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Abstract

Recent advances in vision Transformers (ViTs) have
come with a voracious appetite for computing power, high-
lighting the urgent need to develop efficient training meth-
ods for ViTs. Progressive learning, a training scheme where
the model capacity grows progressively during training, has
started showing its ability in efficient training. In this paper,
we take a practical step towards efficient training of ViTs
by customizing and automating progressive learning. First,
we develop a strong manual baseline for progressive learn-
ing of ViTs, by introducing momentum growth (MoGrow)
to bridge the gap brought by model growth. Then, we pro-
pose automated progressive learning (AutoProg), an effi-
cient training scheme that aims to achieve lossless accel-
eration by automatically increasing the training overload
on-the-fly; this is achieved by adaptively deciding whether,
where and how much should the model grow during pro-
gressive learning. Specifically, we first relax the optimiza-
tion of the growth schedule to sub-network architecture op-
timization problem, then propose one-shot estimation of
the sub-network performance via an elastic supernet. The
searching overhead is reduced to minimal by recycling the
parameters of the supernet. Extensive experiments of ef-
ficient training on ImageNet with two representative ViT
models, DeiT and VOLO, demonstrate that AutoProg can
accelerate ViTs training by up to 85.1% with no perfor-
mance drop.1

1. Introduction
With powerful high model capacity and large amounts of

data, Transformers have dramatically improved the perfor-
mance on many tasks in computer vision (CV) [54,69]. The
pioneering ViT model [21], scales the model size to 1,021
billion FLOPs, 250× larger than ResNet-50 [31]. Through
pre-training on the large-scale JFT-3B dataset [86], the re-

†Corresponding author.
1Code: https://github.com/changlin31/AutoProg.
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Figure 1. Accuracy of ViTs (DeiT [69] and VOLO [85]) during
training. Smaller ViTs converge faster in terms of runtime2. Mod-
els in the legend are sorted in increasing order of model size.

Model CO2e (lbs)3 ImageNet Acc. (%)

ResNet-50 [21, 31] 267 77.54
BERTbase [18] 1,438 -
Avg person per year [62] 11,023 -
ViT-H/14 [21] 22,793 88.55
CoAtNet [15] 183,256 90.88

Table 1. The growth in training scale of vision models results in
considerable growth of environmental costs. The CO2e of human
life and a language model, BERT [18] are also included for com-
parison. The results of ResNet-50, ViT-H/14 are from [21], and
trained on JFT-300M [63]. CoAtNet is trained on JFT-3B [86].

cently proposed ViT model, CoAtNet [15], reached state-
of-the-art performance, with about 8× training cost of the
original ViT. The rapid growth in training scale inevitably
leads to higher computation cost and carbon emissions. As
shown in Tab. 1, recent breakthroughs of vision Transform-
ers have come with a voracious appetite for computing
power, resulting in considerable growth of environmental
costs. Thus, it becomes extremely important to make ViTs
training tenable in computation and energy consumption.

In mainstream deep learning training schemes, all the
network parameters participate in every training iteration.
However, we empirically found that training only a small

2We refer runtime to the total GPU hours used in forward and backward
pass of the model during training.

3CO2 equivalent emissions (CO2e) are calculated following [56], using
U.S. average energy mix, i.e., 0.429 kg of CO2e/KWh.
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part of the parameters yields comparable performance in
early training stages of ViTs. As shown in Fig. 1, smaller
ViTs converge much faster in terms of runtime (though they
would be eventually surpassed given enough training time).
The above observation motivates us to rethink the efficiency
bottlenecks of training ViTs: does every parameter, every
input element need to participate in all the training steps?

Here, we make the Growing Ticket Hypothesis of ViTs:
the performance of a large ViT model, can be reached
by first training its sub-network, then the full network af-
ter properly growing, with the same total training itera-
tions. This hypothesis generalizes the lottery ticket hypoth-
esis [24] by adding a finetuning procedure at the full model
size, changing its scenario from efficient inference to effi-
cient training. By iteratively applying this hypothesis to the
sub-network, we have the progressive learning scheme.

Recently, progressive learning has started showing its
capability in accelerating model training. In the field of
NLP, progressive learning can reduce half of BERT pre-
training time [25]. Progressive learning also shows the abil-
ity to reduce the training cost for convolutional neural net-
works (CNNs) [66]. However, these algorithms differ sub-
stantially from each other, and their generalization ability
among architectures is not well studied. For instance, we
empirically observed that progressive stacking [25] could
result in significant performance drop (about 1%) on ViTs.

To this end, we take a practical step towards sustainable
deep learning by generalizing and automating progressive
learning on ViTs. To the best of our knowledge, we are
among the pioneering works to tackle the efficiency bot-
tlenecks of training ViT models. We formulate progres-
sive learning with its two components, growth operator and
growth schedule, and study each component separately by
controlling the other.

