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Abstract

We present a new domain generalized semantic seg-
mentation network named WildNet, which learns domain-
generalized features by leveraging a variety of contents and
styles from the wild. In domain generalization, the low gen-
eralization ability for unseen target domains is clearly due
to overfitting to the source domain. To address this prob-
lem, previous works have focused on generalizing the do-
main by removing or diversifying the styles of the source
domain. These alleviated overfitting to the source-style but
overlooked overfitting to the source-content. In this paper,
we propose to diversify both the content and style of the
source domain with the help of the wild. Our main idea is
for networks to naturally learn domain-generalized seman-
tic information from the wild. To this end, we diversify styles
by augmenting source features to resemble wild styles and
enable networks to adapt to a variety of styles. Further-
more, we encourage networks to learn class-discriminant
features by providing semantic variations borrowed from
the wild to source contents in the feature space. Finally,
we regularize networks to capture consistent semantic infor-
mation even when both the content and style of the source
domain are extended to the wild. Extensive experiments
on five different datasets validate the effectiveness of our
WildNet, and we significantly outperform state-of-the-art
methods. The source code and model are available online:
https://github.com/suhyeonlee/WildNet.

1. Introduction
Domain generalized semantic segmentation aims to bet-

ter predict pixel-level semantic labels on multiple unseen
target domains while learning only on the source domain.
Unfortunately, the domain shift between the source and tar-
get domains makes a segmentation model trained on the
given source data behave stupidly on the unseen target data,
as shown in Fig. 1b. In domain generalization (DG), the
low generalization performance for unseen domains is ob-
viously due to overfitting to the source domain. Since the
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(a) Unseen domain image (b) Baseline (mIoU 35.16%)

(c) RobustNet (mIoU 36.58%) (d) Ours (mIoU 44.62%)

Figure 1. Semantic segmentation results on (a) an unseen domain
image. The models are trained on GTAV [46] train set and vali-
dated on Cityscapes [10] validation set. (b) Baseline model over-
fits the source domain and performs poorly with mIoU 35.16%
on the unseen target domain. (c) RobustNet [7], a state-of-the-art
method, improved mIoU to 36.58% by whitening the style, but still
has low generalization capability. (d) Our WildNet achieves supe-
rior generalization performance with mIoU 44.62% by learning
various styles and contents from the wild. More qualitative results
on other datasets are available in the supplementary material.

model cannot see any information about the target domains
in the learning process and even unlabeled target images are
not provided unlike domain adaptation (DA), it over-learns
the statistical distribution of the given source data.

Recently, some studies [7, 29, 41, 42] have proposed
learning the domain-generalized content feature by ‘remov-
ing’ domain-specific style information from the data to pre-
vent overfitting to the source domain. Based on the correla-
tion between the feature’s covariance matrix and style [13,
14], they assumed that only content features would remain
if elements of features considered the domain-specific style
were whitened [23, 30, 50, 53]. However, since the content
and style are not orthogonal, whitening the style may cause
a loss of semantic content, which is indispensable for se-
mantic category prediction. As a result, they predict seman-
tic categories from incomplete content features and have
difficulty making accurate predictions, as shown in Fig. 1c.

In this paper, we propose a new domain generalized se-
mantic segmentation network called WildNet, which learns
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the domain-generalized semantic feature by ‘extending’
both content and style to the wild. Although some previous
works [22,45,62] utilized various styles from the wild, e.g.,
ImageNet [11] for real styles and Painter by Numbers [38]
for unreal styles, they overlooked that the high generaliza-
tion ability comes from learning not only various styles
but also various contents. In contrast to previous studies,
our main idea is to naturally learn domain-generalized se-
mantic information by leveraging a variety of contents and
styles from the wild, without forcing whitening on domain-
specific styles.

To extend both content and style to the wild, we present
four effective learning methods. (i) Based on the relevance
of style and feature statistics, feature stylization diversifies
the style of the source feature by transferring the statistics
of the wild feature to the source feature over several layers.
(ii) To prevent overfitting to the source contents, we pro-
pose content extension learning to increase the intra-class
content variability in the latent embedding space. Extending
content from source to wild helps networks make general-
ized predictions on unseen contents. (iii) To prevent over-
fitting to the source style, we propose style extension learn-
ing to encourage networks to adapt to the various styles ex-
tended to the wild. (iv) Finally, semantic consistency reg-
ularization enables networks to capture consistent seman-
tic information even when both the content and style of the
source domain are extended to the wild. With the proposed
learning methods, our WildNet learns domain-generalized
semantic features by leveraging a variety of contents and
styles from the wild. Extensive experiments over multiple
domains show that our network achieves superior perfor-
mance on domain generalization for semantic segmentation.

