
Automated Progressive Learning for Efficient Training of Vision Transformers

Changlin Li1,2,3 Bohan Zhuang3† Guangrun Wang4 Xiaodan Liang5 Xiaojun Chang2 Yi Yang6

1Baidu Research 2ReLER, AAII, University of Technology Sydney
3Monash University 4University of Oxford 5Sun Yat-sen University 6Zhejiang University
changlinli.ai@gmail.com, bohan.zhuang@monash.edu, wanggrun@gmail.com,

xdliang328@gmail.com, xiaojun.chang@uts.edu.au, yangyics@zju.edu.cn

Abstract

Recent advances in vision Transformers (ViTs) have
come with a voracious appetite for computing power, high-
lighting the urgent need to develop efficient training meth-
ods for ViTs. Progressive learning, a training scheme where
the model capacity grows progressively during training, has
started showing its ability in efficient training. In this paper,
we take a practical step towards efficient training of ViTs
by customizing and automating progressive learning. First,
we develop a strong manual baseline for progressive learn-
ing of ViTs, by introducing momentum growth (MoGrow)
to bridge the gap brought by model growth. Then, we pro-
pose automated progressive learning (AutoProg), an effi-
cient training scheme that aims to achieve lossless accel-
eration by automatically increasing the training overload
on-the-fly; this is achieved by adaptively deciding whether,
where and how much should the model grow during pro-
gressive learning. Specifically, we first relax the optimiza-
tion of the growth schedule to sub-network architecture op-
timization problem, then propose one-shot estimation of
the sub-network performance via an elastic supernet. The
searching overhead is reduced to minimal by recycling the
parameters of the supernet. Extensive experiments of ef-
ficient training on ImageNet with two representative ViT
models, DeiT and VOLO, demonstrate that AutoProg can
accelerate ViTs training by up to 85.1% with no perfor-
mance drop.1

1. Introduction
With powerful high model capacity and large amounts of

data, Transformers have dramatically improved the perfor-
mance on many tasks in computer vision (CV) [54,69]. The
pioneering ViT model [21], scales the model size to 1,021
billion FLOPs, 250× larger than ResNet-50 [31]. Through
pre-training on the large-scale JFT-3B dataset [86], the re-

†Corresponding author.
1Code: https://github.com/changlin31/AutoProg.

0 50 100 150
Runtime (GPU hours)

0

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

DeiT-S
DeiT-B

0 100 200
Runtime (GPU hours)

0

20

40

60

80

VOLO D1
VOLO D2
VOLO D3
VOLO D4
VOLO D5

Figure 1. Accuracy of ViTs (DeiT [69] and VOLO [85]) during
training. Smaller ViTs converge faster in terms of runtime2. Mod-
els in the legend are sorted in increasing order of model size.

Model CO2e (lbs)3 ImageNet Acc. (%)

ResNet-50 [21, 31] 267 77.54
BERTbase [18] 1,438 -
Avg person per year [62] 11,023 -
ViT-H/14 [21] 22,793 88.55
CoAtNet [15] 183,256 90.88

Table 1. The growth in training scale of vision models results in
considerable growth of environmental costs. The CO2e of human
life and a language model, BERT [18] are also included for com-
parison. The results of ResNet-50, ViT-H/14 are from [21], and
trained on JFT-300M [63]. CoAtNet is trained on JFT-3B [86].

cently proposed ViT model, CoAtNet [15], reached state-
of-the-art performance, with about 8× training cost of the
original ViT. The rapid growth in training scale inevitably
leads to higher computation cost and carbon emissions. As
shown in Tab. 1, recent breakthroughs of vision Transform-
ers have come with a voracious appetite for computing
power, resulting in considerable growth of environmental
costs. Thus, it becomes extremely important to make ViTs
training tenable in computation and energy consumption.

In mainstream deep learning training schemes, all the
network parameters participate in every training iteration.
However, we empirically found that training only a small

2We refer runtime to the total GPU hours used in forward and backward
pass of the model during training.

3CO2 equivalent emissions (CO2e) are calculated following [56], using
U.S. average energy mix, i.e., 0.429 kg of CO2e/KWh.

12486

part of the parameters yields comparable performance in
early training stages of ViTs. As shown in Fig. 1, smaller
ViTs converge much faster in terms of runtime (though they
would be eventually surpassed given enough training time).
The above observation motivates us to rethink the efficiency
bottlenecks of training ViTs: does every parameter, every
input element need to participate in all the training steps?

Here, we make the Growing Ticket Hypothesis of ViTs:
the performance of a large ViT model, can be reached
by first training its sub-network, then the full network af-
ter properly growing, with the same total training itera-
tions. This hypothesis generalizes the lottery ticket hypoth-
esis [24] by adding a finetuning procedure at the full model
size, changing its scenario from efficient inference to effi-
cient training. By iteratively applying this hypothesis to the
sub-network, we have the progressive learning scheme.

Recently, progressive learning has started showing its
capability in accelerating model training. In the field of
NLP, progressive learning can reduce half of BERT pre-
training time [25]. Progressive learning also shows the abil-
ity to reduce the training cost for convolutional neural net-
works (CNNs) [66]. However, these algorithms differ sub-
stantially from each other, and their generalization ability
among architectures is not well studied. For instance, we
empirically observed that progressive stacking [25] could
result in significant performance drop (about 1%) on ViTs.

To this end, we take a practical step towards sustainable
deep learning by generalizing and automating progressive
learning on ViTs. To the best of our knowledge, we are
among the pioneering works to tackle the efficiency bot-
tlenecks of training ViT models. We formulate progres-
sive learning with its two components, growth operator and
growth schedule, and study each component separately by
controlling the other.

First, we present a strong manual baseline for progres-
sive learning of ViTs by developing the growth operator.
To ablate the optimization of the growth operator, we in-
troduce a uniform linear growth schedule in two dimen-
sions of ViTs, i.e., number of patches and network depth.
To bridge the gap brought by model growth, we propose
momentum growth (MoGrow) operator with an effective
momentum update scheme. Moreover, we present a novel
automated progressive learning (AutoProg) algorithm that
achieves lossless training acceleration by automatically ad-
justing the training overload. Specifically, we first relax the
optimization of the growth schedule to sub-network archi-
tecture optimization problem. Then, we propose one-shot
estimation of sub-network performance via training an elas-
tic supernet. The searching overhead is reduced to minimal
by recycling the parameters of the supernet.

