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Abstract

Data representation learning without labels has at-
tracted increasing attention due to its nature that does not
require human annotation. Recently, representation learn-
ing has been extended to bimodal data, especially sound
and image which are closely related to basic human senses.
Existing sound and image representation learning methods
necessarily require a large number of sound and image with
corresponding pairs. Therefore, it is difficult to ensure the
effectiveness of the methods in the weakly paired condition,
which lacks paired bimodal data. In fact, according to hu-
man cognitive studies, the cognitive functions in the human
brain for a certain modality can be enhanced by receiving
other modalities, even not directly paired ones. Based on
the observation, we propose a new problem to deal with
the weakly paired condition: How to boost a certain modal
representation even by using other unpaired modal data. To
address the issue, we introduce a novel bimodal associa-
tive memory (BMA-Memory) with key-value switching. It
enables to build sound-image association with small paired
bimodal data and to boost the built association with the eas-
ily obtainable large amount of unpaired data. Through the
proposed associative learning, it is possible to reinforce the
representation of a certain modality (e.g., sound) even by
using other unpaired modal data (e.g., images).

1. Introduction
Data representation learning without labels is to learn

general features from unlabeled data by exploiting automat-
ically generated supervisory signals within the data. Since
it is highly time-consuming and labor-intensive for people
to annotate large-scale data manually, such representation
learning methods have received increasing attention in in-
dustry and research fields. In this context, representation
learning has been applied to various areas such as computer
vision [10, 15, 17], natural language processing [7, 12], and
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Figure 1. Concept of the proposed framework. The model can
associate one modality (e.g., sound) with a different modality (e.g.,
image) through BMA-Memory to obtain abundant representations.
Unpaired modality can boost the association between modalities.

sound signal processing [4, 39].
Recently, as data samples are acquired in various multi-

sensory environments, representation learning methods for
bimodal data have been proposed. They aimed to learn
feature representation from exploiting correspondence be-
tween bimodal data. In particular, many bimodal repre-
sentation learning methods investigated the correspondence
between auditory and vision which are closely related to
basic human senses. These methods mainly attempted to
learn bimodal representations from audio-video [26, 31] or
sound-image [34, 38] data without labels. However, exist-
ing bimodal representation learning methods require a large
number of data with corresponding pairs. Therefore, it is
difficult to ensure the effectiveness of the methods in the
weakly paired condition, which lacks paired bimodal data.

According to neurobiological studies, the cognitive func-
tions related to a certain modality can be enhanced by re-
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ceiving other modal stimuli in the human brain. There are
several cases such as visual stimuli to multisensory cogni-
tion [41], auditory stimuli to visual cognition [5], and tactile
stimuli to visual cognition [18]. It is possible because hu-
mans memorize multisensory modalities and associate them
with each other in their brains. Bimodal cognitive functions
are closely connected and influenced by each other.

Based on the observation, we introduce a new problem
to deal with the weakly paired condition: How to boost a
certain modal representation even by using other unpaired
modal data, which has not been properly addressed in pre-
vious works. It is needed to devise such a method in order
to extend and generalize bimodal representation learning as
the human brain. In terms of sound-image data, we can
expect to enhance the image representation even from un-
paired sound data and vice versa. Based on this context,
we focus on the representations of sound-image level rather
than audio-video level because the weakly paired condition
is more naturally observed in sound-image data. For exam-
ple, we can acquire lots of animal images easily by web
searching, whereas it is difficult to obtain animal sound
data. In such weakly paired condition, it is worth to rein-
force difficult-to-obtain modal (e.g., sound) representation
from other easy-to-obtain modal data (e.g., image).

