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Abstract

Despite the recent advances in multi-task learning of
dense prediction problems, most methods rely on expensive
labelled datasets. In this paper, we present a label efficient
approach and look at jointly learning of multiple dense pre-
diction tasks on partially annotated data (i.e. not all the task
labels are available for each image), which we call multi-
task partially-supervised learning. We propose a multi-task
training procedure that successfully leverages task relations
to supervise its multi-task learning when data is partially
annotated. In particular, we learn to map each task pair to a
Jjoint pairwise task-space which enables sharing information
between them in a computationally efficient way through an-
other network conditioned on task pairs, and avoids learning
trivial cross-task relations by retaining high-level informa-
tion about the input image. We rigorously demonstrate that
our proposed method effectively exploits the images with
unlabelled tasks and outperforms existing semi-supervised
learning approaches and related methods on three standard
benchmarks.

1. Introduction

With the recent advances in dense prediction computer
vision problems [16,24,37,42,46,53,56,63,64,67,71,72],
where the aim is to produce pixel-level predictions (e.g. se-
mantic and instance segmentation, depth estimation), the
interest of the community has started to shift towards the
more ambitious goal of learning multiple of these problems
jointly by multi-task learning (MTL) [7]. Compared to the
standard single task learning (STL) that focuses on learning
an individual model for each task, MTL aims at learning
a single model for multiple tasks with a better efficiency
and generalization tradeoff while sharing information and
computational resources across them.

Recent MTL dense prediction methods broadly focus on
designing MTL architectures [4,5, 18,23,36,38,43,48,57,
59,65,75-=77] that enable effective sharing of information
across tasks and improving the MTL optimization [! 1, 12,20,
22,29,32,33,36,50,66] to balance the influence of each task-
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Figure 1. Multi-task partially supervised learning. We look at
the problem of learning multiple tasks from partially annotated data
(b) where not all the task labels are available for each image, which
generalizes over the standard supervised learning (a) where all task
labels are available. We propose a MTL method that employs a
shared feature extractor (fy) with task-specific heads (h) and
exploits label correlations between each task pair by mapping them
into a joint pairwise task-space and penalizing inconsistencies
between the provided ground-truth labels and predictions (c).

(c) Cross-task consistency learning.

specific loss function and to prevent interference between the
tasks in training. We refer to [58] for a more comprehensive
review. One common and strong assumption in these works
is that each training image has to be labelled for all the tasks
(Fig. 1(a)). There are two main practical limitations to this
assumption. First, curating multi-task image datasets (e.g.
KITTI [19] and CityScapes [14]) typically involves using
multiple sensors to produce ground-truth labels for several
tasks, and obtaining all the labels for each image requires
very accurate synchronization between the sensors, which
is a challenging research problem by itself [60]. Second,
imagine a scenario where one would like to add a new task
to an existing image dataset which is already annotated for
another task and obtaining the ground-truth labels for the new
task requires using a different sensor (e.g. depth camera) to
the one which is used to capture the original data. In this case,
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labelling the previously recorded images for the new task
will not be possible for many visual scenes (e.g. uncontrolled
outdoor environments). Such real-world scenarios lead to
obtaining partially annotated data and thus ask for algorithms
that can learn from such data.

In this paper, we look at a more realistic and general
case of the MTL dense prediction problem where not all the
task labels are available for each image (Fig. 1(b)) and we
call this setting multi-task partially supervised learning. In
particular, we assume that each image is at least labelled
for one task and each task at least has few labelled images
and we would like to learn a multi-task model on them. A
naive way of learning from such partial supervision is to
train a multi-task model only on the available labels (i.e. by
setting the weight of the corresponding loss function to O for
the missing task labels). Though, in this setting, the MTL
model is trained on all the images thanks to the parameter
sharing across the tasks, it cannot extract the task-specific
information from the images for the unlabelled tasks. To
this end, one can extend existing single-task semi-supervised
learning methods to MTL by penalizing the inconsistent
predictions of images over multiple perturbations for the
unlabelled tasks (e.g. [13,28,31,35,55]). While this strategy
ensures consistent predictions over various perturbations, it
does not guarantee consistency across the related tasks.