The proposed AutoProg achieves remarkable training ac-
celeration for ViTs on ImageNet. Without manually tuning,
it consistently speeds up different ViTs training by more

than 40%, on disparate variants of DeiT and VOLO, includ-
ing DeiT-tiny and VOLO-D2 with 72.2% and 85.2% Im-
ageNet accuracy, respectively. Remarkably, it accelerates
VOLO-D1 [85] training by up to 85.1% with no perfor-
mance drop. While significantly saving training time, Au-
toProg achieves competitive results when testing on larger
input sizes and transferring to other datasets compared to
the regular training scheme.

Overall, our contributions are as follows:
• We develop a strong manual baseline for progressive

learning of ViTs, by introducing MoGrow, a momen-
tum growth strategy to bridge the gap brought by
model growing.

• We propose automated progressive learning (Auto-
Prog), an efficient training scheme that aims to achieve
lossless acceleration by automatically adjusting the
growth schedule on-the-fly.

• Our AutoProg achieves remarkable training accelera-
tion (up to 85.1%) for ViTs on ImageNet, performing
favourably against the original training scheme.

2. Related Work
Progressive Learning. Early works on progressive learn-
ing [3, 23, 32, 37, 43, 59, 60, 70] mainly focus on circum-
venting the training difficulty of deep networks. Recently,
as training costs of modern deep models are becoming
formidably expensive, progressive learning starts to reveal
its ability in efficient training. Net2Net [12] and Network
Morphism [73–75] studied how to accelerate large model
training by properly initializing from a smaller model. In
the field of NLP, many recent works accelerate BERT pre-
training by progressively stacking layers [25, 44, 79], drop-
ping layers [88] or growing in multiple network dimen-
sions [27]. Similar frameworks have also been proposed
for efficient training of other models [71, 80]. As these al-
gorithms remain hand-designed and could perform poorly
when transferred to other networks, we propose to automate
the design process of progressive learning schemes.
Automated Machine Learning. Automated Machine
Learning (AutoML) aims to automate the design of model
structures and learning methods from many aspects, in-
cluding Neural Architecture Search (NAS) [2, 52, 64, 90],
Hyper-parameter Optimization (HPO) [4, 5], AutoAug-
ment [13, 14], AutoLoss [49, 77, 78], etc. By relaxing the
bi-level optimization problem in AutoML, there emerges
many efficient AutoML algorithms such as weight-sharing
NAS [6, 9, 29, 45, 53, 57, 58], differentiable AutoAug [51],
etc. These methods share network parameters in a jointly
optimized supernet for different candidate architectures or
learning methods, then rate each of these candidates accord-
ing to its parameters inherited from the supernet.

Attempts have also been made on automating progres-
sive learning. AutoGrow [76] proposes to use a manually-
tuned progressive learning scheme to search for the optimal

12487

network depth, which is essentially a NAS method. Lip-
Grow [20] could be the closest one related to our work,
which adaptively decide the proper time to double the depth
of CNNs on small-scale datasets, based on Lipschitz con-
straints. Unfortunately, LipGrow can not generalize easily
to ViTs, as self-attention is not Lipschitz continuous [38]. In
contrast, we solve the automated progressive learning prob-
lem from a traditional AutoML perspective, and fully auto-
mate the growing schedule by adaptively deciding whether,
where and how much to grow. Besides, our study is con-
ducted directly on large-scale ImageNet dataset, in accord
with practical application of efficient training.
Elastic Networks. Elastic Networks, or anytime neural
networks, are supernets executable with their sub-networks
in various sizes, permitting instant and adaptive accuracy-
efficiency trade-offs at runtime. Earlier works on Elastic
Networks can be divided into Networks with elastic depth
[34,35,41], and networks with elastic width [42,82,84]. The
success of elastic networks is followed by their two main
applications, one-shot single-stage NAS [8, 11, 81, 83] and
dynamic inference [35, 47, 48, 50, 72], where emerges nu-
merous elastic networks on multiple dimensions (e.g., ker-
nel size of CNNs [8, 83], head numbers [11, 33] and patch
size [72] of Transformers). From a new perspective, we
present an elastic Transformer serving as a sub-network per-
formance estimator during growth for automated progres-
sive learning.

3. Progressive Learning of Vision Transform-
ers

In this section, we aim to develop a strong manual base-
line for progressive learning of ViTs. We start by formulat-
ing progressive learning with its two main factors, growth
schedule and growth operator in Sec. 3.1. Then, we present
the growth space that we use in Sec. 3.2. Finally, we explore
the most suitable growth operator of ViTs in Sec. 3.3.
Notations. We denote scalars, tensors and sets (or se-
quences) using lowercase, bold lowercase and uppercase
letters (e.g., n, x and Ψ). For simplicity, we use {xn} to
denote the set {xn}|n|n=1 with cardinality |n|, similarly for
a sequence (xn)

|n|
n=1. Please refer to Tab. 2 for a vis-to-vis

explanation of the notations we used.

3.1. Progressive Learning
Progressive learning gradually increases the training

overload by growing among its sub-networks following a
growth schedule Ψ, which can be denoted by a sequence
of sub-networks with increasing sizes for all the training
epochs t. In practice, to ensure the network is sufficiently
optimized after each growth, it is a common practice [27,66,
79] to divide the whole training process into |k| equispaced
stages with τ = |t|/|k| epochs in each stage. Thus, the

growth schedule can be denoted as Ψ =
(
ψk

)|k|

k=1
; the final

Notation Type Description

t, |t| scalar training epoch, total training epochs
k, |k| scalar training stage, total training stages
τ scalar epochs per stage
Ψ sequence growth schedule
ζ function growth operator
ψ network sub-network
Φ network supernet
ω, |ω| parameter network parameters, number of parameters
Ω, Λ set the whole growth space, partial growth space
∗, ⋆ notation optimal, relaxed optimal

Table 2. Notations describing progressive learning and automated
progressive learning.