In this paper, we propose a novel bimodal associative
memory (BMA-Memory) which enables to learn sound
and image representations. BMA-Memory can store bi-
modal features in sound-image sub-memories and associate
with one another naturally through a key-value switching
scheme. Since another modality can be recalled through
BMA-Memory, we can obtain abundant representation that
includes both input and associated modalities from single
modal input. Based on the memory, we introduce weakly
paired associative learning to address weakly paired con-
dition, which lacks paired data. BMA-Memory enables
to build the sound-image association with small paired bi-
modal data and to boost the built association with the eas-
ily obtainable large amount of unpaired modal data. In un-
paired associative learning, we construct pseudo bimodal
pairs from unpaired data to enhance the bidirectional asso-
ciation. As a result, the representation of certain modality
can be enhanced even by using other unpaired modal data.
The concept of the proposed approach is shown in Figure 1.

The major contributions of the paper are as follows.

• We introduce a novel BMA-Memory with key-value
switching to learn sound and image representations.
It stores bimodal sound-image features and associates
with one another. It enables to obtain abundant repre-
sentations including both input and associated modali-
ties even from single modal input.

• We propose weakly paired associative learning to ad-
dress the weakly paired condition. It effectively en-
ables to deal with boosting certain modal representa-

tion even by using other unpaired modal data in the
weakly paired condition.

2. Related Work
2.1. Bimodal Representation Learning

Data representation learning without labels is to learn
features from unlabeled data by using automatically gen-
erated supervisory signals within the data. To learn repre-
sentations, pretext tasks are defined to train the model in
self-supervised manners. Various pretext tasks have been
investigated to utilize the structural properties of data. Such
methods include rotation prediction [15], spatial context
prediction [13], and jigsaw puzzle [33]. In recent years, rep-
resentation learning methods with contrastive learning have
shown remarkable effectiveness in learning image represen-
tations [10, 20]. The representations learned from pretext
tasks are evaluated through other downstream tasks such as
classification and retrieval.

Recently, representation learning methods have been ex-
tended to bimodal data as data samples are acquired in var-
ious multi-sensory environments [11, 22, 26, 31, 34, 38, 42,
44]. In particular, sound and vision which are closely re-
lated to basic human senses have been significantly inves-
tigated. These methods mainly attempted to learn bimodal
representation from audio-video or sound-image data. In
the case of audio-video data, Korbar et al. [26] proposed a
representation learning method considering temporal syn-
chronization of audio-video pairs. Alwassel et al. [1] in-
troduced bimodal representation learning with audio-video
clustering. In [32], a representation learning method for
audio-video data was proposed by exploring bimodal agree-
ment which groups together potentially paired multiple in-
stances as positives. The attempts have been made to utilize
bimodal correspondence between sound and image data as
well. With sound-image data, Owens et al. [34] introduced
representation learning which predicts the corresponding
sounds from images. Senocak et al. [40] proposed an algo-
rithm with learning sound-image representations for sound
localization in images. In [38], the authors introduced en-
hanced representation learning from sound-image data with
acoustic images by using knowledge distillation.

These existing methods require potentially paired bi-
modal data. To address the issue, we propose a novel
method for learning sound-image representations from un-
paired data with the consideration of the weakly paired con-
dition. The strength of our algorithm lies in that it can en-
hance the feature representation of a certain modal input
even by exploiting other unpaired modal data. Further, com-
pared to bimodal semi-supervised works [3,6,9] which align
different modalities in common space mainly for retrieval,
our work is different in that the goal is to learn general fea-
tures from unlabeled bimodal data in a self-supervised way.

10535



Image Memory
(Key)Image

Sound Memory
(Value)

Bimodal Associative Memory
(BMA-Memory) 

Key-Value Switching

Projection

Sound Feature
Encoder

Paired 
Associative Loss

Sound Memory
(Key)

Image Memory
(Value)

