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Abstract

As an inherently ill-posed problem, depth estimation
from single images is the most challenging part of monoc-
ular 3D object detection (M3OD). Many existing methods
rely on preconceived assumptions to bridge the missing spa-
tial information in monocular images, and predict a sole
depth value for every object of interest. However, these as-
sumptions do not always hold in practical applications. To
tackle this problem, we propose a depth solving system that
fully explores the visual clues from the subtasks in M3OD
and generates multiple estimations for the depth of each
target. Since the depth estimations rely on different assump-
tions in essence, they present diverse distributions. Even if
some assumptions collapse, the estimations established on
the remaining assumptions are still reliable. In addition, we
develop a depth selection and combination strategy. This
strategy is able to remove abnormal estimations caused by
collapsed assumptions, and adaptively combine the remain-
ing estimations into a single one. In this way, our depth
solving system becomes more precise and robust. Exploit-
ing the clues from multiple subtasks of M3OD and without
introducing any extra information, our method surpasses
the current best method by more than 20% relatively on the
Moderate level of test split in the KITTI 3D object detection
benchmark, while still maintaining real-time efficiency.

1. Introduction

Significant attention has been drawn by 3D object detec-
tion due to its widespread applications in autonomous driv-
ing and robotic navigation [2, 13, 14, 42]. Inaccurate detec-
tion affects the motion planning process directly and could
lead to serious accidents. Therefore, the industry has great
demand for precise and robust 3D object detection systems.
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(a) Direct estimation (1 depth): 0.6220 (b) Depth from height (3 depths): 0.5831 

(c) Depth from keypoint (16 depths): 0.3210 (d) Our system (20 depths): 0.2819
Figure 1. Comparison among various depth solving strategies with
different diversity levels. The value below each image is the mean
absolute error of depth estimation on the KITTI validation set [12]
if we always select the most accurate depth from multiple pro-
duced estimations. As shown, the error decreases as the diversity
of estimations increases.

Many recently proposed 3D object detection algorithms
heavily rely on LiDARs [47] and stereo cameras [18], be-
cause they are able to perceive the depth information of sur-
roundings directly. Nevertheless, LiDAR sensors are ex-
pensive while stereo cameras require exact online calibra-
tion [22]. These limitations make 3D perception using only
monocular images promising because it is economical and
flexible for deployment.

The monocular 3D object detection community has
achieved prominent progress in recent years. However,
there still exists a huge performance gap between the
monocular and LiDAR-based methods. This gap is caused
by the fact that accurate localization of 3D objects relies on
precise depth estimation, and predicting depth from monoc-
ular images is an inherently ill-posed problem [25], which
means the information contained in a single image is insuf-
ficient for determining the depths of objects. To compen-
sate the lack of information, current detectors usually resort
to some preconceived assumptions. For example, SMOKE
[21] assumes that depth can be inferred from visual pixels
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directly. MonoRCNN [39] hypothesizes the height of a tar-
get can be estimated precisely and the camera is an ideal
pinhole imaging model [37]. Nevertheless, these assump-
tions do not always hold. When the assumptions fail, the
single depth produced by a method becomes unreliable.

To address the aforementioned problem, we develop a
depth solving system that provides diverse depth estima-
tions for every target. Different from MonoFlex [45] that
only utilizes limited information (direct estimation and the
heights of objects) and generates similar depths, our method
fully exploits various attribute combinations (direct estima-
tion, keypoint, orientation and dimension of an object) to
produce 20 depths, which present diverse distributions. Be-
sides, since the 20 depths are separately obtained by solving
20 equations built upon different assumptions, part of the
depths are still precise when some assumptions collapse.
Figure 1 illustrates the importance of diversity for monocu-
lar depth estimation in the condition that the most accurate
one can be selected from predicted depths. When only di-
rect estimation (1 depth) is applied, the mean absolute error
(MAE) of depth estimation is 0.6220. In contrast, utilizing
our depth solving system, the MAE decreases to 0.2819.

Although the depths produced by our depth solving sys-
tem include promising estimations, they also contain out-
liers. The following problem is how to select promising es-
timations and combine them into a single value. To that end,
we devise a strategy that removes outliers iteratively and in-
tegrates the remaining depths based on uncertainty. The ex-
perimental results in Section 5.3 suggest that this strategy is
crucial for the overall performance.