Algorithm 1: Progressive Learning
Input:
Ψ: the growth schedule; ζ: the growth operator;
|t|: total training epochs; τ : epochs per stage;
Randomly initialized parameters ω;
for t ∈ [1, |t|] do

if t = Nτ, N ∈ N+ then
Switch to the sub-network of next stage ψ ← Ψ[t/τ];
Initialize parameters by growth operator ω ← ζ(ω);

end
Train ψ(ω) over all the training data.

end

one is always the complete model. Note that stages with dif-
ferent lengths can be achieved by using the sameψ in differ-
ent numbers of consecutive stages, e.g., Ψ = (ψa,ψb,ψb),
where ψa,ψb are two different sub-networks.

When growing a sub-network to a larger one, the param-
eters of the larger sub-network are initialized by a growth
operator ζ, which is a reparameterization function that
maps the weights ωs of a smaller network to ωℓ of a larger
one by ωℓ = ζ(ωs). The whole progress of progressive
learning is summarized in Algorithm 1.

Let L be the target loss function, and T be the total run-
time; then progressive learning can be formulated as:

min
ω,Ψ,ζ

{
L(ω,Ψ, ζ), T (Ψ)

}
, (1)

where ω denotes the parameters of sampled sub-networks
during the optimization. Growth schedule Ψ and growth
operator ζ have been explored for language Transform-
ers [25, 27]. However, ViTs differ considerably from their
linguistic counterparts. The huge difference on task objec-
tive, data distribution and network architecture could lead to
drastic difference in optimal Ψ and ζ. In the following parts
of this section, we mainly study the growth operator ζ for
ViTs by fixing Ψ as a uniform linear schedule in a growth
space Ω, and leave automatic exploration of Ψ to Sec. 4.

3.2. Growth Space in Vision Transformers
The model capacity of ViTs are controlled by many fac-

tors, such as number of patches, network depth, embedding
dimensions, MLP ratio, etc. In analogy to previous discov-
eries on fast compound model scaling [19], we empirically
find that reducing network width (e.g., embedding dimen-

12488

Patch Embedding

Classifier

Patch Embedding

Classifier

Patch Embedding

Classifier

RandInit

RandInit

(a) RandInit. (b) Stacking. (c) Interpolation.

Patch Embedding

Classifier

Patch Embedding

Classifier

(d) MoGrow.

momentum
update

Figure 2. Variants of the growth operator ζ. ωA and ωB denote the parameters of two Transformer blocks in the original small networkψs.
(a) RandInit randomly initializes newly added layers; (b) Stacking duplicates the original layers and directly stacks the duplicated ones on
top of them; (c) Interpolation interpolate new layers of ψℓ in between original ones and copy the weights from their nearest neighbor in
ψs. (d) Our proposed MoGrow is build upon Interpolation, by coping parameters ω̃ from the momentum updated ensemble of ψs.

sions) yields relatively smaller wall-time acceleration on
modern GPUs when comparing at the same flops. Thus, we
mainly study number of patchs (n2) and network depth (l),
leaving other dimensions for future works.
Number of Patches. Given patch size p × p, input size
r × r, the number of patches n × n is determined by n2 =
r2/p2. Thus, by fixing the patch size, reducing number of
patches can be simply achieved by down-sampling the input
image. However, in ViTs, the size of positional encoding is
related to n. To overcome this limitation, we adaptively
interpolate the positional encoding to match with n.
Network Depth. Network depth (l) is the number of Trans-
former blocks or its variants (e.g., Outlooker blocks [85]).
Uniform Linear Growth Schedule. To ablate the opti-
mization of growth operator ζ, we fix growth schedule Ψ
as a uniform linear growth schedule. To be specific, “uni-
form” means that all the dimensions (i.e., n and l) are scaled
by the same ratio st at the t-th epoch; “linear” means that
the ratio s grows linearly from s1 to 1. This manual sched-
ule has only one hyper-parameter, the initial scaling ratio s1,
which is set to 0.5 by default. With this fixed Ψ, the opti-
mization of progressive learning in Eq. (1) is simplified to:

min
ω,ζ
L(ω, ζ), (2)

which enables direct optimization of ζ by comparing the
final accuracy after training with different ζ.

3.3. On the Growth of Vision Transformers
Fig. 2 (a)-(c) depict the main variants of the growth op-

erator ζ that we compare, which cover choices from a wide
range of the previous works, including RandInit [59], Stack-
ing [25] and Interpolation [10,20]. More formal definitions
of these schemes can be found in the supplementary mate-
rial. Our empirical comparison (in Sec. 5.3) shows Interpo-
lation growth is the most suitable scheme for ViTs.

Unfortunately, growing by Interpolation changes the
original function of the network. In practice, function per-
turbation brought by growth can result in significant perfor-
mance drop, which is hardly recovered in subsequent train-
ing steps. Early works advocate for function-preserving

growth operators [12, 75], which we denote by Identity.
However, we empirically found growing by Identity greatly
harms the performance on ViTs (see Sec. 5.3). Differently,
we propose a growth operator, named Momentum Growth
(MoGrow), to bridge the gap brought by model growth.
Momentum Growth (MoGrow). In recent years, a
growing number of self-supervised [26, 28, 30] and semi-
supervised [40, 68] methods learn knowledge from the his-
torical ensemble of the network. Inspired by this, we pro-
pose to transfer knowledge from a momentum network dur-
ing growth. This momentum network has the same archi-
tecture with ψs and its parameters ω̃s are updated with the
online parameters ωs in every training step by:

ω̃s ← mω̃s + (1−m)ωs, (3)
where m is a momentum coefficient set to 0.998. As the the
momentum network usually has better generalization abil-
ity and better performance during training, loading parame-
ters from the momentum network would help the model by-
pass the function perturbation gap. As shown in Fig. 2 (d),
MoGrow is proposed upon Interpolation growth by main-
taining a momentum network, and directly copying from
it when performing network growth. MoGrow operator
ζMoGrow can be simply defined as:

ζMoGrow(ωs) = ζInterpolation
(
ω̃s

)
. (4)

4. Automated Progressive Learning
In this section, we focus on optimizing the growth sched-

ule Ψ by fixing the growth operator as ζMoGrow. We first for-
mulate the multi-objective optimization problem of Ψ, then
propose our solution, called AutoProg, which is introduced
in detail by its two estimation steps in Sec. 4.2 and Sec. 4.3.