First, we present a strong manual baseline for progres-
sive learning of ViTs by developing the growth operator.
To ablate the optimization of the growth operator, we in-
troduce a uniform linear growth schedule in two dimen-
sions of ViTs, i.e., number of patches and network depth.
To bridge the gap brought by model growth, we propose
momentum growth (MoGrow) operator with an effective
momentum update scheme. Moreover, we present a novel
automated progressive learning (AutoProg) algorithm that
achieves lossless training acceleration by automatically ad-
justing the training overload. Specifically, we first relax the
optimization of the growth schedule to sub-network archi-
tecture optimization problem. Then, we propose one-shot
estimation of sub-network performance via training an elas-
tic supernet. The searching overhead is reduced to minimal
by recycling the parameters of the supernet.

The proposed AutoProg achieves remarkable training ac-
celeration for ViTs on ImageNet. Without manually tuning,
it consistently speeds up different ViTs training by more

than 40%, on disparate variants of DeiT and VOLO, includ-
ing DeiT-tiny and VOLO-D2 with 72.2% and 85.2% Im-
ageNet accuracy, respectively. Remarkably, it accelerates
VOLO-D1 [85] training by up to 85.1% with no perfor-
mance drop. While significantly saving training time, Au-
toProg achieves competitive results when testing on larger
input sizes and transferring to other datasets compared to
the regular training scheme.

Overall, our contributions are as follows:
• We develop a strong manual baseline for progressive

learning of ViTs, by introducing MoGrow, a momen-
tum growth strategy to bridge the gap brought by
model growing.

• We propose automated progressive learning (Auto-
Prog), an efficient training scheme that aims to achieve
lossless acceleration by automatically adjusting the
growth schedule on-the-fly.

• Our AutoProg achieves remarkable training accelera-
tion (up to 85.1%) for ViTs on ImageNet, performing
favourably against the original training scheme.

2. Related Work
Progressive Learning. Early works on progressive learn-
ing [3, 23, 32, 37, 43, 59, 60, 70] mainly focus on circum-
venting the training difficulty of deep networks. Recently,
as training costs of modern deep models are becoming
formidably expensive, progressive learning starts to reveal
its ability in efficient training. Net2Net [12] and Network
Morphism [73–75] studied how to accelerate large model
training by properly initializing from a smaller model. In
the field of NLP, many recent works accelerate BERT pre-
training by progressively stacking layers [25, 44, 79], drop-
ping layers [88] or growing in multiple network dimen-
sions [27]. Similar frameworks have also been proposed
for efficient training of other models [71, 80]. As these al-
gorithms remain hand-designed and could perform poorly
when transferred to other networks, we propose to automate
the design process of progressive learning schemes.
Automated Machine Learning. Automated Machine
Learning (AutoML) aims to automate the design of model
structures and learning methods from many aspects, in-
cluding Neural Architecture Search (NAS) [2, 52, 64, 90],
Hyper-parameter Optimization (HPO) [4, 5], AutoAug-
ment [13, 14], AutoLoss [49, 77, 78], etc. By relaxing the
bi-level optimization problem in AutoML, there emerges
many efficient AutoML algorithms such as weight-sharing
NAS [6, 9, 29, 45, 53, 57, 58], differentiable AutoAug [51],
etc. These methods share network parameters in a jointly
optimized supernet for different candidate architectures or
learning methods, then rate each of these candidates accord-
ing to its parameters inherited from the supernet.

Attempts have also been made on automating progres-
sive learning. AutoGrow [76] proposes to use a manually-
tuned progressive learning scheme to search for the optimal
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network depth, which is essentially a NAS method. Lip-
Grow [20] could be the closest one related to our work,
which adaptively decide the proper time to double the depth
of CNNs on small-scale datasets, based on Lipschitz con-
straints. Unfortunately, LipGrow can not generalize easily
to ViTs, as self-attention is not Lipschitz continuous [38]. In
contrast, we solve the automated progressive learning prob-
lem from a traditional AutoML perspective, and fully auto-
mate the growing schedule by adaptively deciding whether,
where and how much to grow. Besides, our study is con-
ducted directly on large-scale ImageNet dataset, in accord
with practical application of efficient training.
Elastic Networks. Elastic Networks, or anytime neural
networks, are supernets executable with their sub-networks
in various sizes, permitting instant and adaptive accuracy-
efficiency trade-offs at runtime. Earlier works on Elastic
Networks can be divided into Networks with elastic depth
[34,35,41], and networks with elastic width [42,82,84]. The
success of elastic networks is followed by their two main
applications, one-shot single-stage NAS [8, 11, 81, 83] and
dynamic inference [35, 47, 48, 50, 72], where emerges nu-
merous elastic networks on multiple dimensions (e.g., ker-
nel size of CNNs [8, 83], head numbers [11, 33] and patch
size [72] of Transformers). From a new perspective, we
present an elastic Transformer serving as a sub-network per-
formance estimator during growth for automated progres-
sive learning.