Last but not least, considering the uncertainty of both
the combined depth and 3D box vertexes, we propose a
new scheme, named 3D geometry confidence, to model the
conditional 3D confidence. Compared with existing strate-
gies such as modeling the confidence with 3D IOU [6], our
scheme generalizes better.

Incorporating all the techniques, the resulting Monocu-
lar 3D detector with diverse depth estimations, named Mon-
oDDE, fully exploits depth clues in monocular images and
produce reliable 3D detection boxes in practical applica-
tions. Our main contributions are summarized as follows:
• We point out that the diversity of depth estimation

is critical for monocular 3D object detection. Correspond-
ingly, a novel depth solving system that produces 20 depths
for every target is developed.
• We devise a strategy that removes outliers caused by

collapsed assumptions and combines the remaining reliable
estimations into a single depth. Besides, a new scheme for
modeling the conditional 3D confidence is developed.
• Using a single model, MonoDDE outperforms the cur-

rent best method by 20.96% relatively on the Moderate level
of the Car class in KITTI, and ranks 1st and 2nd on the Cy-
clist and Pedestrian classes, respectively.

2. Related Work

Monocular 3D object detection. According to the form of
generated depth, recent monocular 3D object detection al-
gorithms can be mainly categorized into two classes: dense-
depth and sparse-depth methods.

Dense-depth 3D detectors generate depth values for ev-
ery pixel in an image. The generated dense depth map can
be combined with the original RGB image as input to a
model for producing 3D object detection boxes [25,28,38].
Alternatively, it can also be converted to pseudo 3D point
clouds firstly and then a LiDAR-based 3D detector is ap-
plied on them to derive the results [26,33,35]. Although the
dense-depth methods have achieved impressive results, es-
timating pixel-wise depths is challenging and requires more
complex backbones compared with the strategy that only
predicts the depths of several keypoints. This issue has
hindered dense-depth methods from further improvement to
some extent [51].

Sparse-depth methods only produce one valid depth for
every recognized target. Their network structures mostly
follow some outstanding 2D detectors, such as Faster
RCNN [36] and CenterNet [48]. Early sparse-depth meth-
ods rely on generating numerous anchors heavily and utilize
the information contained in the anchors to regress desired
object properties [7, 8, 28]. However, the anchor-generating
process introduces non-negligible noise and increases com-
putation burden [21]. Recent sparse-depth 3D detectors are
mainly center-based [22, 49], which represent objects by
their 2D centers [21] or projected 3D centers [27]. This
anchor-free structure has led to simpler model structures,
fewer hyper-parameters and better detection precision [20].
Our proposed MonoDDE is also center-based.

Sparse depth estimation. Experimental results in previous
works have shown that depth estimation is the most cru-
cial step in center-based methods [45], and existing sparse
depth estimation can be roughly divided into 3 strategies,
direct depth estimation [21], depth from height [39] and
pespective-n-point (PnP) [19].

Among the three strategies, direct depth estimation is the
easiest for implementation. Taking monocular images as
input, it completely relies on a deep neural network to ex-
plore visual clues and infer depths [21, 49]. Besides, since
direct depth estimation does not require manual annotation,
its precision can be improved conveniently via large-scale
self-supervised pre-training without labels [31]. Neverthe-
less, since monocular depth estimation is an ill-posed prob-
lem, the estimated values are not reliable when there exists a
significant domain gap between training and testing images.

Depth from height computes depths based on the pixel
heights and estimated physical heights of targets [39]. Since
the physical heights of objects belonging to the same cate-
gory are similar, depth from height generalizes better than
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direct depth estimation [22]. However, estimating physical
heights is still an ill-posed problem.

In contrast to direct depth estimation and depth from
height, PnP incorporates all the dimension, orientation and
keypoint information of an object to construct geometric
constraints [19, 20, 22] and uses the least squares method
[29] to obtain its location. Therefore, PnP exploits the in-
formation more efficiently. However, all the equations in
PnP are closely coupled with each other [22]. This issue
causes the difficulty to model the uncertainty of every depth
individually.

3. Preliminary
To present our method clearly, we first review the target

of monocular 3D object detection. Afterwards, the mathe-
matical forms of the three depth estimation strategies men-
tioned in Section 2 are given, which are direct depth esti-
mation, depth from height and PnP.