4.1. Problem Formulation
The problem of designing growth schedule Ψ for ef-

ficient training is a multi-objective optimization prob-
lem [16]. By fixing ζ in Eq. (1) as our proposed ζMoGrow,
the objective of designing growth schedule Ψ is:

min
ω,Ψ

{
L(ω,Ψ), T (Ψ)

}
. (5)

Note that multi-objective optimization problem has a

12489

Patches

Classifier Classifier

momentum
update

Classifier Classifier

I. Grow II. Supernet Train & Search III. Train

Classifier Classifier

Patches Patches Patches Patches Patches

Last optimal sub-network Elastic Supernet Optimal sub-network

Figure 3. Pipeline of the k-th stage of automated progressive learning. In the beginning of the stage, the last optimal sub-network ψ⋆
k−1

first grows to the Elastic Supernet Φk by ω̂ = ζ(ω⋆); then, we search for the optimal sub-network ψ⋆
k after supernet training; finally, the

sub-network is trained in the remaining epochs of this stage. The whole process of AutoProg is summarized in Algorithm 2.

Algorithm 2: Automated Progressive Learning
Input:
ζ: the growth operator;
|t|: total training epochs; τ : epochs per stage;
Random initialize parameters ω;
for t ∈ [1, |t|] do

if t = Nτ, N ∈ N+ then
Switch optimizers to Elastic Supernet Φ;
Initialize supernet parameters ω̂ ← ζ(ω);

end
if t = Nτ + 2, N ∈ N+ then

Search for the optimal sub-network ψ by Eq. (9);
Switch to the optimal sub-network ψ ← ψ⋆;
Inherit parameters from the supernet ω ← ω̂;

end
Train ψ(ω) or supernet Φ(ω̂) over all the training data.

end

set of Pareto optimal [16] solutions which can be approxi-
mated using customized weighted product, a common prac-
tice used in previous Auto-ML algorithms [64, 65]. In the
scenario of progressive learning, the optimization objective
can be defined as:

min
ω,Ψ
L(ω,Ψ) · T (Ψ)α, (6)

where α is a balancing factor dynamically chosen by bal-
ancing the scores for all the candidate sub-networks.
4.2. Automated Progressive Learning by Optimiz-

ing Sub-Network Architectures
Denoting |ψ| the number of candidate sub-networks, and

|k| the number of stages, the number of candidate growth
schedule is thus |ψ||k|. As optimization of Eq. (6) contains
optimization of network parameters ω, to get the final loss,
a full |t| epochs training with growth schedule Ψ is required:

Ψ∗ = argmin
Ψ

L
(
ω∗(Ψ);x

)
· T (Ψ)α

s.t. ω∗(Ψ) = argmin
ω

L(Ψ,ω;x).
(7)

Thus, performing an extensive search over the higher level
factor Ψ in this bi-level optimization problem has complex-
ity O(|ψ||k| · |t|). Its expensive cost deviates from the orig-
inal intention of efficient training.

To reduce the search cost, we relax the original objec-
tive of growth schedule search to progressively deciding
whether, where and how much should the model grow, by
searching the optimal sub-network architecture ψ∗

k in each
stage k. Thus, the relaxed optimal growth schedule can be

denoted as Ψ⋆ =
(
ψ∗

k

)|k|

k=1
.

In sparse training and efficient Auto-ML algorithms, it
is a common practice to estimate future ranking of mod-
els with current parameters and their gradients [22, 67], or
with parameters after a single step of gradient descent up-
date [9, 51, 53]. However, these methods are not suitable
for progressive training, as the network function is drasti-
cally changed and is not stable after growth. We empiri-
cally found that the network parameters adapt quickly after
growth and are already stable after one epoch of training. To
make a good tradeoff between accuracy and training speed,
we estimate the performance of each sub-networkψ in each
stage by their training loss after the first two training epochs
in this stage. Denoting ω⋆ the sub-network parameters ob-
tained by two epochs of training, the optimal sub-network
can be searched by:

ψ∗
k = argmin

ψk∈Λk

L
(
ω⋆(ψk);x

)
· T (ψk)

α,

where Λk =
{
ψ ∈ Ω

∣∣∣ |ω(ψ)| ≥ |ω(ψk)|
}
,

(8)

where Λk denotes the growth space of the k-th stage, con-
taining all the sub-networks that are larger than or equal to
the last optimal sub-network in terms of the number of pa-
rameters |ω|.

Overall, by relaxing the original optimization problem in
Eq. (7) to Eq. (8), we only have to train each of the |Λk| sub-
networks for two epochs in each of the |k| stages. Thus, the
search complexity is reduced exponentially from O(|ψ||k| ·
|t|) to O(|Λk| · |k|), where |Λk| ≤ |ψ| and |k| ≤ |t|.

4.3. One-shot Estimation of Sub-Network Perfor-
mance via Elastic Supernet

Though we relax the optimization problem with signifi-
cant search cost reduction, obtainingω⋆ in Eq. (8) still takes

12490

2|Λk| epochs for each stage, which will bring huge search-
ing overhead to the progressive learning. The inefficiency
of loss prediction is caused by the repeated training of sub-
networks weight ω, with bi-level optimization being its na-
ture. To circumvent this problem, we propose to share and
jointly optimize sub-network parameters in Λk via an Elas-
tic Supernet with Interpolation.
Elastic Supernet with Interpolation. An Elastic Supernet
Φ(ω̂) is a weight-nesting network parameterized by ω̂, and
is able to execute with its sub-networks {ψ}. Here, we give
the formal definition of weight-nesting:

Definition 1 (weight-nesting) For any pair of sub-networks
ψa(ωa) and ψb(ωb) in supernet Φ, where |ωa| ≤ |ωb|, if
ωa ⊆ ωb is always satisfied, then Φ is weight-nesting.

In previous works, a network with elastic depth is usually
achieved by using the first layers to form sub-networks [11,
35, 83]. However, using this scheme after growing by In-
terpolation or MoGrow will cause inconsistency between
expected sub-networks after growth and sub-networks in Φ.