An orthogonal information that has recently been used in
MTL is cross-task relation [39,49,68] which aims at produc-
ing consistent predictions across task pairs. Unfortunately
existing methods are not directly applicable for learning
from partial supervision, as they require either each train-
ing image to be labelled with all the task labels [49, 68] or
cross-task relations that can be analytically derived [39]. In
our setting, compared to [39,49,68], there are fewer training
images available with ground-truth labels of each task pair
and thus it is harder to learn the relationship. In addition,
unlike [39], we focus on the general setting where one task
label cannot be accurately obtained from another (e.g. from
semantic segmentation to depth) and hence learning exact
mappings between two task labels is not possible.

Motivated by these challenges, we propose a MTL ap-
proach that shares a feature extractor between tasks and also
learns to relate each task pair in a learned joint pairwise
task-space (illustrated in Fig. 1(c)), which encodes only the
shared information between them and does not require the
ill-posed problem of recovering labels of one task from an-
other one. There are two challenges to this goal. First, a
naive learning of the joint pairwise task-spaces can lead to
trivial mappings that take all predictions to the same point
such that each task produces artificially consistent encodings
with each other. To this end, we regulate learning of each
mapping by penalizing its output to retain high-level infor-
mation about the input image. Second, the computational
cost of modelling each task pair relation can get exponen-

tially expensive with the number of tasks. To address this
challenge, we use a single encoder network to learn all the
pairwise-task mappings, however, dynamically estimate its
weights by conditioning them on the target task pair.

The main contributions of our method are as following.
We propose a new and practical setting for multi-task dense
prediction problems and a novel MTL model that penal-
izes cross-task consistencies between pairs of tasks in joint
pairwise task-spaces, each encoding the commonalities be-
tween pairs, in a computationally efficient manner. We show
that our method can be incorporated to several architectures
and significantly outperforms the related baselines in three
standard multi-task benchmarks.

2. Related Work

Multi-task Supervised Learning. Multi-task Learning
(MTL) [7,47,58,73] aims at learning a single model that
can infer all desired task outputs given an input. The prior
works can be broadly divided into two groups. The first
one [4-0,18,23,36,38,43,48,57,59,65,75-77] focuses on
improving network architecture by better sharing informa-
tion across tasks and learning task-specific representation by
devising cross-task attention mechanism [43], task-specific
attention modules [36], gating strategies [5, 23], etc. The
second one aims to improve the imbalanced optimization
problem caused by jointly optimizing different losses of
various tasks as the difficulty levels, loss magnitudes, and
characteristics of tasks are various. To this end, the recent
work [11,12,20,22,29,33,36,50,66] enable a more bal-
anced optimization for multi-task learning network by dy-
namically adjusting weights of each loss functions based
on task-certainty [29], Pareto optimality [50], discarding
conflicting gradient components [06], etc. However, these
works focus on the supervised setting, where each sample in
the dataset is annotated for all desired tasks.
Multi-task Semi-supervised Learning. Learning multi-
task model on fully annotated data would require large-
scale labeled data and it is costly to collect sufficient
labeled data. Thus few works propose to learn multi-
task learning model using semi-supervised learning strat-
egy [13,28,31,35,35,55,61,74] and they assume that the
dataset consists of limited data annotated with all tasks labels
and a large amount of unlabeled data. Liu ef al. [35] extend
single-task semi-supervised learning to multi-task learning
by learning a classifier per task jointly under the constraint
of a soft-sharing prior imposed over the parameters of the
classifiers. In [13,28,31,35,55], the authors employ a regu-
larization term on the unlabeled samples of each tasks that
encourages the model to produce ‘consistent’ predictions
when its inputs are perturbed.
Cross-task Relations. A rich body of work [3, 8,26,27,
,39,40,49,54,62,68-70,78] study the relations between
tasks in MTL. Most related to ours, [49] explore the relations
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between segmentation and depth and propose a better fusion
strategy to fuse two tasks predictions for domain adaptation.
Zamir et al. [68] study the cross-task consistency learned
from groundtruth of all tasks for robust learning, i.e. the
predictions made for multiple tasks from the same image are
not independent, and therefore, are expected to be ‘consis-
tent’. Similar to [68], Lu et al. [39] propose to leverage the
cross-task consistency between predictions of different tasks
on unlabeled data in a mediator dataset when jointly learn-
ing multiple models for distributed training. To regularize
the cross-task consistency, Lu ef al. [39] design consistency
losses according to the consistency between adjacent frames
in videos, relations between depth and surface normal, etc.
In this paper, we also exploit the cross-task consistency in
MTL, however, from partially annotated data where the map-
ping from one task label to another cannot be analytically
derived or exactly learned. To this end, unlike [39, 68], we
learn a joint task-space for each task pair rather than mea-
suring consistency in one’s task space. Finally, our method
learns cross-task in a more computationally efficient way
than [39, 68] by sharing parameters across different map-
pings and conditioning its output on the related task-pair.