3.1. Monocular 3D Object Detection
Given a single image, monocular 3D object detection

aims to find every object of interest, identify its category
and estimate a 3D box B that contains the object properly.
The 3D box B can be further divided into 3 properties, i.e.,
the 3D center location (x, y, z), dimension (h,w, l) and ori-
entation (yaw angle) θ. The roll and pitch angles of objects
are set to 0 following the KITTI [12] setting.

Among these properties, the dimension and orientation
are strongly related to the visual appearance and can be
learned by a network [15], while the 3D location is chal-
lenging to obtain. This is because producing an accurate 3D
location is built upon the premise of precise depth estima-
tion. Thus, how to estimate the depth correctly is the most
important research topic in monocular 3D object detection.

3.2. Depth Estimation Strategies
Direct depth estimation. Given an input image I , direct
depth estimation relies on the appearance of an object and
its surrounding pixels to regress depth z directly. After-
wards, utilizing the projected 3D center estimation (uc, vc),
x and y are determined as:

x =
(uc − cu)z

fx
, y =

(vc − cv)z

fy
, (1)

where (cu, cv) represents the coordinate of the principle
point, and fx and fy are the horizontal and vertical focal
lengths, respectively.
Depth from height. The depth from height strategy tackles
depth estimation by decoupling it as predicting the physical
height h and pixel height h′ of an object. The process of
computing z given h and h′ can be formulated as:

z =
fyh

h′ . (2)

After obtaining z, x and y are calculated using Eq. (1).
Pespective-n-point. Since objects in 3D object detection
are represented as cuboids, we can use their geometric
constraints to obtain their 3D locations based on the least
squares method.

Denoting the position of a 3D keypoint under the object
coordinate system as Po = (xo, yo, zo)T , it can be trans-
formed to the camera coordinate system with respect to the
rotation matrix R and translation vector T as:

[xc, yc, zc]T = R[xo, yo, zo]T +T, (3)

where Pc = (xc, yc, zc)T represents the location of this 3D
point under the camera coordinate system, and

R =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 , T =
[
x, y, z

]T
. (4)

Afterwards, given the camera intrinsic matrix K, we can
project Pc to a point in the 2D pixel coordinate system as
(u, v):

λ[u, v, 1]T = K[xc, yc, zc]T , (5)

K =

fx 0 cu
0 fy cv
0 0 1

 , λ = zc. (6)

Hereby, the geometric relations between any point in the
object coordinate system and its corresponding pixel on the
2D imaging plane are described by Eqs. (3)–(6). In these
relations, Po is pre-defined manually, K is known, and R
and (u, v) are estimated by a network. Thus, T = [x, y, z]T

contains the only variables waiting to be computed. Since
every 3D keypoint provides 2 geometric constraints, we can
obtain x, y and z simultaneously using the least squares
method if we have at least 2 keypoints.

4. Method
This section details our proposed method and how Mon-

oDDE is implemented.

4.1. Overall Framework
The overall framework of MonoDDE is illustrated in

Figure 2. MonoDDE employs CenterNet [48] as the base
model for producing discriminative representation. Specif-
ically, for any input image I , DLA34 [44] is adopted as
the backbone of CenterNet for extracting features. We es-
tablish several network heads to regress object properties,
including categorical heatmap, 2D bounding box, dimen-
sion, keypoint offsets, orientation, depth and multiple un-
certainty items. Based on the regressed properties, our pro-
posed depth solving system produces 20 diverse depths in
different ways. Subsequently, the developed robust depth
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Figure 2. Overall pipeline of MonoDDE.

combination module filters out outlier values and combines
the remaining estimations as a single depth. Taking this
depth value into Eq. (1), we get the location of the target
and further its 3D box with the regressed dimension and
orientation. In addition, the detection confidence obtained
by our 3D geometry confidence (Section 4.4) is responsi-
ble for modeling the probability that a target is recognized
correctly.

4.2. Diverse Depth Estimations

In this work, we expect our developed depth solving sys-
tem to possess three key characteristics: (1) It should con-
centrate on obtaining depth z rather than computing x, y and
z together. (2) In contrast to existing methods, it should pro-
duce multiple and diverse estimation values. (3) It should
make full use of all available information, including visual
clue, estimated target center, dimension, orientation and
keypoints.