3. Progressive Learning of Vision Transform-
ers

In this section, we aim to develop a strong manual base-
line for progressive learning of ViTs. We start by formulat-
ing progressive learning with its two main factors, growth
schedule and growth operator in Sec. 3.1. Then, we present
the growth space that we use in Sec. 3.2. Finally, we explore
the most suitable growth operator of ViTs in Sec. 3.3.
Notations. We denote scalars, tensors and sets (or se-
quences) using lowercase, bold lowercase and uppercase
letters (e.g., n, x and Ψ). For simplicity, we use {xn} to
denote the set {xn}|n|n=1 with cardinality |n|, similarly for
a sequence (xn)

|n|
n=1. Please refer to Tab. 2 for a vis-to-vis

explanation of the notations we used.

3.1. Progressive Learning
Progressive learning gradually increases the training

overload by growing among its sub-networks following a
growth schedule Ψ, which can be denoted by a sequence
of sub-networks with increasing sizes for all the training
epochs t. In practice, to ensure the network is sufficiently
optimized after each growth, it is a common practice [27,66,
79] to divide the whole training process into |k| equispaced
stages with τ = |t|/|k| epochs in each stage. Thus, the

growth schedule can be denoted as Ψ =
(
ψk

)|k|

k=1
; the final

Notation Type Description

t, |t| scalar training epoch, total training epochs
k, |k| scalar training stage, total training stages
τ scalar epochs per stage
Ψ sequence growth schedule
ζ function growth operator
ψ network sub-network
Φ network supernet
ω, |ω| parameter network parameters, number of parameters
Ω, Λ set the whole growth space, partial growth space
∗, ⋆ notation optimal, relaxed optimal

Table 2. Notations describing progressive learning and automated
progressive learning.

Algorithm 1: Progressive Learning
Input:
Ψ: the growth schedule; ζ: the growth operator;
|t|: total training epochs; τ : epochs per stage;
Randomly initialized parameters ω;
for t ∈ [1, |t|] do

if t = Nτ, N ∈ N+ then
Switch to the sub-network of next stage ψ ← Ψ[t/τ ];
Initialize parameters by growth operator ω ← ζ(ω);

end
Train ψ(ω) over all the training data.

end

one is always the complete model. Note that stages with dif-
ferent lengths can be achieved by using the sameψ in differ-
ent numbers of consecutive stages, e.g., Ψ = (ψa,ψb,ψb),
where ψa,ψb are two different sub-networks.

When growing a sub-network to a larger one, the param-
eters of the larger sub-network are initialized by a growth
operator ζ, which is a reparameterization function that
maps the weights ωs of a smaller network to ωℓ of a larger
one by ωℓ = ζ(ωs). The whole progress of progressive
learning is summarized in Algorithm 1.

Let L be the target loss function, and T be the total run-
time; then progressive learning can be formulated as:

min
ω,Ψ,ζ

{
L(ω,Ψ, ζ), T (Ψ)

}
, (1)

where ω denotes the parameters of sampled sub-networks
during the optimization. Growth schedule Ψ and growth
operator ζ have been explored for language Transform-
ers [25, 27]. However, ViTs differ considerably from their
linguistic counterparts. The huge difference on task objec-
tive, data distribution and network architecture could lead to
drastic difference in optimal Ψ and ζ. In the following parts
of this section, we mainly study the growth operator ζ for
ViTs by fixing Ψ as a uniform linear schedule in a growth
space Ω, and leave automatic exploration of Ψ to Sec. 4.

3.2. Growth Space in Vision Transformers
The model capacity of ViTs are controlled by many fac-

tors, such as number of patches, network depth, embedding
dimensions, MLP ratio, etc. In analogy to previous discov-
eries on fast compound model scaling [19], we empirically
find that reducing network width (e.g., embedding dimen-

12488



Patch Embedding

Classifier

Patch Embedding

Classifier

Patch Embedding

Classifier

RandInit

RandInit

(a) RandInit. (b) Stacking. (c) Interpolation.