3. Method
3.1. Problem setting

Let ¢ € R3>*H*W gnd gt € RO *HXW denote an H x
W dimensional RGB image and its dense label for task ¢
respectively, where O' is the number of output channels for
task ¢. Our goal is to learn a function 4 for each task ¢ that
accurately predicts the ground-truth label y? of previously
unseen images. While such a task-specific function can be
learned for each task independently, a more efficient design
is to share most of the computations across the tasks via a
common feature encoder, convolutional neural network fy :
R3XHXW _y ROXH'xW’ parameterized by ¢ that takes in
an image and produces a C feature maps, each with H' x W’
resolution, where typically H < H and W’ < W. In this
setting, f, is followed by multiple task-specific decoders
Byt ROXH'xW' _y RO*XHXW aqch with its own task-
specific weights v* that decodes the extracted feature to
predict the label for the task ¢, i.e. §*(x) = hyt o fy(x)
(Fig. 2(a)).

Let D denote a set of NV training images with their corre-
sponding labels for K tasks. Assume that for each training
image x, we have ground-truth labels available only for some
tasks where we use 7 and I to store the indices of labeled
and unlabelled tasks respectively, where 7| + |[U| =
U = @ indicates all labels available for  and 7 = @ indi-
cates no labels available for . In this paper, we focus on
the partially annotated setting, where each image is labelled
at least for one task (] 7] > 1) and each task at least has few
labelled images.

A naive way of learning §j* for each task on the partially
annotated data D is to jointly optimize its parameters on the
labelled tasks as following:

SRV

where n is the image index and L is the task-specific differ-
entiable loss function. We denote this setting as the (vanilla)
MTL. Here, thanks to the parameter sharing through the
feature extractor, its task-agnostic weights are learned on
all the images. However, the task-specific weights 1! are
trained only on the labeled images.

A common strategy to exploit such information from
unlabeled tasks is to formulate the problem in a semi-
supervised learning (SSL) setting. Recent successful SSL
techniques [2, 52] focus on learning models that can produce
consistent predictions for unlabelled images when its input
is perturbed in various ways.
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where L,, is the unsupervised loss function and e, is a geo-
metric transformation (i.e. cropping) parameterized by the
random variable r (i.e. bounding box location). In words,
for the unsupervised part, we apply our model to the orig-
inal input « and also its cropped version e, (x), and then
we also crop the prediction corresponding to the original
input e,.(§*(x,,)) before we measure the difference between
two by using L,. Note that we are aware of more sophis-
ticated task-specific SSL methods for semantic segmenta-
tion [41,44], depth estimation [2 1, 30], however, combining
them for multiple tasks, each with different network designs
and learning formulations is not trivial and here we focus on
one SSL strategy that uses one perturbation type (i.e. random
cropping) and L,, (i.e. mean square error) can be applied to
several tasks.