Our main contributions are as follows:

• We present a novel domain generalized semantic
segmentation network named WildNet, which learns
domain-generalized semantic features by leveraging a
variety of contents and styles from the wild.

• We propose four learning techniques to train domain-
generalized networks by extending both the content
and style of the source domain to the wild. These en-
able our model to make reliable predictions on various
unseen target domains without training on them.

• Our network achieves superior performance in exten-
sive experiments on domain generalization for seman-
tic segmentation constructed over multiple domains.

2. Related Work
2.1. Domain Adaptation and Generalization

Domain adaptation (DA) aims to increase the perfor-
mance on the target domain by reducing the domain gap
between the source and target domains. In semantic seg-
mentation, DA is exploited to tackle the effort of annotating

pixel-level categories in an image. Most DA methods train
networks using the ‘given’ target images via image transla-
tion [17, 20, 33, 60, 64], feature alignment [21, 44, 55–57],
and self-training [16, 29, 32, 40, 63] strategies. However, it
is hard to acquire target images from various environments
during the learning process, and efforts to retrain networks
are required whenever applying networks to a new target
domain.

To overcome these limitations, domain generalization
(DG) has recently attracted considerable attention. How-
ever, most DG studies have focused on image classification
and there are only a few recent studies on semantic segmen-
tation. In this study, we deal with DG for semantic segmen-
tation. Unlike DA, DG does not have access to the target
domains during the learning process. To make reliable pre-
dictions on various ‘unknown’ target domains, most exist-
ing studies focus on whitening [7], normalizing [41], and
diversifying [22, 45, 62] styles to avoid overfitting to the
style of the source domain. This paper focuses on extend-
ing both the content and style of the source domain to the
wild [11], enabling networks to learn domain-generalized
semantic features from diversified contents and styles.

2.2. Contrastive Learning
Contrastive learning [9, 39] is a strategy that minimizes

the distance from a positive sample and maximizes the dis-
tance from a negative sample in the embedding space. Re-
cently, He et al. [18] used a dynamic dictionary with a queue
and Chen et al. [3] used two views of the same image as a
positive pair to learn visual representations. To diversify a
positive pair, a recent work [12] proposed to use the posi-
tive’s nearest neighbor in the latent space as a positive. Af-
ter supervised contrastive learning [27] has been proposed,
there are recent efforts to apply contrastive learning to fully-
and semi-supervised semantic segmentation [1, 65, 66]. To
obtain positive samples, these works perform image aug-
mentation or store features using label information in a
memory bank [58]. These enhance class discrimination in
the seen source domain but do not guarantee improving
class discrimination in various unseen domains. To adapt
contrastive learning to DG for semantic segmentation, we
propose a learning method using the wild-stylized feature
and its closest wild content as positive samples.

2.3. Free ImageNet
Most studies regard ImageNet [11] as free and use it

to pre-train networks. The ImageNet pre-trained model is
commonly used in various fields such as object detec-
tion [34, 68], semantic segmentation [8, 54], panoptic seg-
mentation [6, 35, 59], and video object segmentation [51],
and is considered to be the same basis. The ImageNet pre-
trained model is also used in most DA and DG for seman-
tic segmentation methods, and ImageNet is used to borrow
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Figure 2. The overall learning process of WildNet. Our model is trained with four proposed methods: FS, CEL, SEL, and SCR. FS
augments source features to resemble wild styles using the statistics of wild features, and the augmented features are used for CEL, SEL,
and SCR. CEL performs contrastive learning using the augmented features and the wild features closest to them as positive samples and
other class features as negative samples. SEL enables networks to learn task-specific information from features with diversified styles, and
SCR regularizes networks to capture consistent semantic information from features with diversified contents and styles. With the proposed
learning methods, our model learns domain-generalized semantic features by leveraging contents and styles from the wild.

various styles [22, 62]. In this paper, we focus on learn-
ing domain-generalized networks by leveraging a variety of
contents and styles from ImageNet.

3. Proposed Method
In this section, we introduce four learning techniques

consisting of Feature Stylization (FS), Content Extension
Learning (CEL), Style Extension Learning (SEL), and
Semantic Consistency Regularization (SCR) for learning
domain-generalized features by extending both the content
and style of the source domain to the wild. Our WildNet
achieves superior generalization ability with them and the
overall learning process is outlined in Fig. 2.