Patch Embedding

Classifier

Patch Embedding

Classifier

(d)  MoGrow.

momentum
update

Figure 2. Variants of the growth operator ζ. ωA and ωB denote the parameters of two Transformer blocks in the original small networkψs.
(a) RandInit randomly initializes newly added layers; (b) Stacking duplicates the original layers and directly stacks the duplicated ones on
top of them; (c) Interpolation interpolate new layers of ψℓ in between original ones and copy the weights from their nearest neighbor in
ψs. (d) Our proposed MoGrow is build upon Interpolation, by coping parameters ω̃ from the momentum updated ensemble of ψs.

sions) yields relatively smaller wall-time acceleration on
modern GPUs when comparing at the same flops. Thus, we
mainly study number of patchs (n2) and network depth (l),
leaving other dimensions for future works.
Number of Patches. Given patch size p × p, input size
r × r, the number of patches n × n is determined by n2 =
r2/p2. Thus, by fixing the patch size, reducing number of
patches can be simply achieved by down-sampling the input
image. However, in ViTs, the size of positional encoding is
related to n. To overcome this limitation, we adaptively
interpolate the positional encoding to match with n.
Network Depth. Network depth (l) is the number of Trans-
former blocks or its variants (e.g., Outlooker blocks [85]).
Uniform Linear Growth Schedule. To ablate the opti-
mization of growth operator ζ, we fix growth schedule Ψ
as a uniform linear growth schedule. To be specific, “uni-
form” means that all the dimensions (i.e., n and l) are scaled
by the same ratio st at the t-th epoch; “linear” means that
the ratio s grows linearly from s1 to 1. This manual sched-
ule has only one hyper-parameter, the initial scaling ratio s1,
which is set to 0.5 by default. With this fixed Ψ, the opti-
mization of progressive learning in Eq. (1) is simplified to:

min
ω,ζ
L(ω, ζ), (2)

which enables direct optimization of ζ by comparing the
final accuracy after training with different ζ.

3.3. On the Growth of Vision Transformers
Fig. 2 (a)-(c) depict the main variants of the growth op-

erator ζ that we compare, which cover choices from a wide
range of the previous works, including RandInit [59], Stack-
ing [25] and Interpolation [10,20]. More formal definitions
of these schemes can be found in the supplementary mate-
rial. Our empirical comparison (in Sec. 5.3) shows Interpo-
lation growth is the most suitable scheme for ViTs.

Unfortunately, growing by Interpolation changes the
original function of the network. In practice, function per-
turbation brought by growth can result in significant perfor-
mance drop, which is hardly recovered in subsequent train-
ing steps. Early works advocate for function-preserving

growth operators [12, 75], which we denote by Identity.
However, we empirically found growing by Identity greatly
harms the performance on ViTs (see Sec. 5.3). Differently,
we propose a growth operator, named Momentum Growth
(MoGrow), to bridge the gap brought by model growth.
Momentum Growth (MoGrow). In recent years, a
growing number of self-supervised [26, 28, 30] and semi-
supervised [40, 68] methods learn knowledge from the his-
torical ensemble of the network. Inspired by this, we pro-
pose to transfer knowledge from a momentum network dur-
ing growth. This momentum network has the same archi-
tecture with ψs and its parameters ω̃s are updated with the
online parameters ωs in every training step by:

ω̃s ← mω̃s + (1−m)ωs, (3)
where m is a momentum coefficient set to 0.998. As the the
momentum network usually has better generalization abil-
ity and better performance during training, loading parame-
ters from the momentum network would help the model by-
pass the function perturbation gap. As shown in Fig. 2 (d),
MoGrow is proposed upon Interpolation growth by main-
taining a momentum network, and directly copying from
it when performing network growth. MoGrow operator
ζMoGrow can be simply defined as:

ζMoGrow(ωs) = ζInterpolation
(
ω̃s

)
. (4)

4. Automated Progressive Learning
In this section, we focus on optimizing the growth sched-

ule Ψ by fixing the growth operator as ζMoGrow. We first for-
mulate the multi-objective optimization problem of Ψ, then
propose our solution, called AutoProg, which is introduced
in detail by its two estimation steps in Sec. 4.2 and Sec. 4.3.

4.1. Problem Formulation
The problem of designing growth schedule Ψ for ef-

ficient training is a multi-objective optimization prob-
lem [16]. By fixing ζ in Eq. (1) as our proposed ζMoGrow,
the objective of designing growth schedule Ψ is:

min
ω,Ψ

{
L(ω,Ψ), T (Ψ)

}
. (5)

Note that multi-objective optimization problem has a
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Figure 3. Pipeline of the k-th stage of automated progressive learning. In the beginning of the stage, the last optimal sub-network ψ⋆
k−1

first grows to the Elastic Supernet Φk by ω̂ = ζ(ω⋆); then, we search for the optimal sub-network ψ⋆
k after supernet training; finally, the

sub-network is trained in the remaining epochs of this stage. The whole process of AutoProg is summarized in Algorithm 2.