To solve this issue, we present an Elastic Supernet with
Interpolation, with optionally activated layers interpolated
in between always activated ones. As shown in Fig. 3, be-
ginning from the smaller network in the last stage ψ⋆

k−1,
sub-networks in Φ are formed by inserting layers in between
the original layers of ψ⋆

k−1 (starting from the final layers),
until reaching the largest sub-network in Λk.
Training and Searching via Elastic Supernet. By nesting
parameters of all the candidate sub-networks in the Elastic
supernet Φ, the optimization of ω is disentangled from ψ.
Thus, Eq. (8) is further relaxed to

ψ⋆
k = argmin

ψk∈Λk

L
(
ω̂⋆;x

)
· T (ψk)

α

s.t. ω̂⋆ = argmin
ω̂

Eψk∈Λk

{
L(ψk, ω̂;x)

}
,

(9)

where the optimal nested parameters ω̂⋆ can be obtained by
one-shot training of Φ for two epochs. For efficiency, we
train Φ by randomly sampling only one of its sub-networks
in each step (following [11]), instead of four in [81–83].

After training all the candidate sub-networks in the Elas-
tic Supernet Φ concurrently for two epochs, we have the
adapted supernet parameters ω̂⋆ that can be used to estimate
the real performance of the sub-networks (i.e. performance
when trained in isolation). As the sub-network grow space
Λk in each stage is relatively small, we can directly per-
form traversal search in Λk, by testing its training loss with
a small subset of the training data. We use fixed data aug-
mentation to ensure fair comparison, following [46]. Ben-
efiting from parameter nesting and one-shot training of all
the sub-networks in Λk, the search complexity is further re-
duced from O(|Λk| · |k|) to O(|k|).
Weight Recycling. Benefiting from synergy of differ-
ent sub-networks, the supernet converges at a compara-
ble speed to training these sub-networks in isolation. Sim-

Model
Training
scheme

Speedup
runtime

Top-1
(%)

Top-1@288
(%)

100 epochs

DeiT-S [69]
Original - 74.1 74.6
Prog +53.6% 72.6 73.2
AutoProg +40.7% 74.4 74.9

VOLO-D1 [85]

Original - 82.6 83.0
Prog +60.9% 81.7 82.1
AutoProg 0.5Ω +65.6% 82.8 83.2
AutoProg 0.4Ω +85.1% 82.7 83.1

VOLO-D2 [85]
Original - 83.6 84.1
Prog +54.4% 82.9 83.3
AutoProg +45.3% 83.8 84.2

300 epochs

DeiT-Tiny [69] Original - 72.2 72.9
AutoProg +51.2% 72.4 73.0

DeiT-S [69] Original - 79.8 80.1
AutoProg +42.0% 79.8 80.1

VOLO-D1 [85] Original - 84.2 84.4
AutoProg +48.9% 84.3 84.6

VOLO-D2 [85] Original - 85.2 85.1
AutoProg +42.7% 85.2 85.2

Table 3. Main results of efficient training on ImageNet. Accelera-
tions that cause accuracy drop are marked with gray. Best results
are marked with Bold; our method or default settings are high-
lighted in purple . Top-1@288 denotes Top-1 Accuracy when
directly testing on 288×288 input size, without finetuning. Please
refer to the supplementary file for detailed FLOPs and runtime.

ilar phenomenon can be observed in network regulariza-
tion [36, 61], network augmentation [7], and previous elas-
tic models [11, 83, 84]. Motivated by this, the searched
sub-network directly inherits its parameters in the super-
net to continue training. Benefiting from this weight re-
cycling scheme, AutoProg has no extra searching epochs,
since the supernet training epochs are parts of the whole
training epochs. Moreover, as sampled sub-networks are
faster than the full network, these supernet training epochs
take less time than the original training epochs. Thus, the
searching cost is directly reduced from O(|k|) to zero.

5. Experiments
Datasets. We evaluate our method on a large scale
image classification dataset, ImageNet-1K [17] and two
widely used classification datasets, CIFAR-10 and CIFAR-
100 [39], for transfer learning. ImageNet contains 1.2M
train set images and 50K val set images in 1,000 classes.
We use all the training data for progressive learning and su-
pernet training, and use a 50K randomly sampled subset to
calculate training loss for sub-network search.
Architectures. We use two representative ViT architec-
tures, DeiT [69] and VOLO [85] to evaluate the proposed
AutoProg. Specifically, DeiT [69] is a representative stan-
dard ViT model; VOLO [85] is a hybrid architecture com-
prised of outlook attention blocks and transformer blocks.
Implementation Details. For both architectures, we use

12491

0 20 40 60
Runtime (GPU hours)

0

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

DeiT-S, 100 Epochs

Original
Prog
AutoProg

0 50 100 150 200
Runtime (GPU hours)

0

20

40

60

80
DeiT-S, 300 Epochs

Original
AutoProg

0 50 100 150
Runtime (GPU hours)

0

20

40

60

80

VOLO-D1, 100 Epochs

Original
Prog
AutoProg 0.5Ω

AutoProg 0.4Ω

0 200 400
Runtime (GPU hours)

0

20

40

60

80

VOLO-D1, 300 Epochs

Original
AutoProg

Figure 4. Evaluation accuracy of DeiT-S and VOLO-D1 during training with different learning schemes. Curves are not smoothed.

the original training hyper-parameters, data augmentation
and regularization techniques of their corresponding proto-
types [69, 85]. Our experiments are conducted on NVIDIA
3090 GPUs. As the acceleration achieved by our method
is orthogonal to the acceleration of mixed precision train-
ing [55], we use it in both original baseline training and our
progressive learning.
Grow Space Ω. We use 4 stages for progressive learn-
ing. The initial scaling ratio s1 is set to 0.5 or 0.4; the
corresponding grow spaces are denoted by 0.5Ω and 0.4Ω.
By default, we use 0.5Ω for our experiments, unless men-
tioned otherwise. The grow space of n and l are calculated
by multiplying the value of the whole model with 4 eq-
uispaced scaling ratios s ∈ {0.5, 0.67, 0.83, 1.0}, and we
round the results to valid integer values. We use Prog to
denote our manual progressive baseline with uniform linear
growth schedule as described in Sec. 3.2.

5.1. Efficient Training on ImageNet
We first validate the effectiveness of AutoProg on Ima-

geNet. As shown in Tab. 3, AutoProg consistently achieves
remarkable efficient training results on diverse ViT archi-
tectures and training schedules.