Paired Associative Learning
with Small Paired Sound-Image Data

𝑥𝑖
𝑣

Sound𝑥𝑖
𝑠

Projection

𝑓𝑖
𝑣,𝑚𝑒𝑚

𝑓𝑖
𝑠,𝑚𝑒𝑚

𝑓𝑖
𝑠

𝑓𝑖
𝑣

ℎ𝑖
𝑣

ℎ𝑖
𝑠

𝑧𝑖
𝑣

𝑧𝑖
𝑣

𝑧𝑗
𝑠

𝑧𝑖
𝑠

𝑧𝑘
𝑠

𝑧𝑖
𝑠

𝑧𝑖
𝑠

𝑧𝑗
𝑣

𝑧𝑖
𝑣

𝑧𝑘
𝑣

ℒpair

𝐸𝑠

Image Feature
Encoder
𝐸𝑣

*This training is concurrently performed 
with unpaired associative learning 

: Positive Samples

: Negative Samples

Figure 2. Proposed paired associative learning with BMA-Memory to exploit small paired sound-image data at training time. BMA-
Memory includes image and sound sub-memories with a key-value switching scheme. During the training, paired images and sounds are
used to make these memories associate with one another.

2.2. Memory-Augmented Network

A memory-augmented network indicates the neural net-
work with external memory components which make it pos-
sible to read and write historical information. Memory-
augmented networks have been proposed to solve various
problems in the deep learning field. They were adopted in
several tasks such as object tracking [14, 43], anomaly de-
tection [16,36], predictive learning [19,28,29], and few-shot
learning [8, 23, 45]. There exist methods that apply mem-
ory networks to self-supervised learning schemes. Lai et
al. [27] introduced a self-supervised dense tracking model
with the memory-augmented network which stores the in-
formation of past frames. Han et al. [19] proposed a pre-
dictive coding framework with the memory-augmented net-
work. They tried to learn video representation by estimating
the possible future states with the memory.

Compared to existing memory networks, we propose a
novel BMA-Memory with key-value switching scheme that
enables to naturally associate the sound with the image and
vice-versa in a self-supervised manner. Based on BMA-
Memory, we propose weakly paired associative learning for
building and boosting the association between modalities.

3. Proposed Approach
Representation learning for bimodal data can be formu-

lated as follows. Let xv and xs denote input image and
sound data (i.e., spectrogram), respectively. The goal is to
jointly optimize two functions (Fv , Fs) for obtaining dis-
tinct sound and image representations (hv , hs) from (xv ,
xs) with self-supervised learning (i.e., pretext learning).
Note that hv = Fv(x

v) and hs = Fs(x
s). Then, the effec-

tiveness of the representations is validated through down-
stream tasks (e.g., image or sound classification).

3.1. Bimodal Associative Memory

Figure 2 shows weakly paired associative learning with
a bimodal associative memory (BMA-Memory) for sound-
image representations in the case of learning with small
paired data. BMA-Memory is to store sound and image
features and to link these modalities. The memory enables
to recall the sound feature from image data and vice-versa.
We can obtain more abundant representations by exploiting
features of both input and recalled modalities.

Firstly, input image xv and sound xs become an image
feature fv∈Rc and a sound feature fs∈Rc through each
feature encoder (Ev , Es), respectively. We adopt 2D-Conv
architectures, ResNet-18 and ResNet-10 [21] for image and
sound encoders, respectively. Note that input xs has the
form of the spectrogram image. The extracted image and
sound features are used as memory queries to access an im-
age memory Mv and a sound memory Ms which are sub-
memories in BMA-Memory. The image and sound mem-
ories have matrix forms of Mv = {mv

r}
n
r=1∈Rn×c and

Ms = {ms
r}

n
r=1∈Rn×c, respectively with n slots and c

channels. A row vector mv
r∈Rc denotes the r-th memory

item of Mv . BMA-Memory maps one to another modal
space through key-value memory structure. It alleviates
the domain gap from inconsistent distribution of different
modalities. We introduce a key-value switching proce-
dure to associate these memories in a self-supervised man-
ner naturally. So for the image input, the image mem-
ory becomes the key while the sound memory becomes
the value. The key-value memories are swapped in the
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case of the sound input (see Figure 2). Addressing vec-
tors W v = {wv

r}
n
r=1∈Rn and W s = {ws

r}
n
r=1∈Rn are ob-

tained from key-memories Mv and Ms, respectively. Note
that each addressing vector is used to access the components
of each value-memory. The memory addressing scheme is
shown in Figure 3. The addressing procedure in the case of
image input feature fv can be formulated as