3.1. Problem Setup and Overview
Domain generalization (DG) aims to enhance the gener-

alization capability on both the seen source domain S and
unseen target domains T = {T1, ..., TN}. Let ϕ be a se-
mantic segmentation model that outputs pixel-wise category
predictions p from image x. This model consists of a feature
extractor ϕfeat and classifier ϕcls. In DG, when we train the
model, we have access to the source domain training dataset

Ds = {(xs, ys)} while inaccessible to the target domains,
where xs ∈ RH×W×3 is an image, ys ∈ RH×W×K is its
pixel-wise label, and K is a number of semantic categories.
The baseline model is trained with the segmentation loss

Lorig = − 1

HW

H∑
h=1

W∑
w=1

K∑
k=1

yshwklog(ϕ(x
s)). (1)

In this paper, we focus on extending both the content
and style of the source domain to obtain high generalization
performance on unknown target domains T . We utilize the
unlabeled wild datasetDw = {xw}, which has various con-
tents and styles. At each training iteration, a random pair of
source and wild images is provided as input, and the style
and content of the source image are extended to the wild
domain W in the feature space. With the help of the wild,
our network naturally learns domain-generalized semantic
information from a variety of contents and styles. After the
training, the model is evaluated on validation sets of both
the seen source domain S and unseen target domains T .

3.2. Feature Stylization
As style is related to feature statistics [14, 15, 24, 26, 31]

and the distributional shift due to style differences lies
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mainly in shallow layers of networks [41], the styles of fea-
tures can be diversified by adjusting the statistics of features
from shallow layers. In this work, we diversify the styles of
the source features with the help of wild styles by adding
several AdaIN [24] layers to the feature extractor in the
learning process. This enables us to augment source features
to resemble wild styles without losing spatial information.

Let ϕl be the l-th layer of networks ϕ and let zl be the
feature output from ϕl when image x is input into ϕ. To
allow networks to learn domain-generalized semantic infor-
mation from various wild-style features, we swap the style
of the source feature zsl from the source image xs with the
style of the wild feature zwl from the wild image xw. In the
l-th layer, we transfer the style of zwl to zsl and obtain the
wild-stylized feature zswl as

zswl = σ(zwl )
zsl − µ(zsl )

σ(zsl )
+ µ(zwl ) (2)

where µ(zl) and σ(zl) are channel-wise mean and standard
deviation of feature zl, respectively. Because the distribu-
tion of zsl is re-normalized with channel-wise statistics of
zwl , the style of zsl is swapped to the wild-style while main-
taining the spatial information.

The wild-stylized feature zswl is input into layer l + 1
and zswl+1 = ϕl+1(z

sw
l ) is output from the layer. zswl+1 can be

swapped repeatedly in the style of zwl+1 as

zswl+1 := σ(zwl+1)
zswl+1 − µ(zswl+1)

σ(zswl+1)
+ µ(zwl+1). (3)

By the above equation, feature zsw is swapped in the style
of zw over multiple layers. As the layer deepens, semantic
information should be captured more important than style,
so FS applies only to some shallow layers in this work.

3.3. Content Extension Learning
In this subsection, we propose to extend the contents in

the source domain to the wild. One of the reasons for over-
fitting to the source domain is that networks overlearn a lim-
ited amount of source content. We address this issue by in-
creasing the intra-class content variability with content ex-
tension in the latent embedding space. To this end, we add
a projection head ϕproj independently of the classification
head ϕcls after the feature extractor ϕfeat and extend the
source contents to the wild in the embedding space.

When a source image xs and wild image xw enter the
feature extractor ϕfeat, it outputs the source feature zs,
wild-stylized source feature zsw, and wild feature zw. The
projection head ϕproj receives features zs, zsw, and zw and
outputs pixel-level projected content features zsproj , zswproj ,
and zwproj , respectively. All projected features are normal-
ized by z = z/max(∥z∥2 , ϵ) along the channel dimension.
At each training iteration, zwproj is flattened and stored in the
wild-content dictionary Q ∈ RCq×Nq where Cq is the num-
ber of channels of projected features and Nq is the dictio-
nary size. Our model uses the dynamic dictionary structure

wild image 𝑥𝑥𝑤𝑤 source image xs wild image 𝑥𝑥𝑤𝑤

Figure 3. Visualization of source-to-wild matching pixels on the
cropped source and wild images. We extend the source content to
the wild content closest to the wild-stylized source content corre-
sponding to the source pixel. The source content is encouraged to
come close to the wild content in the embedding space. This im-
proves the generalization ability of our model to unseen contents.

in [18] asQwithout a momentum update. We diversify con-
tents by extending the source contents to the wild-stylized
source contents and then to the wild domain using Q.