First, our AutoProg achieves significant training acceler-
ation over the regular training scheme with no performance
drop. Generally, AutoProg speeds up ViTs training by more
than 45% despite changes on training epochs and network
architectures. In particular, VOLO-D1 trained with Auto-
Prog 0.4Ω achieves 85.1% training acceleration, and even
slightly improves the accuracy (+0.1%). Second, AutoProg
outperforms the manual baseline, the uniform linear grow-
ing (Prog), by a large margin. For instance, Prog scheme
causes severe performance degradation on DeiT-S. Auto-
Prog improves over Prog scheme on DeiT-S by 1.7% on
accuracy, successfully eliminating the performance gap by
automatically choosing the proper growth schedule. Third,
as progressive learning uses smaller input size during train-
ing, one may question its generalization capability on larger
input sizes. We answer this by directly testing the models
trained with AutoProg on 288×288 input size. The results
justify that models trained with AutoProg have comparable
generalization ability on larger input sizes to original mod-

Pretrain Speedup CIFAR-10 CIFAR-100

Original - 99.0 89.5
AutoProg 48.9% 99.0 89.7

Table 4. Transfer learning results of DeiT-S on CIFAR datasets.
The evaluation metric is Top-1 accuracy (%).

els. Remarkably, VOLO-D1 trained for 300 epochs with
AutoProg reaches 84.6% Top-1 accuracy when testing on
288×288 input size, with 48.9% faster training.

The learning curves (i.e., evaluation accuracy during
training) of DeiT-S and VOLO-D1 with different training
schemes are shown in Fig. 4. Autoprog clearly accelerates
the training progress of these two models. Interestingly,
DeiT-S (100 epochs) trained with manual Prog scheme
presents sharp fluctuations after growth, while AutoProg
successfully addresses this issue and eventually reaches
higher accuracy by choosing proper growth schedule.

5.2. Transfer Learning
To further evaluate the transfer ability of ViTs trained

with AutoProg, we conduct transfer learning on CIFAR-10
and CIFAR-100 datasets. We use the DeiT-S model that
is pretrained with AutoProg on ImageNet for finetuning on
CIFAR datasets, following the procedure in [69]. We com-
pare with its counterpart pretrained with the ordinary train-
ing scheme. The results are summarized in Tab. 4. While
AutoProg largely saves training time, it achieves competi-
tive transfer learning results. This proves that AutoProg ac-
celeration on ImageNet pretraining does not harm the trans-
fer ability of ViTs on CIFAR datasets.

5.3. Ablation Study
Growth Operator ζ. We first compare the three growth
operators mentioned in Sec. 3.3, i.e., RandInit [59], Stack-
ing [25] and Interpolation [10,20], by using them with man-
ual Prog scheme on VOLO-D1. As shown in Tab. 5, Inter-
polation growth achieves the best accuracy both after the
first growth and in the final.

Then, we compare two growth operators build upon In-
terpolation scheme, our proposed MoGrow, and Identity,
which is a function-preserving [12, 75] operator that can
be achieved by Interpolation + ReZero [1]. Specifically,

12492

Growth Op. ζ Top-1@Growth (%) Top-1 (%)

Baseline - 82.53

RandInit [59] 60.61 80.02
Stacking [25] 61.50 81.55
Interpolation [10, 20] 61.53 81.78

Identity [12, 75] 61.04 79.32
MoGrow 61.65 81.90

Table 5. Ablation analysis of depth growth operator ζ with the
Prog learning scheme. Top-1@Growth denotes the accuracy after
training for the first epoch of the second stage.

Method Top-1@Growth (%) Top-1 (%)

AutoProg w/o MoGrow 59.41 82.6
AutoProg w/ MoGrow 62.14 82.8

Table 6. Ablation analysis of MoGrow in our AutoProg learning
scheme on VOLO-D1. Top-1@Growth denotes the accuracy of
the supernet after training for the first epoch of the second stage.

ReZero uses a zero-initialized, learnable scalar to scale the
residual modules in networks. Using this technique on
newly added layers can assure the original network func-
tion is preserved. The results are shown in Tab. 5. Contrary
to expectations, we observe that Identity growth largely re-
duces the Top-1 accuracy of VOLO-D1 (-3.21%), probably
because the network convergence is slowed down by the
small scalar; besides, the global minimum of the original
function could be a local minimum in the new network,
which hinders the optimization. On this inferior growth
schedule, our MoGrow still improves over Interpolation by
0.15%, effectively reducing its performance gap.

Previous comparisons are based on the Prog scheme.
Moreover, we also analyze the effect of MoGrow on Au-
toProg. The results are shown in Tab. 6. We observe that
MoGrow largely improves the performance of the supernet
by 2.73%. It also increases the final training accuracy by
0.2%, proving the effectiveness of MoGrow in AutoProg.
Weight Recycling. We further study the effect of weight re-
cycling by training VOLO-D1 using AutoProg. As shown
in Tab. 7, by recycling the weights of the supernet, Auto-
Prog can achieve 12.3% more speedup. Also, benefiting
from the synergy effect in weight-nesting [84], weight recy-
cling scheme does not cause accuracy drop. These results
prove the effectiveness of weight recycling.
Adaptive Regularization. Adaptive Regularization
(AdaReg) for progressive learning is proposed in [66]. It
adaptively change regularization intensity (including Ran-
dAug [14], Mixup [87] and Dropout [61]) according to net-
work capacity of CNNs. Here, we generalize this scheme
to ViTs and study its effect on ViT AutoProg training with
DeiT-S and VOLO-D1. We mainly focus on three data aug-
mentation and regularization techniques that are commonly
used by ViTs, i.e., RandAug [14], stochastic depth [36] and
random erase [89]. When using AdaReg scheme, we lin-

Method Speedup Top-1 Acc. (%)

w/o recycling 53.3% 82.8
w/ recycling 65.6% 82.8

Table 7. Ablation analysis of weight recycling in our AutoProg
learning scheme on VOLO-D1.