Algorithm 2: Automated Progressive Learning
Input:
ζ: the growth operator;
|t|: total training epochs; τ : epochs per stage;
Random initialize parameters ω;
for t ∈ [1, |t|] do

if t = Nτ, N ∈ N+ then
Switch optimizers to Elastic Supernet Φ;
Initialize supernet parameters ω̂ ← ζ(ω);

end
if t = Nτ + 2, N ∈ N+ then

Search for the optimal sub-network ψ by Eq. (9);
Switch to the optimal sub-network ψ ← ψ⋆;
Inherit parameters from the supernet ω ← ω̂;

end
Train ψ(ω) or supernet Φ(ω̂) over all the training data.

end

set of Pareto optimal [16] solutions which can be approxi-
mated using customized weighted product, a common prac-
tice used in previous Auto-ML algorithms [64, 65]. In the
scenario of progressive learning, the optimization objective
can be defined as:

min
ω,Ψ
L(ω,Ψ) · T (Ψ)α, (6)

where α is a balancing factor dynamically chosen by bal-
ancing the scores for all the candidate sub-networks.
4.2. Automated Progressive Learning by Optimiz-

ing Sub-Network Architectures
Denoting |ψ| the number of candidate sub-networks, and

|k| the number of stages, the number of candidate growth
schedule is thus |ψ||k|. As optimization of Eq. (6) contains
optimization of network parameters ω, to get the final loss,
a full |t| epochs training with growth schedule Ψ is required:

Ψ∗ = argmin
Ψ

L
(
ω∗(Ψ);x

)
· T (Ψ)α

s.t. ω∗(Ψ) = argmin
ω

L(Ψ,ω;x).
(7)

Thus, performing an extensive search over the higher level
factor Ψ in this bi-level optimization problem has complex-
ity O(|ψ||k| · |t|). Its expensive cost deviates from the orig-
inal intention of efficient training.

To reduce the search cost, we relax the original objec-
tive of growth schedule search to progressively deciding
whether, where and how much should the model grow, by
searching the optimal sub-network architecture ψ∗

k in each
stage k. Thus, the relaxed optimal growth schedule can be

denoted as Ψ⋆ =
(
ψ∗

k

)|k|

k=1
.

In sparse training and efficient Auto-ML algorithms, it
is a common practice to estimate future ranking of mod-
els with current parameters and their gradients [22, 67], or
with parameters after a single step of gradient descent up-
date [9, 51, 53]. However, these methods are not suitable
for progressive training, as the network function is drasti-
cally changed and is not stable after growth. We empiri-
cally found that the network parameters adapt quickly after
growth and are already stable after one epoch of training. To
make a good tradeoff between accuracy and training speed,
we estimate the performance of each sub-networkψ in each
stage by their training loss after the first two training epochs
in this stage. Denoting ω⋆ the sub-network parameters ob-
tained by two epochs of training, the optimal sub-network
can be searched by:

ψ∗
k = argmin

ψk∈Λk

L
(
ω⋆(ψk);x

)
· T (ψk)

α,

where Λk =
{
ψ ∈ Ω

∣∣∣ |ω(ψ)| ≥ |ω(ψk)|
}
,

(8)

where Λk denotes the growth space of the k-th stage, con-
taining all the sub-networks that are larger than or equal to
the last optimal sub-network in terms of the number of pa-
rameters |ω|.

Overall, by relaxing the original optimization problem in
Eq. (7) to Eq. (8), we only have to train each of the |Λk| sub-
networks for two epochs in each of the |k| stages. Thus, the
search complexity is reduced exponentially from O(|ψ||k| ·
|t|) to O(|Λk| · |k|), where |Λk| ≤ |ψ| and |k| ≤ |t|.

4.3. One-shot Estimation of Sub-Network Perfor-
mance via Elastic Supernet

Though we relax the optimization problem with signifi-
cant search cost reduction, obtainingω⋆ in Eq. (8) still takes
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2|Λk| epochs for each stage, which will bring huge search-
ing overhead to the progressive learning. The inefficiency
of loss prediction is caused by the repeated training of sub-
networks weight ω, with bi-level optimization being its na-
ture. To circumvent this problem, we propose to share and
jointly optimize sub-network parameters in Λk via an Elas-
tic Supernet with Interpolation.
Elastic Supernet with Interpolation. An Elastic Supernet
Φ(ω̂) is a weight-nesting network parameterized by ω̂, and
is able to execute with its sub-networks {ψ}. Here, we give
the formal definition of weight-nesting:

Definition 1 (weight-nesting) For any pair of sub-networks
ψa(ωa) and ψb(ωb) in supernet Φ, where |ωa| ≤ |ωb|, if
ωa ⊆ ωb is always satisfied, then Φ is weight-nesting.