wv
r =

exp(d(fv,mv
r)/τm)∑n

r=1 exp(d(f
v,mv

r)/τm)
, (1)

d(fv,mv
r) =

fv ·mv
r

||fv|| ||mv
r ||
, (2)

where d(·, ·) indicates cosine similarity function,
exp(·)/

∑
exp(·) denotes softmax function, and τm is

a memory temperature. W v is used to access the compo-
nents of a value-memory to convert from image space to
sound space. Note that value-memory indicates Ms for
W v . Each component wv

r of W v can be considered as an
attention weight for the corresponding value-memory slot
ms

r. Ms outputs a sound memory feature fs,mem∈Rc as
follows

fs,mem =
∑n

r=1
wv

rm
s
r. (3)

Finally, the image feature fv and the sound memory fea-
ture fs,mem are concatenated to obtain target representation
hv = [fv; fs,mem]. hv includes both input image and as-
sociated sound information. For input sound feature fs, the
overall addressing procedure is identical to that for the im-
age feature fv . Sound and image terms are just swapped.
During the training phase, the weights of Mv and Ms are
updated via backpropagation as [16, 28]. The objective loss
is described in the next section.

3.2. Weakly Paired Associative Learning

3.2.1 Paired Associative Learning

We propose weakly paired associative learning that includes
paired associative learning and unpaired associative learn-
ing. The proposed model is trained with small paired sound-
image data as shown in Figure 2. The goal of paired asso-
ciative learning is to build the link between image and sound
memories in a self-supervised manner. With the i-th paired
input image xvi and sound xsi , we can obtain target feature
representations hvi and hsi , respectively. Then, they pass
through the projection head that consists of 2-layer MLP
to make zvi and zsi as [10]. zvi and zsi indicate projections
which are actually used for pretext self-supervised learning.
If zv and zs are from a pair (or the same clip), we consider
them as a positive set (e.g., zvi , zsi ). Otherwise, we think of
them as a negative set (e.g., zvi , zsj ). Making such a positive
set distinctly close allows the memory to associate coun-
terpart modality. The objective loss named paired associa-
tive loss Lpair has the variational form of noise contrastive
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. . .
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Figure 3. Detailed key-value addressing procedure of BMA-
Memory in the case of image memory (key) to sound memory
(value). Note that sound memory (key) to image memory (value)
can be performed vice-versa.

loss [10,20] and is applied to samples in a mini-batch (batch
size=N ). When there are N samples of zv and N samples
of zs, except for itself and samples from a same clip, the rest
samples can be considered as negative samples of a specific
sample. We set Zp = {zpi }

2N
i=1 = {zv1 , ..., zvN , zs1, ..., zsN}.

The loss for paired associative learning is defined as

Lpair = −
1

2N

2N∑
i=1

log

∑
k+ exp(d(zpi , k

+)/τl)∑2N
j=1 1[j 6=i] exp(d(z

p
i , z

p
j )/τl)

,

(4)
where k+ and τl indicate a positive sample from a sample
clip (e.g., zvi for zsi ) and a loss temperature parameter, re-
spectively. 1[j 6=i] ∈ {0, 1} represents an indicator function
that has 1 iff j 6= i. By minimizingLpair, we can attract one
another within the positive set and repel each other within
the negative set. This makes it possible to recall the distinct
sound modality from the image data and vice-versa. When
we do not use the unpaired data, training is conducted by
just minimizing Lpair.

3.2.2 Unpaired Associative Learning

Further, the model can be trained with unpaired data to rein-
force sound-image association which is built by the paired
associative learning. To this end, we construct the pseudo
bimodal pair including bidirectional memory associations
(I→S, S→I). The strength of our algorithm lies in that it can
enhance the feature representation of a certain modal input
by exploiting other unpaired modal data. For example, we
can reinforce the representation from input image data by
additionally using just unpaired sound data, and vice-versa.