Here we focus on that the projected source feature zsi
1

and projected wild-stylized feature zswi corresponding to
the i-th pixel of the source image xs contain exactly the
same semantic information, but content perturbation exists.
In order to obtain reliable semantic information from un-
seen contents, networks should be able to cluster contents
containing the same semantic information, distinguishing
them from contents containing other semantic information.
To achieve this objective, we adapt the contrastive learning
strategy [39] to pixel-level instances in a supervised man-
ner and define the source content extension loss for the i-th
pixel as follows:

Li
SCE = −log

ψ(zsi , z
sw
i )

ψ(zsi , z
sw
i ) +

Nz∑
j=1

1
s
ijψ(z

s
i , z

sw
j )

, (4)

ψ(zsi , z
sw
i ) = exp(zsi · zswi /τ), (5)

where 1s
ij is the negative pixel indicator that equals 1 if ysi

and ysj are different and 0 if they are the same, Nz is the
number of pixels and the temperature parameter τ is set to
0.07. We train the model only with reliable samples, ignor-
ing ambiguous positive and negative samples by excluding
pixels of unknown classes and pixels in other positions of
the same class. Eq. (4) encourages zsi and zswi to be close,
while also encouraging zsi to move away from all negative
class contents. Then, the pixel-wise loss can be applied to
the entire source image by

LSCE =
1

Nz

Nz∑
i=1

Li
SCE . (6)

Eq. (6) encourages networks to make generalized predic-
tions by reducing the distance in the embedding space be-
tween source contents and wild-perturbed source contents.

Next, we further extend the source contents to the wild
by utilizing the wild-content dictionary Q. In the learning
process, Q stores diverse pixel-level wild contents, which
may not exist in the source domain. Thus, if we carefully se-
lect wild-content with semantic information that each pixel

1The subscript proj is sometimes omitted for convenience.
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needs to learn and then use it to train networks, networks be-
come more robust to wild-content perturbations. Since there
is no class information in the wild setDw, Eq. (4) cannot be
directly applied to this wild content extension. We address
this issue from the perspective that similar semantic con-
tents will be located close to each other in the embedding
space. Inspired by [12], we take the wild content zwk closest
to the wild-stylized source content zswi from Q as

zwk = argmin
q∈Q

∥zswi − q∥2 (7)

and encourage the source content zsi to come close to it.
Since zswi and q are normalized early on, Eq. (7) can be
calculated efficiently using a dot product and rewritten as

zwk = argmax
q∈Q

(zswi · q). (8)

Fig. 3 shows the wild content zwk matched to the source con-
tent zsi using the stylized source content zswi . In this way, we
provide various contents of the wild to the networks with-
out category information. Now Eq. (4) can be adapted to the
wild content extension as follows:

Li
WCE = −log

ψ(zsi , z
w
k )

ψ(zsi , z
w
k ) +

Nz∑
j=1

1
s
ijψ(z

s
i , z

sw
j )

. (9)

In the wild content extension, we reuse the negative samples
of the source content extension. Some negative extension
approaches may give better performance and we left this for
future work. Then we can apply the pixel-wise wild content
extension loss to the entire source image by

LWCE =
1

Nz

Nz∑
i=1

Li
WCE . (10)

By combining the source content extension loss and wild
content extension loss, the CEL loss is defined as

LCEL = LSCE + LWCE . (11)

Our model learns to capture generalized semantic informa-
tion from diverse contents by using the proposed CEL loss.

3.4. Style Extension Learning
Another reason for overfitting to the source domain is

that networks overlearn a limited amount of the source
style [36,43,67]. To address this issue, FS has diversified the
styles of the source feature with the help of the wild. Inter-
estingly, the style of the source features has changed while
preserving spatial information, but networks fail to predict
semantic categories from the wild-stylized feature as shown
in Fig. 4f. In this subsection, we propose SEL for adapting
networks to diversified styles. SEL aims to allow networks
to naturally adapt to various styles by learning task-specific
information from the wild-stylized feature.