Method AdaReg Speedup Top-1 Acc. (%)

DeiT-S AutoProg ✗ +40.7% 74.4
DeiT-S AutoProg ✓ - 0.1∗

VOLO-D1 AutoProg ✗ +50.9% 81.5
VOLO-D1 AutoProg ✓ +85.1% 82.7

Table 8. Ablation analysis of the adaptive regularization on ViTs
with the AutoProg learning scheme. (*: training can not converge)

early increase the magnitude of RandAug from 0.5× to 1×
of its original value, and also linearly increase the probabil-
ities of stochastic depth and random erase from 0 to their
original values. The results of AutoProg with and with-
out AdaReg are shown in Tab. 8. Notably, DeiT-S can
not converge when training with AdaReg, probably because
DeiT models are heavily dependent on strong augmenta-
tions. On the contrary, AdaReg on VOLO-D1 is indis-
pensable. Not using AdaReg causes 1.2% accuracy drop on
VOLO-D1. This result is consistent with previous discov-
eries on CNNs [66]. By default, we use AdaReg on VOLO
models and not use it on DeiT models.

6. Conclusion and Discussion
In this paper, we take a practical step towards sustainable

deep learning by generalizing and automating progressive
learning for ViTs. We have developed a strong manual base-
line for progressive learning of ViTs with MoGrow growth
operator and proposed an automated progressive learning
(AutoProg) scheme for automated growth schedule search.
Our AutoProg has achieved consistent training speedup on
different ViT models with lossless performance on Ima-
geNet and transfer learning. Ablation studies have proved
the effectiveness of each component of AutoProg.
Social Impact and Limitations. When network training
becomes more efficient, it is also more available and less
subject to regularization and study, which may result in
a proliferation of models with harmful biases or intended
uses. In this work, we achieve inspiring results with auto-
mated progressive learning on ViTs. However, large scale
training of CNNs and language models can not directly ben-
efit from it. We encourage future works to develop auto-
mated progressive learning for efficient training in broader
applications.

Acknowledgement
This work was supported in part by Australian Research

Council (ARC) Discovery Early Career Researcher Award
(DECRA) under DE190100626 and National Key R&D
Program of China under Grant No. 2020AAA0109700.

12493

References
[1] Thomas C. Bachlechner, Bodhisattwa Prasad Majumder,

Huanru Henry Mao, G. Cottrell, and Julian McAuley. Rezero
is all you need: Fast convergence at large depth. arXiv
preprint arXiv:2003.04887, 2020. 7

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. In ICLR, 2017. 2

[3] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and H.
Larochelle. Greedy layer-wise training of deep networks.
In NeurIPS, 2006. 2

[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl. Algorithms for hyper-parameter optimization. In
NeurIPS, 2011. 2

[5] James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. JMLR, 13, 2012. 2

[6] Andrew Brock, Theodore Lim, James M. Ritchie, and
Nick Weston. SMASH: one-shot model architecture search
through hypernetworks. In ICLR, 2018. 2

[7] Han Cai, Chuang Gan, Ji Lin, and Song Han. Net-
work augmentation for tiny deep learning. arXiv preprint
arXiv:2110.08890, 2021. 6

[8] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. In ICLR, 2020. 3

[9] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 2, 5

[10] Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and
David Begert. Multi-level residual networks from dynami-
cal systems view. In ICLR, 2018. 4, 7, 8

[11] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. Autoformer: Searching transformers for visual recog-
nition. In ICCV, 2021. 3, 6

[12] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net:
Accelerating learning via knowledge transfer. In ICLR, 2016.
2, 4, 7, 8

[13] Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Va-
sudevan, and Quoc V. Le. Autoaugment: Learning augmen-
tation strategies from data. In CVPR, 2019. 2

[14] Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V. Le. Randaugment: Practical automated data aug-
mentation with a reduced search space. In CVPRW, 2020. 2,
8

[15] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan.
Coatnet: Marrying convolution and attention for all data
sizes. In NeurIPS, 2021. 1

[16] Kalyanmoy Deb. Multi-objective optimization. In Search
methodologies. Springer, 2014. 4, 5

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 6

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, 2019. 1

[19] Piotr Dollár, Mannat Singh, and Ross B. Girshick. Fast and
accurate model scaling. In CVPR, 2021. 3

[20] Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo Shang.
Towards adaptive residual network training: A neural-ode
perspective. In ICML, 2020. 3, 4, 7, 8

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1

[22] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all tickets
winners. In ICML, 2020. 5

[23] Scott E. Fahlman and Christian Lebiere. The cascade-
correlation learning architecture. In NeurIPS, 1989. 2

[24] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. In ICLR,
2019. 2

[25] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang,
and Tie-Yan Liu. Efficient training of bert by progressively
stacking. In ICML, 2019. 2, 3, 4, 7, 8

[26] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning. In NeurIPS, 2020. 4

[27] Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen,
and Jiawei Han. On the transformer growth for progressive
bert training. In NAACL, 2021. 2, 3

[28] Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-bastien
Grill, Florent Altché, Rémi Munos, and Mohammad Ghesh-
laghi Azar. Bootstrap latent-predictive representations for
multitask reinforcement learning. In ICML, 2020. 4

[29] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. In ECCV,
2020. 2

[30] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. Momentum contrast for unsupervised vi-
sual representation learning. In CVPR, 2020. 4

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1

[32] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A
fast learning algorithm for deep belief nets. Neural Compu-
tation, 18, 2006. 2

[33] Lu Hou, Lifeng Shang, Xin Jiang, and Qun Liu. Dynabert:
Dynamic bert with adaptive width and depth. In NeurIPS,
2020. 3

[34] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and J An-
drew Bagnell. Learning anytime predictions in neural net-
works via adaptive loss balancing. In AAAI, 2019. 3

[35] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q. Weinberger. Multi-scale dense
networks for resource efficient image classification. In ICLR,
2018. 3, 6

12494

[36] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q. Weinberger. Deep networks with stochastic depth. In
ECCV, 2016. 6, 8

[37] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In ICLR, 2018. 2

[38] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The
lipschitz constant of self-attention. In ICML, 2021. 3

[39] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009. 6

[40] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.
4

[41] Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. In ICLR, 2017. 3

[42] Hankook Lee and Jinwoo Shin. Anytime neural pre-
diction via slicing networks vertically. arXiv preprint
arXiv:1807.02609, 2018. 3

[43] Régis Lengellé and Thierry Denoeux. Training mlps layer by
layer using an objective function for internal representations.
Neural Networks, 9, 1996. 2