3.2. Cross-task consistency learning

While optimizing Eq. (2) allows learning both task-
agnostic and task-specific weights on the labeled and un-
labelled data, it does not leverage cross-task relations, which
can be used to further supervise unlabelled tasks. Prior
works [39, 68] define the cross-task relations by a mapping
function m*~* for each task-pair (s, t) which maps the pre-
diction for the source task s to target task ¢ labels. The
mapping function in [39] is analytical based on the assump-
tion that target task labels can be analytically computed from
source labels. While such analytical relations is possible
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Figure 2. Illustration of our method for multi-task partially supervised learning. Given an image, our method uses a shared feature extractor
fo taking in the input image and task-specific decoders (hys and h,:) to produce predictions for all tasks (a). We compute the supervised
loss L; for labelled task. Besides, we regularize the cross-task consistency L.+ between the unlabelled task’s prediction g° and the labelled
task’s ground-truth 4" in a joint space for the unlabelled task (b). To learn the cross-task consistency efficiently, we propose to use a shared
mapping function whose output is conditioned on the task-pair (c) and regularize the learning of mapping function using the feature from fg

to prevent trivial solution.

only for certain task pairs, each mapping function in [68] is
parameterized by a deep network and its weights are learned
by minimizing L. (m*~*(y®), y"), where L., is cross-task
function that measures the distance between the mapped
source labels and target labels. There are two limitations to
this method in our setting. First the training set has limited
labelled number of images for both source and target tasks
(y* and y?). Second learning such pairwise mappings ac-
curately is not often possible in our case, as the labels of
one task can only be partially recovered from another task
(e.g. semantic segmentation to depth estimation). Note that
this ill-posed problem can be solved accurately when strong
prior knowledge about the data is available.

To employ cross-task consistency to our setting, we
map each task pair (s, t) to a lower-dimensional joint pair-
wise task-space where only the common features of both
tasks are encoded (Fig. 2(b)). Formally, each pairwise task-
space for (s, t) is defined by a pair of mapping functions,
myse : ROXHXW  RD and mger : ROXHXW _ RD
parameterized by 93¢ and 95 respectively. The cross-task
consistency can be incorporated to Eq. (1) as following:

iy 3 (73
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where L.; is cosine distance (i.e. L.:(a,b) = 1 — (a

b)/(lal|b]). In words, along with the MTL optimization,
Eq. (3) minimizes the cosine distance between the embed-
dings of the unlabelled task prediction g, and the annotated
task label ¢ in the joint pairwise task space. Here Mygst

| SE€EUn LETH

and mys« are not necessarily equal to allow for treating the
mapping from predicted and ground-truth labels differently.
Note that one can also include the semi-supervised term L,,
in Eq. (3). However we empirically found that it does not
bring any tangible performance gain when used with the
cross-task term L.

There are two challenges to learn non-trivial pairwise
mapping functions in a computationally efficient way. First
the number of pairwise mappings to learn quadratically
grows with the number of tasks. Although the mapping func-
tions are only used in training, it can still be computationally
expensive to train many of them jointly. In addition, learning
an accurate mapping for each task-pair can be challenging
in case of limited labels. Second the mapping functions can
simply learn a trivial solution such that each task is mapped
to a fixed point (e.g. zero vector) in the joint space.

Conditional joint task-pair mapping. To address the
first challenge, as shown in Fig. 2(c), we propose to use
a task-agnostic mapping function m, with one set of param-
eters ¥ whose output is conditioned both on the input task (s
or t) and task-pair (s, t) through an auxiliary network (ayp).
Concretely, let A denote a variable that includes the input
task (s or t) and target pair (s,t) for a pairwise mapping
which in practice we encode with an asymmetric K x K
dimensional matrix by setting the corresponding entry to
1 (i.e. Als,t] = 1 or Aft,s] = 1) and the other entries to
0. Note that the diagonal entries are always zero, as we do
not define any self-task relation. Let my be a multi-layer
network and h; denote a M channel feature map of its i-th
layer for which the auxiliary network ay, parameterized by
0, takes in A and outputs two M -dimensional vectors ag,,i

and a&i. These vectors are applied to transform the feature
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map h; in a similar way to [45] as following:

hi + ag ;(A) © hi + ag ;(A)

where © denote a Hadamard product. In words, the auxiliary
network alters the output of the task-agnostic mapping func-
tion my based on A. For brevity, we denote the conditional
mapping from s to (s,t) as m* 5" which is a function of
my and ag and hence parameterized with ¢ and 6.