When the wild-stylized source feature zsw enters the
classification head ϕcls, it outputs the pixel-wise softmax
segmentation map psw ∈ RH×W×K . Because zsw is the

(a) xs (b) xw (c) rec. image from zsw

(d) ys (e) prediction on zs (f) prediction on zsw

Figure 4. Given the (a) source image and (d) label, FS stylizes
the source feature with the wild feature from the (b) wild image.
To visualize the wild-stylized feature, (c) we reconstructed an im-
age from the wild-stylized feature using U-Net [48]. Contrary to
(e) accurate predictions from the source feature, networks (f) fail
to make correct predictions from the wild-stylized feature even
though the spatial information of the source feature remains the
same. To address this issue, we apply SEL loss to allow networks
to learn task-specific information from the wild-stylized features.

wild-stylized source feature in which the style of the fea-
ture from xs has been swapped with that of the feature from
xw, networks must predict the semantic label ys of xs from
zsw. For this objective, we train networks by minimizing
the following SEL loss:

LSEL = − 1

HW

H∑
h=1

W∑
w=1

K∑
k=1

yshwklog(p
sw
hwk). (12)

Our model learns task-specific information from the wild-
stylized features by applying the SEL loss. This enables our
model to naturally learn domain-generalized semantic in-
formation from various styles.

3.5. Semantic Consistency Regularization
For high generalization capability on unseen domains,

the classifier should capture consistent semantic informa-
tion from features [5, 25], even if there are perturbations in
both the style and content. However, as shown in Figs. 4e
and 4f, the predicted result psw of the wild-stylized source
feature zsw differs from the predicted result ps of the source
feature zs. Although SEL allows networks to learn task-
specific information from zsw, this does not guarantee that
psw and ps are identical. To address this issue, we propose
SCR that regularizes networks to capture consistent seman-
tic information even when both the content and style of
the source domain are extended to the wild. SCR aims to
train networks so that the predicted probability distributions
psw = ϕcls(z

sw) from the wild-stylized source features get
closer to the ps = ϕcls(z

s) from the source features. To this
end, we adapt the Kullback-Leibler (KL) divergence loss as

LSCR = − 1

HW

H∑
h=1

W∑
w=1

K∑
k=1

pshwklog
pshwk

pswhwk

. (13)

With the SCR loss, our model learns consistent semantic
information even with perturbations of style and content by
the proposed wild extension methods.
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4. Experiments
4.1. Datasets

Real semantic segmentation datasets. Cityscapes [10],
BDD100K [61] and Mapillary [37] consist of 2975, 7000,
and 18000 images for train set and 500, 1000, and 2000 for
validataion set. We consider 19 classes that are compatible
with other datasets. In all of the tables, C, B, and M denote
Cityscapes, BDD100K, and Mapillary, respectively.

Synthetic semantic segmentation datasets. GTAV [46]
contains 24966 images rendered from the Grand Theft Auto
V game engine. It has 12403, 6382, and 6181 images for
train, validation, and test sets, respectively. SYNTHIA [49]
contains 9400 images and we split it into 6580 and 2820 im-
ages for train and validation sets, following [7]. In all tables,
G and S denote GTAV and SYNTHIA, respectively.

Wild dataset. ImageNet [11] is a large-scale image classi-
fication dataset used for network pre-training in most stud-
ies. In this paper, we use images without class labels as wild
domain data. The generalization performance according to
the number of images used for training our WildNet is pre-
sented in Table 6a.

4.2. Experimental Setup

We conduct extensive experiments over five different se-
mantic segmentation datasets and report the mean intersec-
tion over union (mIoU) score on several domain generaliza-
tion scenarios: GTAV→{Cityscapes, BDD100K, Mapillary,
SYNTHIA, GTAV} and Cityscapes→{GTAV, BDD100K,
Mapillary, SYNTHIA, Cityscapes}. For fair comparisons
with other DG methods, we re-implement IBN-Net [41] and
RobustNet [7] on our baseline models and † denotes our re-
implemented models. Our model is trained on one source
domain train set (GTAV or Cityscapes) and validated on five
domain validation sets (four unseen domains and one seen
domain). To show the overall domain generalization perfor-
mance, we additionally report the average value of mIoU
on five domain validation sets (Avg). In all of the tables, the
best results for each domain are marked in bold.