To realize the above goal, we first revisit the geometric
constraints described in Section 3.2. Combining Eqs. (3)–
(6), we can simplify the relation between a 3D keypoint un-
der the object coordinate system P o = (xo, yo, zo) and its
corresponding pixel (u, v) as:

[
−1 0 ũ
0 −1 ṽ

]xy
z

 =

[
ũ
ṽ

]
A+B, (7)

where

ũ =
u− cu
fx

, ṽ =
v − cv
fy

, (8)

A =
[
xosinθ − zocosθ

]
, (9)

B =

[
xocosθ + zosinθ

yo

]
. (10)

It can be observed from Eq. (7) that x, y and z appear
in the same equation, which hinders this system from only
obtaining z. In order to solve this problem, we need to resort
to some extra prior knowledge.

Through experiments, we observe that most centers of
objects can be recognized precisely. More than 85% of es-
timated object centers fall within 1 pixel around their corre-
sponding ground truth points. Hence, Eq. (1) can be used
as the prior. By inserting Eq. (1) into Eq. (7), Eq. (7) can be
reformulated as:

(ũ− ũc)z = Aũ+ xo cos θ + zo sin θ, (11)
(ṽ − ṽc)z = Aṽ + yo, (12)

where ũc =
uc−cu

fx
and ṽc =

vc−cv
fy

.
In this way, Eq. (7) is decoupled into two independent

equations, Eqs. (11) and (12), which focus on solving for z.
The geometric relation between every 3D vertex and its cor-
responding projected pixel can result in 2 separate depths.
In our implementation, as shown in Figure 3 (a), we select 8
vertexes of a 3D box as the keypoints to calculate the depths,
which provide 16 diverse estimation values.

𝑘𝑝!

𝑘𝑝"
𝑘𝑝#

𝑘𝑝$

𝑘𝑝%

𝑘𝑝&
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Depth from keypoint Depth from height
(a) (b)

𝑘𝑝(

𝐻"
𝐻$ 𝐻!

𝐻# 𝐻%

Figure 3. Depths from keypoints and heights.
Furthermore, we incorporate the direct depth estimation

and depth from height strategies into the depth solving sys-
tem. Specifically, direct depth estimation regresses 1 depth
value of the projected 3D center like [21]. For depth from
height, as shown in Figure 3 (b), we split the heights of
the center vertical line and corner vertical lines into three
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groups, {H5}, {H1, H3}, and {H2, H4}, which is sim-
ilar to [45]. The depth of an object can be obtained us-
ing the center vertical line H5 and Eq. (2) or by averaging
the depths generated using the opposite corner vertical lines
({H1 and H3} or {H2 and H4}).

Hereby, we have established a depth solving system that
can output 20 diverse depths, 16 from our newly proposed
geometric constraints (depth from keypoint), 1 from direct
depth estimation, and 3 from depth from height. The fol-
lowing problem is how to select reliable depths from them.

4.3. Robust Depth Combination
In this subsection, we present the strategies for selecting

and combining promising depths.
Output distribution. Assuming each estimated depth fol-
lows the Gaussian distribution [24], the model learns to pre-
dict the mean and variance of this distribution by minimiz-
ing:

Lσ =
|p− p∗|

σ
+ logσ, (13)

where p and σ are the predicted mean and standard devi-
ation of the output distribution, respectively, and p∗ repre-
sents the ground truth. Note that σ is learned implicitly from
Eq. (13) without the need of ground truth. More details are
given in [10,16] about why the distribution can be captured
by the network in this way.

Moreover, we define the distribution of a set S =
{si}Ni=1, which contains N Gaussian distribution variables
si ∼ N (µi, σ

2
i ), as a new Gaussian distribution, because

all the heads predict the depths of the same target. It is the
weighted sum of {si}Ni=1 and the weights {ωi}Ni=1 are de-
rived via the weighted least squares method [3]:

ωi =
1/σ2

i

N∑
j=1

1/σ2
j

. (14)

Hence, the mean µs and variance σ2
s of S are calculated as:

µs =

N∑
i=1

ωiµi, σ
2
s =

N∑
i=1

ω2
i σ

2
i . (15)

Selecting and combining reliable depths. We first train
our model to predict the means and variances of the 20
depth distributions using Eq. (13), and compose the 20 dis-
tributions as the set S. Since both S and its contained vari-
ables {si}Ni=1 are treated as Gaussian distributions, we can
filter out outliers based on the 3σ rule [32], and devise a
robust algorithm similar to the expectation-maximization
(EM) algorithm [11].