In previous works, a network with elastic depth is usually
achieved by using the first layers to form sub-networks [11,
35, 83]. However, using this scheme after growing by In-
terpolation or MoGrow will cause inconsistency between
expected sub-networks after growth and sub-networks in Φ.

To solve this issue, we present an Elastic Supernet with
Interpolation, with optionally activated layers interpolated
in between always activated ones. As shown in Fig. 3, be-
ginning from the smaller network in the last stage ψ⋆

k−1,
sub-networks in Φ are formed by inserting layers in between
the original layers of ψ⋆

k−1 (starting from the final layers),
until reaching the largest sub-network in Λk.
Training and Searching via Elastic Supernet. By nesting
parameters of all the candidate sub-networks in the Elastic
supernet Φ, the optimization of ω is disentangled from ψ.
Thus, Eq. (8) is further relaxed to

ψ⋆
k = argmin

ψk∈Λk

L
(
ω̂⋆;x

)
· T (ψk)

α

s.t. ω̂⋆ = argmin
ω̂

Eψk∈Λk

{
L(ψk, ω̂;x)

}
,

(9)

where the optimal nested parameters ω̂⋆ can be obtained by
one-shot training of Φ for two epochs. For efficiency, we
train Φ by randomly sampling only one of its sub-networks
in each step (following [11]), instead of four in [81–83].

After training all the candidate sub-networks in the Elas-
tic Supernet Φ concurrently for two epochs, we have the
adapted supernet parameters ω̂⋆ that can be used to estimate
the real performance of the sub-networks (i.e. performance
when trained in isolation). As the sub-network grow space
Λk in each stage is relatively small, we can directly per-
form traversal search in Λk, by testing its training loss with
a small subset of the training data. We use fixed data aug-
mentation to ensure fair comparison, following [46]. Ben-
efiting from parameter nesting and one-shot training of all
the sub-networks in Λk, the search complexity is further re-
duced from O(|Λk| · |k|) to O(|k|).
Weight Recycling. Benefiting from synergy of differ-
ent sub-networks, the supernet converges at a compara-
ble speed to training these sub-networks in isolation. Sim-

Model
Training
scheme

Speedup
runtime

Top-1
(%)

Top-1@288
(%)

100 epochs

DeiT-S [69]
Original - 74.1 74.6
Prog +53.6% 72.6 73.2
AutoProg +40.7% 74.4 74.9

VOLO-D1 [85]

Original - 82.6 83.0
Prog +60.9% 81.7 82.1
AutoProg 0.5Ω +65.6% 82.8 83.2
AutoProg 0.4Ω +85.1% 82.7 83.1

VOLO-D2 [85]
Original - 83.6 84.1
Prog +54.4% 82.9 83.3
AutoProg +45.3% 83.8 84.2

300 epochs

DeiT-Tiny [69] Original - 72.2 72.9
AutoProg +51.2% 72.4 73.0

DeiT-S [69] Original - 79.8 80.1
AutoProg +42.0% 79.8 80.1

VOLO-D1 [85] Original - 84.2 84.4
AutoProg +48.9% 84.3 84.6

VOLO-D2 [85] Original - 85.2 85.1
AutoProg +42.7% 85.2 85.2

Table 3. Main results of efficient training on ImageNet. Accelera-
tions that cause accuracy drop are marked with gray. Best results
are marked with Bold; our method or default settings are high-
lighted in purple . Top-1@288 denotes Top-1 Accuracy when
directly testing on 288×288 input size, without finetuning. Please
refer to the supplementary file for detailed FLOPs and runtime.

ilar phenomenon can be observed in network regulariza-
tion [36, 61], network augmentation [7], and previous elas-
tic models [11, 83, 84]. Motivated by this, the searched
sub-network directly inherits its parameters in the super-
net to continue training. Benefiting from this weight re-
cycling scheme, AutoProg has no extra searching epochs,
since the supernet training epochs are parts of the whole
training epochs. Moreover, as sampled sub-networks are
faster than the full network, these supernet training epochs
take less time than the original training epochs. Thus, the
searching cost is directly reduced from O(|k|) to zero.