4.3. Implementation Details

We adapt ResNet-50, ResNet-101 [19], and VGG-
16 [52] with DeepLabV3+ [2] as segmentation networks,
and all backbones are pre-trained on ImageNet [11]. In the
ResNet-based models, we use the SGD optimizer [47] with
a momentum of 0.9 and weight decay of 5e-4. The initial
learning rate is set to 2.5e-3 and is decreased using the poly-
nomial policy with a power of 0.9. We train the models for
60K iterations with a batch size of 8. In the VGG-based
models, we use the Adam optimizer [28] with a momentum
of (0.9, 0.99). The initial learning rate is set to 1e-5 and the
batch size is set to 8. Following [7], we apply random scal-

Methods C B M S G Avg

Baseline [41] 22.20 - - - 61.00 -
IBN-Net [41] 29.60 - - - 64.20 -

Baseline [62] 32.45 26.73 25.66 - - -
DRPC [62] 37.42 32.14 34.12 - - -

Baseline [4] 23.29 - - - - -
ASG [4] 31.89 - - - - -

Baseline [7] 28.95 25.14 28.18 26.23 73.45 36.39
RobustNet [7] 36.58 35.20 40.33 28.30 72.10 42.50

Baseline [45] 31.70 - - - - -
GLTR [45] 38.60 - - - - -

Baseline 35.16 29.71 31.29 27.97 71.17 39.06
†IBN-Net [41] 36.52 34.18 38.74 30.41 70.78 42.12
†RobustNet [7] 38.78 35.64 40.38 28.97 70.16 42.78
WildNet (Ours) 44.62 38.42 46.09 31.34 71.20 46.33

Table 1. Comparison of mIoU(%) using ResNet-50 as backbone
under the domain generalization setting G→{C, B, M, S, G}.

Methods C B M S G Avg

Baseline [62] 33.56 27.76 28.33 - - -
DRPC [62] 42.53 38.72 38.05 - - -

Baseline [22] 33.40 27.30 27.90 - - -
FSDR [22] 44.80 41.20 43.40 - - -

Baseline [45] 34.00 28.10 28.60 - - -
GLTR [45] 43.70 39.60 39.10 - - -

Baseline 35.73 34.06 33.42 29.06 71.79 40.81
†IBN-Net [41] 37.68 36.64 36.75 30.84 70.39 42.46
†RobustNet [7] 37.26 38.66 38.09 30.17 70.53 42.94
WildNet (Ours) 45.79 41.73 47.08 32.51 71.91 47.81

Table 2. Comparison of mIoU(%) using ResNet-101 as backbone
under the domain generalization setting G→{C, B, M, S, G}.

ing within a range of [0.5, 2.0] and random cropping with
a size of 768×768. The output size of the projection head
is 192×192 and we use uniformly sampled 64×64 size fea-
ture maps for CEL to prevent memory issues. For the diver-
sity of the wild content dictionary, the wild feature maps are
stored after uniform sampling with a size of 16×16. The FS
layer replaces first batch normalization and is added imme-
diately after the addition operation of the first two residual
blocks in ResNet, and it added right after the first ReLU af-
ter the first three maxpool layers in VGG. After training, all
FS layers, projection head, and wild-content dictionary are
removed, and our model can be applied to multiple unseen
domains without further training on the target domains.

4.4. Comparison with DG methods

We compare our results with existing DG methods: IBN-
Net [41], DRPC [62], ASG [4], FSDR [22], RobustNet [7],
and GLTR [45]. Table 1 shows the generalization perfor-
mance of the ResNet-50 model trained on GTAV. We eval-
uate models on five validation sets consisting of four un-
seen domains, including the Cityscapes, BDD100K, Map-
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Methods C B M S G Avg

Baseline [62] 30.04 24.59 26.63 - - -
DRPC [62] 36.11 31.56 32.25 - - -

Baseline [4] 19.89 - - - - -
ASG [4] 31.47 - - - - -

Baseline [22] - - - - - -
FSDR [22] 38.30 34.40 37.60 - - -

Baseline [45] 31.40 - - - - -
GLTR [45] 37.20 - - - - -

Baseline 24.68 26.41 23.60 24.73 66.36 33.16
†IBN-Net [41] 30.25 30.09 31.87 26.22 65.47 36.78
†RobustNet [7] 30.13 29.22 33.96 26.16 64.73 36.84
WildNet (Ours) 39.18 34.49 40.75 27.25 64.57 41.25

Table 3. Comparison of mIoU(%) using VGG-16 as backbone un-
der the domain generalization setting G→{C, B, M, S, G}.