We implement each a¢ and a® as an one layer fully-

connected network. Hence, given the light-weight auxiliary
network, the computational load for computing the condi-
tional mapping function, in practice, does not vary with the
number of task-pairs. Finally, as the dimensionality of each
task label vary — e.g. while O is 1 for depth estimation and
O? equals to number of categories in semantic segmentation
—, we use task-specific input layers and pass each prediction
to the corresponding one before feeding it to the joint pair-
wise task mapping. In the formulation, we include these
layers in our mapping my and explain their implementation
details in Sec. 4.
Regularizing mapping function. To avoid learning trivial
mappings, we propose a regularization strategy (Fig. 2) that
encourages the mapping to retain high-level information
about the input image. To this end, we penalize the distance
between the output of the mapping function and a feature
vector that is extracted from the input image. In particular,
we use the output of the task-agnostic feature extractor fy ()
in the regularization. Now we can add the regularizer to the
formulation in Eq. (3):

N
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+ R(f(@n),m' ™" (yh)),

“4)
where f, () is the feature from feature encoder fy, R is the
loss function and we use the cosine similarity loss for R in
this work.

Alternative mapping strategies. Here we discuss two dif-
ferent mapping strategies to exploit cross-task consistency
proposed in [68] and their adoption to our setting. As both
require learning a mapping from one task’s groundtruth
label to another one and we have either no or few im-
ages with both groundtruth labels, here we approximate
them by learning mappings from prediction of one task
to another task’s groundtruth. In the first case, one can
substitute our cross-consistency loss and regularization
terms with L., (m* 7t (9%(x)), y?) in Eq. (4), which is de-
noted as Direct-Map. In the second case, we replace our

terms with Lo (m* 7 (9°(x)), m*~*(y*®)) that maps both
the groundtruth y® and predicted labels g® and minimize
their distance in task ¢’s label space. We denote this setting
as Perceptual-Map and compare to them in Sec. 4.
Alternative loss and regularization strategies. Alterna-
tively, our cross-consistency loss and regularization terms
can be replaced with another loss function only that does
not allow for learning of trivial mappings. One such loss
function is contrastive loss where one can define the predic-
tions for two tasks on the same image as a positive pair (i.e.
m* (g (x;)) and m' 75! (y!)) and on different images as
anegative pair (i.e. m* 7! (¢%(x;)) and m' 75 (y!)), and pe-
nalize when the distance from the positive one is bigger than
the negative one. We denote this setting as Contrastive-Loss.
Another method which also employs positive and negative
pairs involves using a discriminator network. The discrim-
inator (a convolutional neural network) takes in positive
and negative pairs and predicts their binary labels, while
the parameters of the MTL network and mapping func-
tions are alternatively optimized. We denote this setting as
Discriminator-Loss and compare to the alternative methods
in Sec. 4.

4. Experiments

Datasets. We evaluate all methods on three standard dense
prediction benchmarks, Cityscapes [14], NYU-V2 [51], and
PASCAL [17]. Cityscapes [14] consists of street-view im-
ages, which are labeled for two tasks: 7-class semantic seg-
mentation' and depth estimation. We resize the images to
128 x 256 to speed up the training as [36]. NYU-V2 [51]
contains RGB-D indoor scene images, where we evaluate
performances on 3 tasks, including 13-class semantic seg-
mentation, depth estimation, and surface normals estimation.
We use the true depth data recorded by the Microsoft Kinect
and surface normals provided in [15] for depth estimation
and surface normal estimation. All images are resized to
288 x 384 resolution as in [36]. PASCAL [17] is a commonly
used benchmark for dense prediction tasks. We use the data
splits from PASCAL-Context [10] which has annotations
for semantic segmentation, human part segmentation and
semantic edge detection. Additionally, as in [58], we also
consider the tasks of surface normals prediction and saliency
detection and use the annotations provided by [58].
Experimental setting. For the evaluation of multi-task
models learned in different partial label regimes, we de-
sign two settings: (i) random setting where, we randomly
select and keep labels for at least 1 and at most K — 1 tasks
where K is the number of tasks, (ii) one label setting, where
we randomly select and keep label only for 1 task for each
training image.