Algorithm 1 Robust depth selection and combination.

Input: Estimated depths {zi}Ni=1 and their corresponding
variances {σ2

i }Ni=1

1: Initialize an empty set S = ∅
2: Put zk to S if σ2

k = min{σ2
1 , σ

2
2 , ..., σ

2
N}

3: while True do
4: Update µs and σ2

s according to Eqs. (14)–(15)
5: Snew = ∅
6: for i = 1 to N do
7: Snew ← Snew ∪{zi} if zi ∈ (µs−3σs, µs+3σs)

and zi /∈ S.
8: end for
9: if Snew is ∅ then

10: break
11: end if
12: S ← S ∪ Snew

13: end while
Output: µs

In this algorithm, we first initialize S as an empty set
and put the depth with minimum variance to S. For the
maximization step, µs and σ2

s are updated using Eqs. (14)–
(15). During the expectation step, the depths that fall into
(µs − 3σs, µs + 3σs) are added to S. We repeat the max-
imization and expectation steps until µs and σ2

s converge.
Afterwards, all depths falling out of (µs − 3σs, µs + 3σs)
are regarded as outliers and removed.

In this way, the reliable depths are contained in S. We
directly employ the final µs as the combined depth zc for
subsequent operations. The pseudo code of the robust depth
combination is given in Algorithm 1.

4.4. 3D Geometry Confidence
Let Pm be the probability (also called confidence) that a

target is detected correctly. Following [20] with the proba-
bility chain rule, it is factorized into two items:

Pm = P3d|2d · P2d, (16)

where P2d is represented by the categorical heatmap score
and P3d|2d denotes the conditional 3D confidence. Previous
methods often model P3d|2d with 3D IOU [6,40,43]. How-
ever, since the training images are used to train the model
and the validation images are unseen, the mean 3D box IOU
of the model on the training images is significantly higher
than that on the validation images. Due to the large IOU
gap, directly employing 3D IOU in the training stage to train
the network and regarding the predicted IOU as P3d|2d lead
to poor results in the validation stage. Meanwhile, some
works have indicated that models trained with implicit su-
pervision generalize better [46]. Hence, we model P3d|2d
based on the estimated variance in Eq. (13), which is im-
plicitly learned. Specifically, following [45], we define the
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confidence d of an estimation item with respect to its vari-
ance σ2 as:

d = 1−min{σ2, 1}. (17)

In this work, we model P3d|2d as the weighted sum of
two items, the combined depth confidence dc and the 3D
box confidence db:

P3d|2d = ωcdc + ωbdb, (18)

where ωc and ωb are calculated based on σ2
c and σ2

b using
Eq. (14). P3d|2d in Eq. (18) is our devised 3D geometry
confidence.

The combined depth variance σ2
c for determining dc is

learned with Eq. (13). We do not directly use σ2
s as σ2

c

because we observe that the estimated σ2
c leads to a more

precise value. Meanwhile, similar to Eq. (13), the variance
of the 3D box σ2

b is obtained via minimizing:

Lb =

8∑
i=1

|vi − v∗i |

σb
+ logσb, (19)

where {vi}8i=1 denote the coordinates of the 8 3D box ver-
texes and {v∗i }8i=1 are their ground truth.

4.5. Network Heads
This subsection describes the implementation of the de-

tection heads briefly. Each head comprises two convolu-
tional layers and one batch normalization layer.
Categorical heatmap. It is responsible for distinguishing
the categories of objects and localizing target points. In this
work, we employ projected 3D centers as the ground truth
of the target points, and the representation decoupling strat-
egy devised in MonoFlex [45] is adopted to tackle truncated
objects. The loss function follows [21].
Orientation. Similar to [30], we regress the observation
angle α instead of the yaw angle θ, and train the network
with the MultiBin loss. α is split into 4 bins like [5], and
then θ is obtained based on α.
Dimension. To be consistent with existing works, we pre-
dict the log-scale offsets of dimensions rather than directly
outputting absolute sizes. Refer to [48] for details.
Keypoints. Following [45], MonoDDE regresses the off-
sets from target points to 10 pre-defined 2D keypoints,
which include 8 vertexes, the bottom center and top center
of a 3D bounding box.
Depth. This head is responsible for producing the direct
estimation depth z. Notably, instead of estimating the abso-
lute value of z directly, MonoDDE learns to fit its exponen-
tially transformed form in [9].
Uncertainty. Based on Eq. (13), we enforce the network to
capture the uncertainties (variances) of the 20 depth values,
the combined depth zc, and the 3D box.