Figure 4 shows the case of exploiting the i-th unpaired
sound xsi . Firstly, we get augmented sample x′si by apply-
ing augmentation algorithm to xsi . As an augmentation al-
gorithm for x′si , we adopt SpecAugment [35] which ran-
domly masks the frequency and time bands of the spec-
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trogram. f ′v,mem
i is obtained from x′si through the sound-

image (key-value) memories. Different from the paired as-
sociative learning, f ′v,mem

i is then reused as a pseudo im-
age memory query to pass through the image-sound (key-
value) memories. Through this cyclic addressing, we obtain
h′si = [f ′v,mem

i ; f ′s,mem
i ] which is mainly composed of im-

age and sound memory features. Making h′si discriminative
can lead to boosting alignment of associations between im-
age and sound memories because h′si contains bidirectional
associations (I→S, S→I). Therefore, unpaired learning us-
ing sound can also reinforce the S→I as well as I→S asso-
ciations, which can lead to the improvement of the image
representation. To this end, we optimize the model with an
unpaired associative loss Lunpair. In terms of Lunpair, we
build the positive set as projections (e.g., z′si and z′′si ) from
a same sound sample (or a same clip). z′′si is the projection
from x′′si which is differently random augmented sample of
xsi . z′′si can be considered as the projection of pseudo bi-
modal pair. We set the negative set as projections (e.g., z′si
and z′′sj ) from the different sound samples. Lunpair is also
applied based on the units in a mini-batch. Similar to Lpair,
we can set Zup = {zupi }

2N
i=1 = {z′s1 , ..., z′sN , z′′s1 , ..., z′′sN }.

In the case of unpaired sound data, the loss function for un-
paired associative learning can be written as

Lunpair = −
1

2N

2N∑
i=1

log

∑
k+ exp(d(zupi , k+)/τl)∑2N

j=1 1[j 6=i] exp(d(z
up
i , zupj )/τl)

,

(5)
Unpaired associative learning proceeds simultaneously with
the paired learning. Model training is conducted with a total
loss L = Lpair + Lunpair with both paired and unpaired

data. Paired data pass through the path of Figure 2, and
unpaired data pass through the path of Figure 4. Then, they
are optimized at once. Note that unpaired image xvi also can
be used for unpaired associative learning. The procedure for
this is just vice-versa for the case of unpaired sound. In this
case, we adopt augmentations of [10] for images during the
unpaired associative learning.

4. Experiments

4.1. Datasets

To validate the proposed method, we adopt public
datasets which contain image and/or sound data. We use
ACIVW [38] and Kinetics-400 [24] datasets for learn-
ing a self-supervised pretext task. For downstream tasks,
ACIVW [38] and DCASE-2018 [30] datasets are utilized.
ACIVW. ACIVW [38] includes multimodal data with 5
hours of videos outdoors in the wild condition, obtained by
an acoustic-optical camera. Raw signals are acquired from
128 microphones with a sampling frequency of 12.8kHz.
Video frames are captured with 480 × 640 pixels and 12
frames per second. It also includes 36 × 48 × 512 multi-
spectral acoustic images which have both spatial and audi-
tory information. It consists of 10 classes with wild con-
ditions: drone, shopping cart, traffic, train, boat, fountain,
drill, razor, hair dryer, and vacuum cleaner. ACIVW is
mainly utilized to investigate the correspondence between
images and sounds. There are total 9k sound-image pairs.
As [38], we used 70% of the dataset to train the model with
the pretext task. The remains are used to validate the model
with the downstream tasks.
Kinetics-400. This dataset [24] contains about 230k train-
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Method Training Data Types Top-1
Accuracy

Supervised Learning image 0.769

L3 Vision Network∗ [2] image + sound 0.544

Audio-Visual (H)∗ [38] image + sound 0.667
Audio-Visual (H)∗ [38]
(w/ Transfer Learning)

image + sound
+ acoustic image 0.732

Proposed Method∗ image + sound
+ unpaired sound 0.772

AVID-CMA† [32] image + sound 0.738

Proposed Method†
(w/o Unpaired Associative Learning) image + sound 0.745

Proposed Method† image + sound
+ unpaired sound 0.778

Table 1. Performance results for image classification on ACIVW
dataset. Except for the supervised model, all other models are train
with ACIVW dataset in self-supervised ways. Unpaired sounds
are from Kinetics-400 dataset. ∗ and † indicates the accuracies
obtained from KNN and linear evaluation protocol, respectively.