I'The original version of Cityscapes provides labels 19-class semantic
segmentation. We follow the evaluation protocol in [36], we use labels of
7-class semantic segmentation. Please refer to [36] for more details.
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In Cityscapes and NYU-v2, we follow the training and
evaluation protocol in [36] and we use the the SegNet [1]
as the MTL backbone for all methods. As in [36], we use
cross-entropy loss for semantic segmentation, 11-norm loss
for depth estimation in Cityscapes, and cosine similarity loss
for surface normal estimation in NYU-v2. We use the exactly
same hyper-parameters including learning rate, optimizer
and also the same evaluation metrics, mean intersection over
union (mloU), absolute error (aErr) and mean error (mErr) in
the predicted angles to evaluate the semantic segmentation,
depth estimation and surface normals estimation task, respec-
tively in [36]. We use the encoder of SegNet for the joint
pairwise task mapping (my) and one convolutional layer
as task specific input layer in my. For Direct-Map and
Perceptual-Map, as in [68] we use the whole SegNet as
the cross-task mapping functions.

In PASCAL, we follow the training, evaluation proto-
col and implementation in [58] and employ the ResNet-
18 [25] as the encoder shared across all tasks and Atrous
Spatial Pyramid Pooling (ASPP) [9] module as task-specific
heads. We use the same hyper-parameters, e.g. learning
rate, augmentation, loss functions, loss weights in [58]. For
evaluation metrics, we use the optimal dataset F-measure
(odsF) [40] for edge detection, the standard mean intersec-
tion over union (mloU) for semantic segmentation, human
part segmentation and saliency estimation are evaluated,
mean error (mErr) for surface normals. We modify the
ResNet-18 to have task specific input layers (one convo-
lutional layer for each task) before the residual blocks as
the mapping function my in our method. We refer to the
supplementary for more details.

4.1. Results

We compare our method to multiple baselines includ-
ing the vanilla MTL Supervised Learning (SL) baseline in
Eq. (1) on both all the labels and partial labels in Eq. (1),
and the MTL Semi-supervised Learning (SSL) in Eq. (2),
also variations of our method with Direct-Map, Perceptual-
Map, Contrastive-Loss and Discriminator-Loss as described
in Sec. 3. We use uniform weights for task-specific losses
for all, unless stated otherwise.

Results on Cityscapes. We first compare our method to
the baselines on Cityscapes in Tab. | for only one label set-
ting as there are two tasks in total. The results of MTL model
learned with SL when all task labels are available for train-
ing to serve as a strong baseline. In the partial label setting
(one task label per image), the performance of the SL base-
line drops substantially compared to its performance in full
supervision setting. While the SSL baseline, by extracting
task-specific information from unlabelled tasks, improves
over SL, further improvements are obtained by exploiting
cross-task consistency in various ways except Discriminator-
Loss. The methods learn mappings from one task to another

one (Perceptual-Map and Direct-Map) surprisingly perform
better than the ones learning joint space mapping functions
(Contrastive-Loss and Discriminator-Loss), possibly due to
insufficient number of negative samples. Due to the same
reason, we exclude the further comparisons to Contrastive-
Loss and Discriminator-Loss in NYU-v2 and PASCAL and
include them in the supplementary. Finally, the best results
are obtained with our method that can exploit cross-task
relations more efficiently through joint pairwise task map-
pings with the proposed regularization. Interestingly, our
method also outperforms the SL baseline that has access to
all the task labels, showing the potential information in the
cross-task relations.