5. Experiments
Dataset. Our method is evaluated on the KITTI 3D object
detection benchmark [12], which comprises 7481 images
for training and 7518 images for testing. Since the anno-
tations of the testing data are not available, following [50],
we further divide the training data into the training set (3712
images) and validation set (3769 images). Our reported de-
tection classes include Car, Pedestrian and Cyclist. Besides,
the objects in KITTI have been categorized into three diffi-
culty levels (Easy, Moderate and Hard) according to their
pixel heights, occlusion ratios, etc.
Evaluation metrics. The average precision (AP) of 3D
bounding boxes and bird’s-eye view (BEV) map are main
metrics for comparing performance. Following [41], 40 re-
call positions are sampled to calculate AP. The IOU thresh-
olds are 0.7 for Car, and 0.5 for Pedestrian and Cyclist.
Implementation details. MonoDDE is trained for 100
epochs with the initial learning rate 3e-4. The weights of
the model are updated using the AdamW optimizer [23] and
the learning rate is decayed at the 80th and 90th epochs [34].
The batch size is set to 8 and the whole training process is
conducted on a single Tesla V100 GPU. Random horizontal
flipping is the only augmentation operation.

5.1. Quantitative Results
We compare our method with recent SOTA counterparts

of monocular 3D object detection on the KITTI benchmark.
The detection results of the Car category are reported in Ta-
ble 1, and the comparison on Pedestrian and Cyclist is given
in Table 2. For the convenience of observation, the best and
second-best results are in bold and underlined, respectively.

As shown in Table 1, taking monocular images as input,
MonoDDE outperforms all other methods by large margins
on both the testing and validation sets without introducing
any extra information. For instance, MonoDDE surpasses
Autoshape, a very recent SOTA method that utilizes CAD
models as an extra clue, by 2.97% for AP3D70 on the Mod-
erate level. In other words, MonoDDE outperforms Au-
toShape by 20.96% (2.97÷14.17) relatively.

In Table 2, MonoDDE outperforms all sparse-depth
methods (M3D-RPN, MonoPair, DFR-Net and MonoFlex)
significantly. Although MonoDDE is slightly weaker than
CaDDN (a pseudo-LiDAR method) for the Pedestrian class,
MonoDDE is much faster (MonoDDE: 0.04s/image vs.
CaDDN: 0.63s/image). We speculate that MonoDDE does
not behave the best for Pedestrian because pedestrians are
non-rigid and much smaller compared with cars. Therefore,
it is difficult to recognize the keypoints of pedestrians, while
the pseudo-LiDAR methods do not suffer from this issue.

5.2. Ablation Study on Depth Estimation
This subsection aims to study how various depth estima-

tion methods affect the 3D object detection precision. To
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Method Depth Extra Test, AP3D70 (%) Test, APBEV 70 (%) Val, AP3D70 (%) Time (s)Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
M3D-RPN [4] E - 14.76 9.71 7.42 21.02 13.67 10.23 14.53 11.07 8.65 0.16
SMOKE [21] E - 14.03 9.76 7.84 20.83 14.49 12.75 - - - 0.03
MonoPair [9] E - 13.04 9.99 8.65 19.28 14.83 12.89 16.28 12.30 10.42 0.06
Monodle [27] E - 17.23 12.26 10.29 24.79 18.89 16.00 17.45 13.66 11.68 0.04

GrooMeD-NMS [17] E - 18.10 12.32 9.65 26.19 18.27 14.05 19.67 14.32 11.27 0.12
Kinematic3D [5] E Video 19.07 12.72 9.17 26.69 17.52 13.10 19.76 14.10 10.47 0.12

CaDDN [35] E Depth 19.17 13.41 11.46 27.94 18.91 17.19 23.57 16.31 13.84 0.63
DFR-Net [51] E Depth 19.40 13.63 10.35 28.17 19.17 14.84 24.81 17.78 14.41 0.18
MonoEF [49] E - 21.29 13.87 11.71 29.03 19.70 17.26 - - - 0.03