Methods G B M S C Avg

Baseline [41] 29.40 - - - 64.50 -
IBN-Net [41] 37.90 - - - 67.00 -

Baseline [7] 42.55 44.96 51.68 23.29 77.51 48.00
RobustNet [7] 45.00 50.73 58.64 26.20 76.41 51.40

Baseline 40.50 42.35 20.67 8.08 76.30 37.58
†IBN-Net [41] 45.28 46.61 56.78 26.41 75.47 50.11
†RobustNet [7] 45.28 48.21 56.97 26.59 74.91 50.39
WildNet (Ours) 47.01 50.94 58.79 27.95 75.59 52.06

Table 4. Comparison of mIoU(%) using ResNet-50 as backbone
under the domain generalization setting C→{G, B, M, S, C}.

Lorig LCEL LSEL LSCR C B M S G Avg
✓ 35.16 29.71 31.29 27.97 71.17 39.06
✓ ✓ 41.25 35.95 40.06 31.26 68.75 43.46
✓ ✓ ✓ 43.61 38.69 43.17 31.40 70.52 45.48
✓ ✓ ✓ ✓ 44.62 38.42 46.09 31.34 71.20 46.33

Table 5. Effect of the proposed losses on the domain generaliza-
tion setting G→{C,B,M,S,G} using ResNet-50 as backbone in
mIoU(%). Losses Lorig , LCEL, LSEL, and LSCR are defined
in Eq. (1), Eq. (11), Eq. (12), and Eq. (13), respectively.

illary, and SYNTHIA datasets, and one seen domain of
GTAV. To demonstrate the high generalization ability over
multiple domains, we also report the average value of the
mIoU on the five domains. Our WildNet shows remark-
ably superior generalization capabilities, significantly out-
performing other methods in all unseen target domains ex-
cept the source domain. In particular, compared with the
re-implemented results, we demonstrate that extending both
the content and style is more effective in learning domain-
generalized information than removing the domain-specific
style. Given in Tables 2 and 3, we achieve superior gen-
eralization ability with ResNet-101 and VGG-16 models.
Our model trained on Cityscapes also outperforms other DG
methods as shown in Table 4. Extensive comparative exper-
iments of different backbones on various domains demon-
strate the superiority of our model.

4.5. Ablation Studies

In this subsection, extensive experiments with ResNet-
50 model on the DG scenario from GTAV to Cityscapes,
BDD100K, Mapillary, SYNTHIA, and GTAV are con-
ducted to study the effectiveness of each component in
the proposed method. Table 5 shows the effect of the pro-
posed losses on domain generalization. The baseline model
trained only with Lorig overfits the source domain and
has poor performance on unseen domains. Even with only
LCEL applied, our model achieves an Avg of 43.46% with
+4.40% improvement. This shows the importance of con-
tent diversification that is overlooked in many studies. Fur-
ther, we make the wild-stylized features learn task-specific
information with LSEL to achieve an Avg of 45.48%, and
regularize the model to learn consistent semantic informa-
tion with LSCR, finally achieving an Avg of 46.33%. Next,
we conduct more ablations for important components.

Number of wild images. In Table 6a, the number of wild
images used to train our model is considered. Even if only
10 wild images are used, the generalization performance is
significantly enhanced by +5.54% compared with the base-
line by preventing overfitting to the source domain. More-
over, the generalization performance of the model gradually
improves as the number of wild images used increases. This
shows that the extension of both content and style to the
wild helps networks to learn domain-generalized semantic
features.

Amount of FS. Table 6b shows the influence of the amount
of FS on generalization performance. By replacing only the
first batch normalization with FS, we can extend contents
and styles to the wild based on diversified stylized features
and improve generalization performance compared to base-
line by +5.23%. Adding FS to some shallow layers boosts
performance further. However, applying FS to deeper layers
degrades performance slightly, as semantic content should
be captured more important than style as the layer deepens.
A suitable amount of FS, which does not disturb the se-
mantic information, helps to train the generalized model by
augmenting the source features to have various wild styles.

Size of wild content dictionary. Table 6c shows sensitiv-
ity to the size of the wild content dictionary. Extending
the source content to the wild improves generalization per-
formance, and even when extended to wild content within
a mini-batch of size 2048 without a content dictionary,
our model achieves higher generalization performance than
without content extension. We take size of 393216.