5. Experiments
Datasets. We evaluate our method on a large scale
image classification dataset, ImageNet-1K [17] and two
widely used classification datasets, CIFAR-10 and CIFAR-
100 [39], for transfer learning. ImageNet contains 1.2M
train set images and 50K val set images in 1,000 classes.
We use all the training data for progressive learning and su-
pernet training, and use a 50K randomly sampled subset to
calculate training loss for sub-network search.
Architectures. We use two representative ViT architec-
tures, DeiT [69] and VOLO [85] to evaluate the proposed
AutoProg. Specifically, DeiT [69] is a representative stan-
dard ViT model; VOLO [85] is a hybrid architecture com-
prised of outlook attention blocks and transformer blocks.
Implementation Details. For both architectures, we use
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Figure 4. Evaluation accuracy of DeiT-S and VOLO-D1 during training with different learning schemes. Curves are not smoothed.

the original training hyper-parameters, data augmentation
and regularization techniques of their corresponding proto-
types [69, 85]. Our experiments are conducted on NVIDIA
3090 GPUs. As the acceleration achieved by our method
is orthogonal to the acceleration of mixed precision train-
ing [55], we use it in both original baseline training and our
progressive learning.
Grow Space Ω. We use 4 stages for progressive learn-
ing. The initial scaling ratio s1 is set to 0.5 or 0.4; the
corresponding grow spaces are denoted by 0.5Ω and 0.4Ω.
By default, we use 0.5Ω for our experiments, unless men-
tioned otherwise. The grow space of n and l are calculated
by multiplying the value of the whole model with 4 eq-
uispaced scaling ratios s ∈ {0.5, 0.67, 0.83, 1.0}, and we
round the results to valid integer values. We use Prog to
denote our manual progressive baseline with uniform linear
growth schedule as described in Sec. 3.2.

5.1. Efficient Training on ImageNet
We first validate the effectiveness of AutoProg on Ima-

geNet. As shown in Tab. 3, AutoProg consistently achieves
remarkable efficient training results on diverse ViT archi-
tectures and training schedules.

First, our AutoProg achieves significant training acceler-
ation over the regular training scheme with no performance
drop. Generally, AutoProg speeds up ViTs training by more
than 45% despite changes on training epochs and network
architectures. In particular, VOLO-D1 trained with Auto-
Prog 0.4Ω achieves 85.1% training acceleration, and even
slightly improves the accuracy (+0.1%). Second, AutoProg
outperforms the manual baseline, the uniform linear grow-
ing (Prog), by a large margin. For instance, Prog scheme
causes severe performance degradation on DeiT-S. Auto-
Prog improves over Prog scheme on DeiT-S by 1.7% on
accuracy, successfully eliminating the performance gap by
automatically choosing the proper growth schedule. Third,
as progressive learning uses smaller input size during train-
ing, one may question its generalization capability on larger
input sizes. We answer this by directly testing the models
trained with AutoProg on 288×288 input size. The results
justify that models trained with AutoProg have comparable
generalization ability on larger input sizes to original mod-

Pretrain Speedup CIFAR-10 CIFAR-100

Original - 99.0 89.5
AutoProg 48.9% 99.0 89.7

Table 4. Transfer learning results of DeiT-S on CIFAR datasets.
The evaluation metric is Top-1 accuracy (%).

els. Remarkably, VOLO-D1 trained for 300 epochs with
AutoProg reaches 84.6% Top-1 accuracy when testing on
288×288 input size, with 48.9% faster training.

The learning curves (i.e., evaluation accuracy during
training) of DeiT-S and VOLO-D1 with different training
schemes are shown in Fig. 4. Autoprog clearly accelerates
the training progress of these two models. Interestingly,
DeiT-S (100 epochs) trained with manual Prog scheme
presents sharp fluctuations after growth, while AutoProg
successfully addresses this issue and eventually reaches
higher accuracy by choosing proper growth schedule.

5.2. Transfer Learning
To further evaluate the transfer ability of ViTs trained

with AutoProg, we conduct transfer learning on CIFAR-10
and CIFAR-100 datasets. We use the DeiT-S model that
is pretrained with AutoProg on ImageNet for finetuning on
CIFAR datasets, following the procedure in [69]. We com-
pare with its counterpart pretrained with the ordinary train-
ing scheme. The results are summarized in Tab. 4. While
AutoProg largely saves training time, it achieves competi-
tive transfer learning results. This proves that AutoProg ac-
celeration on ImageNet pretraining does not harm the trans-
fer ability of ViTs on CIFAR datasets.

5.3. Ablation Study
Growth Operator ζ. We first compare the three growth
operators mentioned in Sec. 3.3, i.e., RandInit [59], Stack-
ing [25] and Interpolation [10,20], by using them with man-
ual Prog scheme on VOLO-D1. As shown in Tab. 5, Inter-
polation growth achieves the best accuracy both after the
first growth and in the final.

Then, we compare two growth operators build upon In-
terpolation scheme, our proposed MoGrow, and Identity,
which is a function-preserving [12, 75] operator that can
be achieved by Interpolation + ReZero [1]. Specifically,
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Growth Op. ζ Top-1@Growth (%) Top-1 (%)

Baseline - 82.53

RandInit [59] 60.61 80.02
Stacking [25] 61.50 81.55
Interpolation [10, 20] 61.53 81.78

Identity [12, 75] 61.04 79.32
MoGrow 61.65 81.90

Table 5. Ablation analysis of depth growth operator ζ with the
Prog learning scheme. Top-1@Growth denotes the accuracy after
training for the first epoch of the second stage.