ing videos with 400 classes such as riding a bike, salsa danc-
ing, dunking basketball, and playing trumpet. Each clip
lasts about 10sec and they are taken from different YouTube
videos. Thus, it covers a large range of image and sound
variations. Since the videos are obtained from YouTube,
they have variable frame rates and resolutions. We sample
a frame image and a sound in the middle of each clip. The
dataset is used to train the model with the pretext task, es-
pecially in the unpaired associative learning.
DCASE-2018. It is the 2018 version of Detection and Clas-
sification of Acoustic Scenes (DCASE) [30]. The dataset
includes sound recordings from six European cities with
ten different acoustic scenes: airport, bus, metro, metro sta-
tion, park, public square, shopping mall, street (pedestrian),
street (traffic), and tram. The recordings are obtained with
a 48kHz sampling rate. We use DCASE-2018 dataset to
validate the model with the sound-based downstream task.

4.2. Implementation Details

Each image is normalized to the intensity of [0, 1] and
resized to 224 × 224 pixels. Raw sound signals with 2sec
are preprocessed to the form of log mel-spectrogram with
150 × 200. We adopt ResNet-18 [21] as our image encoder
according to [38] and similarly ResNet-10 as the sound en-
coder since both image and sound have spatial information.
Memory slot size n is fixed as 1,000. Memory and loss tem-
perature parameters (τm, τl) are both set as 0.1 for all exper-
iments according to [10]. The projected feature that is used
to train the model with pretext tasks has 128-dimensional
latent space as [10]. All of the proposed models are trained
by the Adam optimizer [25] with a learning rate of 0.0002
and a batch size of 256. The experiments are conducted on
a server system with TITAN RTX GPUs. We implement the
model in PyTorch [37].

Method Training Data Types Top-1
Accuracy

Supervised Learning sound 0.971

L3 Audio Network∗ [2] image + sound 0.361

HearNet∗ [38] image + sound 0.757
HearNet∗ [38]

(w/ Transfer Learning)
image + sound

+ acoustic image 0.795

Proposed Method∗ image + sound
+ unpaired image 0.936

AVID-CMA† [32] image + sound 0.902

Proposed Method†
(w/o Unpaired Associative Learning) image + sound 0.931

Proposed Method† image + sound
+ unpaired image 0.956

Table 2. Performance results for sound classification on ACIVW
dataset. Except for the supervised model, all other models are train
with ACIVW dataset in self-supervised ways. Unpaired images
are from Kinetics-400 dataset. ∗ and † indicates the accuracies
obtained from KNN and linear evaluation protocol, respectively.

4.3. Evaluation on Downstream Tasks

To evaluate the representation quality, we follow a lin-
ear evaluation protocol [10] which is mainly adopted in
the representation learning domain. First, a linear clas-
sifier is trained on top of the target representation with
our frozen network. Then, we evaluate the test accuracy
through the representation with the linear classifier to check
the representation quality. If we want to evaluate the im-
age representation power of our model, the representation
hv = [fv; fs,mem] from the image input is used for image
downstream tasks. hs = [fv,mem; fs] from the sound input
is used for sound downstream tasks (See Figure 2). Further,
we also utilize k-nearest neighbor (KNN) to evaluate the
representations.
Image Recognition. Table 1 shows the performance com-
parison results on ACIVW dataset in terms of classification
with image data. All models are trained with the training
set of ACIVW dataset. For evaluation of the image rep-
resentation, we utilize the feature hv obtained from image
inputs (see Figure 2). We compare our method with exist-
ing sound-image works [2, 38] and applicable audio-video
work [32]. Except for the supervised model, the rest of the
models are trained in self-supervised manners. The super-
vised model is trained with label information of ACIVW
dataset. Note that the supervised model and our model
have the same ResNet-18 backbone architecture as [38]. As
shown in the table, the proposed method outperforms other
methods. The proposed model surpasses ‘Audio-Visual (H)’
model with additional paired acoustic images which include
both image and sound information. Note that unpaired
sounds are more easily obtainable compared to the acous-
tic image pairs. By utilizing unpaired sound from Kinetics-
400, the proposed method achieves the result better than the
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Method Training Data Types
Retrieval Accuracy