FS with wild style. In Table 6d, we show the effect of FS
using statistics of wild features on the generalization per-
formance of the model. To apply FS without the help of the
wild, the mean and standard deviation of the source features
were multiplied by random values in the range [0.5, 1.5] and
then used instead of the statistics of the wild features. The
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Num. C B M S G Avg

Baseline 35.16 29.71 31.29 27.97 71.17 39.06
10 42.43 36.82 42.15 30.66 70.92 44.60
100 43.29 37.71 43.93 30.67 70.93 45.31
1000 43.70 38.27 43.56 30.80 70.94 45.45
10000 43.87 37.98 44.19 31.04 70.85 45.59
All 44.62 38.42 46.09 31.34 71.20 46.33

(a) Number of wild images used in the training process.

Residual
Groups C B M S G Avg

Baseline 35.16 29.71 31.29 27.97 71.17 39.06
1 43.09 35.28 41.36 30.51 71.19 44.29
1-2 43.43 36.90 41.34 30.36 71.33 44.67
1-3 44.62 38.42 46.09 31.34 71.20 46.33
1-4 44.03 37.83 43.39 30.24 70.45 45.19
1-5 43.49 34.91 43.26 30.00 70.05 44.34

(b) FS applied to different amounts of residual groups.

Size C B M S G Avg

None 43.85 38.64 42.70 28.62 71.07 44.98
2048 43.64 38.51 43.94 29.10 71.14 45.27
49152 43.81 39.01 44.97 29.41 71.44 45.73
393216 44.62 38.42 46.09 31.34 71.20 46.33

(c) Size of the wild content dictionary.

Methods C B M S G Avg

Baseline 35.16 29.71 31.29 27.97 71.17 39.06
Random 42.67 34.84 38.71 30.36 71.14 43.54
Wild 44.62 38.42 46.09 31.34 71.20 46.33

(d) Effect of FS with the statistics of the wild features.

Methods C B M S G Avg

Random 43.83 38.75 45.10 30.65 71.10 45.89
Uniform 44.62 38.42 46.09 31.34 71.20 46.33

(e) Comparison of sampling methods for CEL.

Table 6. Ablation Study. For each setting, we report mIoU(%) using ResNet-50 as backbone in DG scenario: G→{C,B,M,S,G}.

sky person rider bicycle veg pole car road

Figure 5. Visualization of extended wild contents. More visualiza-
tions are available in the supplementary material.

random FS improves performance compared to baseline by
+4.48%, which shows the importance of diversifying styles.
Furthermore, wild FS demonstrates that learning a natural
style of the wild is much better with a gain of +7.27%.

Sampling methods. By using sampled feature maps, CEL
stores various wild contents in the fixed-size dictionary
and reduces memory consumption due to pixel-level con-
trastive loss calculations. Since two adjacent pixels have
almost similar semantic information, uniform sampling
makes learning more diverse contents than random sam-
pling, leading to high generalization performance as shown
in Table 6e.

5. Discussion
5.1. Qualitative Analysis

To analyze the wild content extension, we visualize
the wild contents closest to the stylized source contents
in Fig. 5. As can be seen in the figure, the source content
is extended to wild content with semantic information sim-
ilar to itself, e.g., the road under the car, the wheel of the
bicycle, and the head of a man wearing a hat. Our model
learns domain-generalized features by inducing source con-
tent closer to these wild content in the feature space. With

learning various wild contents, WildNet makes reliable pre-
dictions on unseen contents. Figs. 1 and 4 show segmenta-
tion results and visualization of wild-stylized features, and
further analysis is provided in the supplementary material.

5.2. Limitations and Future Works

We have shown that the source content extends to wild
content with semantic information similar to itself. How-
ever, similar semantic information in the two contents does
not guarantee that the classes of the two contents are al-
ways the same, as observed for the rider of Fig. 5. Extending
the rider with the hat to the person with the hat may bridge
between the rider-class and person-class. Our future works
will involve positive content selection using predicted class
probabilities on wild images and negative content extension
to further boost the class discrimination ability.

6. Conclusion
We presented WildNet which exploits unlabeled wild

images for domain-generalized semantic segmentation. Our
approach effectively extends style and content from source
to wild, resulting in drastic performance improvement even
we leverage 10 wild images. In contrast to previous stud-
ies that exploit generalization cues only from style, we ad-
ditionally exploit the potential to generalize domain from
content. We thoroughly ablated to demonstrate the efficacy
of our WildNet and achieved superior segmentation perfor-
mance under several domain generalization scenarios. We
believe that our approach provides an opportunity to utilize
huge amounts of unlabeled data for domain generalization.
Acknowledgement. This research was supported by
the National Research Foundation of Korea (NRF)
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