[44] Bei Li, Ziyang Wang, Hui Liu, Yufan Jiang, Quan Du, Tong
Xiao, Huizhen Wang, and Jingbo Zhu. Shallow-to-deep
training for neural machine translation. In EMNLP, 2020.
2

[45] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,
Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-
wisely supervised neural architecture search with knowledge
distillation. In CVPR, 2020. 2

[46] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,
Bing Wang, Xiaodan Liang, and Xiaojun Chang. Bossnas:
Exploring hybrid cnn-transformers with block-wisely self-
supervised neural architecture search. In ICCV, 2021. 6

[47] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Ds-net++: Dynamic weight
slicing for efficient inference in cnns and transformers. arXiv
preprint arXiv:2109.10060, 2021. 3

[48] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Dynamic slimmable network.
In CVPR, 2021. 3

[49] Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao
Huang, and Jifeng Dai. Auto seg-loss: Searching metric sur-
rogates for semantic segmentation. In ICLR, 2021. 2

[50] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao
Huang. Improved techniques for training adaptive deep net-
works. In ICCV, 2019. 3

[51] Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy M.
Hospedales, Neil Martin Robertson, and Yongxing Yang.
Dada: Differentiable automatic data augmentation. In
ECCV, 2020. 2, 5

[52] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In ECCV, 2018. 2

[53] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. In ICLR, 2019. 2, 5

[54] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 1

[55] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory
Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael
Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed
precision training. In ICLR, 2018. 7

[56] David Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang,
Lluı́s-Miquel Munguı́a, Daniel Rothchild, David R. So,
Maud Texier, and Jeff Dean. Carbon emissions and large
neural network training. arXiv preprint arXiv:2104.10350,
2021. 1

[57] Jiefeng Peng, Jiqi Zhang, Changlin Li, Guangrun Wang, Xi-
aodan Liang, and Liang Lin. Pi-nas: Improving neural ar-
chitecture search by reducing supernet training consistency
shift. In ICCV, 2021. 2

[58] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In ICML, 2018. 2

[59] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2014. 2, 4, 7, 8

[60] Leslie N. Smith, Emily M. Hand, and Timothy Doster. Grad-
ual dropin of layers to train very deep neural networks. In
CVPR, 2016. 2

[61] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. J. Mach. Learn.
Res., 15, 2014. 6, 8

[62] Emma Strubell, Ananya Ganesh, and Andrew McCallum.
Energy and policy considerations for deep learning in nlp.
In ACL, 2019. 1

[63] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-
nav Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In ICCV, 2017. 1

[64] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In CVPR, 2019. 2, 5

[65] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In ICML,
2019. 5

[66] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller mod-
els and faster training. In ICML, 2021. 2, 3, 8

[67] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya
Ganguli. Pruning neural networks without any data by iter-
atively conserving synaptic flow. In NeurIPS, volume 33,
2020. 5

[68] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In NeurIPS, 2017. 4

[69] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 1, 6, 7

12495

[70] Guangcong Wang, Xiaohua Xie, Jianhuang Lai, and Jiaxuan
Zhuo. Deep growing learning. In ICCV, pages 2812–2820,
2017. 2

[71] Jiachun Wang, Fajie Yuan, Jian Chen, Qingyao Wu, Min
Yang, Yang Sun, and Guoxiao Zhang. Stackrec: Efficient
training of very deep sequential recommender models by it-
erative stacking. In ACM SIGIR, 2021. 2

[72] Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and
Gao Huang. Not all images are worth 16x16 words: Dy-
namic vision transformers with adaptive sequence length. In
NeurIPS, 2021. 3

[73] Tao Wei, Changhu Wang, and Chang Wen Chen. Mod-
ularized morphing of neural networks. arXiv preprint
arXiv:1701.03281, 2017. 2

[74] Tao Wei, Changhu Wang, and Chang Wen Chen. Modu-
larized morphing of deep convolutional neural networks: A
graph approach. IEEE Transactions on Computers, 70, 2021.
2

[75] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen.
Network morphism. In ICML, 2016. 2, 4, 7, 8

[76] Wei Wen, Feng Yan, and Hai Helen Li. Autogrow: Au-
tomatic layer growing in deep convolutional networks. In
KDD, 2020. 2

[77] Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Jian-
huang Lai, and Tie-Yan Liu. Learning to teach with dynamic
loss functions. In NeurIPS, 2018. 2

[78] Haowen Xu, H. Zhang, Zhiting Hu, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. Autoloss: Learning discrete
schedules for alternate optimization. In ICLR, 2019. 2

[79] Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan Li,
Ru He, and Jingqiao Zhang. Progressively stacking 2.0:
A multi-stage layerwise training method for bert training
speedup. arXiv preprint arXiv:2011.13635, 2020. 2, 3

[80] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang
Shen. L2-gcn: Layer-wise and learned efficient training of
graph convolutional networks. In CVPR, 2020. 2

[81] Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot
architecture search for channel numbers. In NeurIPS work-
shop, 2019. 3, 6

[82] Jiahui Yu and Thomas S. Huang. Universally slimmable net-
works and improved training techniques. In ICCV, 2019. 3,
6

[83] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, T. Huang, Xiaodan
Song, and Quoc V. Le. Bignas: Scaling up neural architec-
ture search with big single-stage models. In ECCV, 2020. 3,
6

[84] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. In ICLR, 2019.
3, 6, 8

[85] Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and
Shuicheng Yan. VOLO: Vision outlooker for visual recog-
nition. arXiv preprint arXiv:2106.13112, 2021. 1, 2, 4, 6,
7

[86] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and
Lucas Beyer. Scaling vision transformers. arXiv preprint
arXiv:2106.04560, 2021. 1

[87] Hongyi Zhang, Moustapha Cissé, Yann Dauphin, and David
Lopez-Paz. mixup: Beyond empirical risk minimization. In
ICLR, 2018. 8

[88] Minjia Zhang and Yuxiong He. Accelerating training of
transformer-based language models with progressive layer
dropping. In NeurIPS, 2020. 2

[89] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In AAAI, 2020.
8

[90] Barret Zoph and Quoc V. Le. Neural architecture search with
reinforcement learning. In ICLR, 2017. 2

12496