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

L3 Audio Network [2] image + sound 0.097 0.119 0.242 0.267 0.301

HearNet [38] image + sound 0.289 0.344 0.424 0.480 0.614

DualCamNet [38] image + sound + acoustic image 0.334 0.370 0.429 0.482 0.624

Proposed Method
(w/o Unpaired Associative Learning) image + sound 0.498 0.541 0.588 0.614 0.705

Proposed Method image + sound + unpaired image 0.522 0.553 0.612 0.669 0.766

Table 3. Performance results for bimodal retrieval (sound to image retrieval) on ACIVW dataset. All models are trained with ACIVW
dataset in self-supervised manners.

Method Training Data Types Top-1
Accuracy

Supervised Learning sound 0.595

L3 Audio Network∗ [2] image + sound 0.323

HearNet∗ [38] image + sound 0.354
HearNet∗ [38]

(w/ Transfer Learning)
image + sound

+ acoustic image 0.376

Proposed Method∗ image + sound
+ unpaired image 0.420

AVID-CMA† [32] image + sound 0.421

Proposed Method†
(w/o Unpaired Associative Learning) image + sound 0.538

Proposed Method† image + sound
+ unpaired image 0.562

Table 4. Performance comparison results for sound classification
on DCASE-2018 dataset in a zero-shot setting. All models are
trained with ACIVW and tested on DCASE-2018 except for the
supervised model. ∗ and † indicates the accuracies obtained from
KNN and linear evaluation protocol, respectively.

other methods and beyond the supervised model in terms of
image recognition. The results show that the unpaired asso-
ciative learning enhances the image representation even by
using unpaired sound data from the different dataset.
Sound Recognition. The performance comparison results
for sound classification on ACIVW dataset are shown in
Table 2. Similar to the previous results, the models are
trained with ACIVW dataset in self-supervised ways ex-
cept for the supervised model. To evaluate the sound repre-
sentation quality, we exploit the feature hs obtained from
sound inputs (see Figure 2). As shown in the table, the
proposed method surpasses the other self-supervised meth-
ods. The unpaired associative learning with unpaired image
data reinforces the sound recognition performance, which
means that the sound representation is enhanced even by
exploiting unpaired image data. Note that unpaired images
are from Kinetics-400 dataset. As a result, the final model
achieves the competitive performance compared to the su-
pervised model.
Zero-Shot Sound Recognition. Further, we conduct the

experiment on DCASE-2018 for sound classification to val-
idate the generalizability in zero-shot setting. In this ex-
periment, the models are trained with ACIVW dataset in a
self-supervised way and validated on DCASE-2018 dataset.
Note that the supervised model is trained with DCASE-
2018 dataset with label information. As shown in Table 4,
the proposed method shows better performances compared
to the other methods. In particular, when unpaired images
are additionally used, the proposed method achieves com-
parable performance to the supervised model. These results
indicate the obtained feature representation is generalizable
well to the different dataset.
Bimodal Retrieval. We additionally perform bimodal re-
trieval to verify how well the sound and image represen-
tations are associated with each other in a self-supervised
manner. We select one sound sample and find the corre-
sponding images which are close to the sound sample. It is
correct if the sound and the retrieved image have the same
class. Note that the bimodal retrieval is conducted based
on image projection zv and sound projection zs which are
used for matching at training time. Retrieved images are or-
dered according to the distance between the features of the
sound and image. Experiments are performed on ACIVW
dataset. As shown in Table 3, our method outperforms the
other self-supervised methods in terms of bimodal retrieval
for all conditions. The rank indicates how many candidates
to retrieve. In particular, when unpaired associative learn-
ing is performed by using unpaired images, it shows bet-
ter retrieval performances. It can be seen that the learning
scheme with unpaired modal data strengthens the associa-
tion between image and sound modalities.