MonoRCNN [39] H - 18.36 12.65 10.03 25.48 18.11 14.10 16.61 13.19 10.65 0.07
RTM3D [20] P - 14.41 10.34 8.77 19.17 14.20 11.99 - - - 0.05
KM3D [19] P - 16.73 11.45 9.92 23.44 16.20 14.47 - - - 0.03

Autoshape [22] P CAD 22.47 14.17 11.36 30.66 20.08 15.95 20.09 14.65 12.07 0.04
MonoFlex [45] EH - 19.94 13.89 12.07 28.23 19.75 16.89 23.64 17.51 14.83 0.03

MonoDDE (ours) EHK - 24.93 17.14 15.10 33.58 23.46 20.37 26.66 19.75 16.72 0.04
Table 1. Performance comparison between MonoDDE and recent SOTAs on the Car class of KITTI. They are sorted according to their
depth solving strategies shown in the 2nd column (E: Direct depth estimation, H: Depth from height, P: PnP, and K: Depth from keypoint).

Method
Test, AP3D50 (%)

Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard

M3D-RPN [4] 4.92 3.48 2.94 0.94 0.65 0.47
MonoPair [9] 10.02 6.68 5.53 3.79 2.12 1.83
CaDDN [35] 12.87 8.14 6.76 7.00 3.41 3.30
DFR-Net [51] 6.09 3.62 3.39 5.69 3.58 3.10
MonoFlex [45] 9.43 6.31 5.26 4.17 2.35 2.04

MonoDDE (ours) 11.13 7.32 6.67 5.94 3.78 3.33
Table 2. Performance comparison on the Pedestrian and Cyclist
classes of KITTI.

this end, we compare the performance of the model that pre-
dict depths based on different combinations of three strate-
gies (direct depth estimation, depth from height and depth
from keypoint). The model is trained on the KITTI training
set and evaluated on the Car class of KITTI validation set.
The results are reported in Table 3.

E H K Val, AP3D70 (%) Val, APBEV 70 (%)
Easy Moderate Hard Easy Moderate Hard

✓ 24.20 18.01 15.88 32.53 24.52 21.33
✓ 25.01 18.36 15.32 33.15 24.83 21.40

✓ 24.48 18.74 15.88 32.89 25.29 21.51
✓ ✓ 25.26 18.74 16.26 33.68 25.26 21.95

✓ ✓ 24.48 18.82 15.96 33.69 25.47 22.22
✓ ✓ 25.64 19.18 16.29 34.14 25.65 22.43
✓ ✓ ✓ 26.66 19.75 16.72 35.51 26.48 23.07

Table 3. Ablation study on depth estimation strategies (E: direct
depth estimation, H: depth from height, and K: depth from key-
point). We highlight the strategy adopted by MonoDDE in pink .

As reported in the 1st–3rd rows of results in Table 3,
when the three depth estimation strategies are applied sepa-
rately, the model based on depth from keypoint achieves the
best performance on Moderate and Hard, and the one with
only direct depth estimation performs the worst. The un-
derlying reason is that depth from keypoint brings the most
clues (16 depths) for every target while direct depth estima-
tion only produces 1 depth.

According to the results in the last 4 rows of Table 3,
if we combine two of the depth solving strategies to pro-

Select Combine Val, AP3D70 (%) Val, APBEV 70 (%)
Easy Moderate Hard Easy Moderate Hard

None Hard 25.71 19.13 16.39 34.30 25.72 22.39
None Mean 18.08 14.31 12.34 24.60 19.10 16.71
None Weighted 25.81 19.26 16.34 34.25 25.83 22.50
Min Weighted 26.31 19.59 16.58 34.79 26.09 22.78

Iterative Weighted 26.66 19.75 16.72 35.51 26.48 23.07
Oracle None 49.96 38.73 33.06 58.69 43.96 37.65

Table 4. Analysis of the depth selection and combination strate-
gies.

duce depths, better results are obtained because the diver-
sity of the estimations is enhanced. The best performance
is achieved when we combine all the three strategies, which
totally generates 20 depths for every detected object.

