damage
(MAD). By exploiting second-order information with mask
optimization and Block-wise K-FAC, we can precisely esti-
mate adversarial saliency of network parameters. Through
extensive validations, we corroborate that pruning network
parameters in order of low adversarial saliency retains ad-
versarial robustness while alleviating performance degrada-
tion compared with previous adversarial pruning methods.
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