Method Top-1@Growth (%) Top-1 (%)

AutoProg w/o MoGrow 59.41 82.6
AutoProg w/ MoGrow 62.14 82.8

Table 6. Ablation analysis of MoGrow in our AutoProg learning
scheme on VOLO-D1. Top-1@Growth denotes the accuracy of
the supernet after training for the first epoch of the second stage.

ReZero uses a zero-initialized, learnable scalar to scale the
residual modules in networks. Using this technique on
newly added layers can assure the original network func-
tion is preserved. The results are shown in Tab. 5. Contrary
to expectations, we observe that Identity growth largely re-
duces the Top-1 accuracy of VOLO-D1 (-3.21%), probably
because the network convergence is slowed down by the
small scalar; besides, the global minimum of the original
function could be a local minimum in the new network,
which hinders the optimization. On this inferior growth
schedule, our MoGrow still improves over Interpolation by
0.15%, effectively reducing its performance gap.

Previous comparisons are based on the Prog scheme.
Moreover, we also analyze the effect of MoGrow on Au-
toProg. The results are shown in Tab. 6. We observe that
MoGrow largely improves the performance of the supernet
by 2.73%. It also increases the final training accuracy by
0.2%, proving the effectiveness of MoGrow in AutoProg.
Weight Recycling. We further study the effect of weight re-
cycling by training VOLO-D1 using AutoProg. As shown
in Tab. 7, by recycling the weights of the supernet, Auto-
Prog can achieve 12.3% more speedup. Also, benefiting
from the synergy effect in weight-nesting [84], weight recy-
cling scheme does not cause accuracy drop. These results
prove the effectiveness of weight recycling.
Adaptive Regularization. Adaptive Regularization
(AdaReg) for progressive learning is proposed in [66]. It
adaptively change regularization intensity (including Ran-
dAug [14], Mixup [87] and Dropout [61]) according to net-
work capacity of CNNs. Here, we generalize this scheme
to ViTs and study its effect on ViT AutoProg training with
DeiT-S and VOLO-D1. We mainly focus on three data aug-
mentation and regularization techniques that are commonly
used by ViTs, i.e., RandAug [14], stochastic depth [36] and
random erase [89]. When using AdaReg scheme, we lin-

Method Speedup Top-1 Acc. (%)

w/o recycling 53.3% 82.8
w/ recycling 65.6% 82.8

Table 7. Ablation analysis of weight recycling in our AutoProg
learning scheme on VOLO-D1.

Method AdaReg Speedup Top-1 Acc. (%)

DeiT-S AutoProg ✗ +40.7% 74.4
DeiT-S AutoProg ✓ - 0.1∗

VOLO-D1 AutoProg ✗ +50.9% 81.5
VOLO-D1 AutoProg ✓ +85.1% 82.7

Table 8. Ablation analysis of the adaptive regularization on ViTs
with the AutoProg learning scheme. (*: training can not converge)

early increase the magnitude of RandAug from 0.5× to 1×
of its original value, and also linearly increase the probabil-
ities of stochastic depth and random erase from 0 to their
original values. The results of AutoProg with and with-
out AdaReg are shown in Tab. 8. Notably, DeiT-S can
not converge when training with AdaReg, probably because
DeiT models are heavily dependent on strong augmenta-
tions. On the contrary, AdaReg on VOLO-D1 is indis-
pensable. Not using AdaReg causes 1.2% accuracy drop on
VOLO-D1. This result is consistent with previous discov-
eries on CNNs [66]. By default, we use AdaReg on VOLO
models and not use it on DeiT models.

6. Conclusion and Discussion
In this paper, we take a practical step towards sustainable

deep learning by generalizing and automating progressive
learning for ViTs. We have developed a strong manual base-
line for progressive learning of ViTs with MoGrow growth
operator and proposed an automated progressive learning
(AutoProg) scheme for automated growth schedule search.
Our AutoProg has achieved consistent training speedup on
different ViT models with lossless performance on Ima-
geNet and transfer learning. Ablation studies have proved
the effectiveness of each component of AutoProg.
Social Impact and Limitations. When network training
becomes more efficient, it is also more available and less
subject to regularization and study, which may result in
a proliferation of models with harmful biases or intended
uses. In this work, we achieve inspiring results with auto-
mated progressive learning on ViTs. However, large scale
training of CNNs and language models can not directly ben-
efit from it. We encourage future works to develop auto-
mated progressive learning for efficient training in broader
applications.
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