5.3. Analysis on Depth Selection and Combination
In this subsection, we analyze how the depth selection

and combination strategies affect the results. We compare
the performance of the model that tackles estimations in
various ways. The results are presented in Table 4. The 1st
column indicates how reliable depths are selected. Specif-
ically, “None” means no selection is applied. “Min” in-
dicates that the minimum estimated variance is regarded
as the variance of the set S. “Iterative” refers to the pro-
posed iterative strategy described in Algorithm 1. In the
2nd column, “Hard” denotes that we use the value with the
minimum variance as the combined depth zc. “Mean” and
“Weighted” represent that zc is the mean and the weighted
sum of the depth estimations, respectively. Notably, the last
row (in gray ) of Table 4 shows the performance if the best
one is always selected from the set of the 20 depths. The
strategy employed by MonoDDE is highlighted in pink .

Comparing the 2nd and 3rd rows of the results in Ta-
ble 4, we can notice that it is necessary to model the vari-
ance of the network output and combine estimations with
the weighted sum operation in Eq. (15). Besides, according
to the 3rd and 5th rows of Table 4, removing outliers with
Algorithm 1 boosts the detection precision effectively.
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Figure 4. Visualization of some examples on the validation (left) and test (right) sets of KITTI. Failure cases are presented in the last row.
The 3D green boxes are produced by MonoDDE and the orange boxes are the ground truth. We hightlight the target failed to be labeled by
the annotator with a yellow ellipse and the undetected targets with red ellipses.

Notably, as presented in the last row of Table 4, if we de-
velop a perfect strategy that always selects the most accurate
one from the 20 depths, the AP3D70 on the Moderate level
arrives 38.73%. This phenomenon indicates how to select
accurate depths deserves further study in the future work.

5.4. Analysis on the 3D Geometry Confidence

In this subsection, we study how various ways of model-
ing P3d|2d affect the performance of MonoDDE. We com-
pare the models based on different strategies, and the re-
sults are presented in Table 5. In the 1st column of Ta-
ble 5, “None” means we directly regard the 2D categorical
heatmap score as the detection confidence Pm. For “3D
IOU”, we train a specific network head to regress P3d|2d
defined based on 3D IOU. Denoting the 3D IOU between
an estimated box and its ground truth as I3D, P3d|2d =
min{max{2I3D − 0.5, 0}, 1} following [19]. “d1–d20” in-
dicates that P3d|2d is computed based on the confidences
of the 20 depth estimations through the weighted sum

(
20∑
i=1

ωidi) like Eq. (18). “dc” and “db” mean we model

P3d|2d using the combined depth confidence dc and the 3D
box confidence db, respectively. “3D Confidence” is the
strategy employed by MonoDDE (marked in pink ).

From Table 5, we can mainly observe two facts: (1)
Comparing the 1st and 2nd rows of the results, it can be
found that modeling P3d|2d with 3D IOU does not always
boost the performance. (2) According to the values in the
3rd–6th rows, modeling P3d|2d with our proposed strategy
leads to the best results.

Strategies Val, AP3D70 (%) Val, APBEV 70 (%)
Easy Moderate Hard Easy Moderate Hard

None 23.67 18.15 15.41 31.59 24.57 21.45
3D IOU 22.67 18.54 16.06 30.30 24.14 21.17
d1–d20 25.32 19.08 16.12 33.37 25.39 22.16
dc 25.58 19.12 16.17 33.76 25.72 22.34
db 26.02 19.48 16.43 34.14 25.87 22.88

3D Confidence 26.66 19.75 16.72 35.51 26.48 23.07

Table 5. Analysis of modeling conditional 3D confidence strate-
gies.

5.5. Qualitative Results and Limitation

We show some 3D boxes and BEV maps produced by
MonoDDE on both the KITTI validation and testing sets in
Figure 4. As shown, although some targets are not labeled
by the annotators, they are still detected by MonoDDE cor-
rectly. However, as illustrated in the last row of Figure 4,
similar to other works, the performance of MonoDDE on
detecting seriously occluded targets is limited.

6. Conclusion

In this paper, we have proposed a robust monocular 3D
detector that can produce diverse depth estimations for ev-
ery target and combine the reliable estimations into a single
depth. Besides, a new way for modeling the conditional 3D
confidence is developed. The experimental results indicate
that all our proposed techniques are effective, which estab-
lish new SOTA in monocular 3D object detection. We hope
this work can shed light on how to tackle the problem of
missing depth information in monocular images. We thank
MindSpore [1] for the partial support to this work, which is
a new deep learning computing framework.
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