4.4. Compensation for Paired Data Volume

Table 5 shows how effectively a decrease of the paired
data volume can be compensated by using other unpaired
modal data. As shown in the table, there is a consider-
able performance decrease in image classification when the
paired data of ACIVW is reduced to 20% level (1k im-
ages). Interestingly, through the proposed unpaired asso-
ciative learning with unpaired sounds (Kinetics-400), we

10540



Paired Data
Volume

Unpaired Associative
Learning Training Data Types Top-1

Accuracy

100%
7 image + sound 0.745

3
image + sound

+ unpaired sound 0.778

20%
7 image + sound 0.693

3
image + sound

+ unpaired sound 0.749

Table 5. Performance evaluations in terms of image classification
according to the amount of training paired data in ACIVW.
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Figure 5. Performance evaluations in terms of image classification
according to the amount of unpaired sound data in Kinetics-400.

achieve the performance that exceeds the performance us-
ing full paired data. In other words, with only 20% im-
age data, we obtain a competitive image recognition perfor-
mance compared to the 100% case by exploiting other un-
paired modal data (i.e., sound data). Further, it can be seen
that the boosting effect from unpaired data is more signifi-
cant when the amount of paired data is limited.

4.5. Effects of Unpaired Data Volume

Figure 5 shows accuracies for image classification on
ACIVW according to the amount of unpaired sound data
in Kinetics-400. 230k indicates the use of full unpaired
sound data in Kinetics-400 while 0k indicates the model
without unpaired associative learning. As shown in the fig-
ure, the best performance is not always achieved when all
data is used unconditionally. Further higher performance
can be achieved when a moderate amount of unpaired data
is used. The highest performance was shown when 50k of
unpaired data was used, and the performance decreased as
the amount decreased after that. Note that there are 6k train-
ing sound-image pairs. When the volume imbalance of un-
paired and paired data is severe, more unpaired data does
not help to enhance the representation.

4.6. Effects of Memory Size

We perform the experiments to observe the effects of the
memory size n on the representation learning performances.
The memory size n indicates the number of slots in the im-
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Figure 6. Effects of the memory size for image classification on
ACIVW. Memory size is varied with exponential scale.

age and sound sub-memories. We change n with an ex-
ponential scale (10, 50, 100, 500, 1,000, 5,000) for image
classification on ACIVW dataset. Figure 6 shows the re-
sults. As the memory capacity increases, the performance
tends to increase, which is saturated around n=500. Then it
maintains the relatively stable values. Considering the ex-
ponential scale, the result represents the robustness to the
setting of memory size around n > 500.

5. Discussion

A slight performance decrease is observed with ex-
tremely large unpaired data (See Figure 5). It seems that
it is due to the severe imbalance of paired data volume and
unpaired data volume because the training combination of
unpaired data keeps changing even with the limited paired
data. Effectively dealing with the extremely large amount
of unpaired data can be investigated in further works.

6. Conclusion

The goal of the proposed work is to learn the sound-
image representations even by exploiting unpaired modal
data in weakly paired condition. To this end, we propose
BMA-Memory with key-value switching to effectively store
the sound-image features and associate one another modal-
ity in a self-supervised manner. Through BMA-Memory,
we can obtain abundant representations which contain in-
formation of both input and associated modalities. Based
on this memory, we devise weakly paired associative learn-
ing to build and boost the association between sound and
image. It enables to enhance the representation of a certain
modality even by using different modal data. As a result, the
proposed method outperforms other sound-image represen-
tation learning methods. Further, we validate the effective-
ness and practicality of the proposed method by conducting
ablation studies and data volume analysis.
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