#label Method Seg. IoU) 1 Depth (aErr) |

full Supervised Learning 73.36 0.0165
Supervised Learning 69.50 0.0186
Semi-supervised Learning 71.67 0.0178
Perceptual-Map 72.82 0.0169

one Direct-Map 72.33 0.0179
Contrastive-Loss 71.79 0.0183
Discriminator-Loss 68.94 0.0208
Ours 74.90 0.0161

Table 1. Multi-task learning results on Cityscapes. ‘one’ indicates
each image is randomly annotated with one task label.

Results on NYU-v2. We then evaluate our method along
with the baselines on NYU-v2 in the random and one label
settings in Tab. 2. While we observe a similar trend across
different methods, overall the performances are lower in
this benchmark possibly due to fewer training images than
CityScapes. As expected, the performance in random-label
setting is better than the one in one-label setting, as there are
more labels available in the former. While the best results are
obtained with SL trained on the full supervision, our method
obtains the best performance among the partially supervised
methods. Here SSL improves over SL trained on the partial
labels and cross-task consistency is beneficial except for
Direct-Map in the one label setting, possibly because the
dataset is too small to learn accurate mappings between two
tasks, while our method is more data-efficient and more
successful to exploit the cross-task relations.

#labels Method Seg. (IoU) T Depth (aErr) |  Norm. (mErr) |

full Supervised learning 36.95 0.5510 29.51
Supervised Learning 27.05 0.6624 33.58
Semi-supervised Learning 29.50 0.6224 3331

random  Perceptual-Map 3220 0.6037 32.07
Direct-Map 29.17 0.6128 33.63
Ours 34.26 0.5787 31.06
Supervised Learning 25.75 0.6511 33.73
Semi-supervised Learning 27.52 0.6499 33.58

one Perceptual-Map 26.94 0.6342 34.30
Direct-Map 19.98 0.6960 37.56
Ours 30.36 0.6088 32.08

Table 2. Multi-task learning results on NYU-v2. ‘random’ indicates
each image is annotated with a random number of task labels and
‘one’ means each image is randomly annotated with one task.
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Results on PASCAL-Context. We evaluate all methods
on PASCAL-Context, in both label settings, which contains
wider variety of tasks than the previous benchmarks and
report the results in Tab. 3. As the required number of pair-
wise mappings for Direct-Map and Perceptual-Map grows
quadratically (20 mappings for 5 tasks), we omit these two
due to their high computational cost and compare our method
only to SL and SSL baselines. We see that the SSL baseline
improves the performance over SL in random-label setting,
however, it performs worse than the SL in one label setting,
when there are 60% less labels. Again, by exploiting task
relations, our method obtains better or comparable results
to SSL, while the gains achieved over SL and SSL are more
significant in the low label regime (one-label). Interestingly,
SSL and our method obtain comparable results in random-
label setting which suggests that relations across tasks are
less informative than the ones in CityScape and NYUv2.

#labels  Method Seg. (IoU)t  H.Parts (IoU) T Norm. (mEm) | Sal. (IoU) 1 Edge (odsF)

full Supervised Learning 63.9 589 15.1 65.4 69.4

Supervised Learning 584 553 16.0 63.9 67.8

random  Semi-supervised Learning 59.0 55.8 159 64.0 66.9
Ours 59.0 55.6 159 64.0 67.8
Supervised Learning 48.0 55.6 17.2 61.5 64.6

one Semi-supervised Learning 45.0 54.0 16.9 61.7 62.4
Ours 495 558 17.0 61.7 65.1

Table 3. Multi-task learning results on PASCAL. ‘random’ indi-
cates each image is annotated with a random number of task labels
and ‘one’ means each image is randomly annotated with one task.

4.2. Further results

Learning from partial and imbalanced task labels. So
far, we considered the partially annotated setting where the
number of labels for each task is similar. We further evaluate
all methods in an imbalanced partially supervised setting in
Cityscapes, where we assume the ratio of labels for each task
are imbalanced, e.g. we randomly sample 90% of images to
be labeled for semantic segmentation and only 10% images
having labels for depth and we denote this setting by the label
ratio between segmentation and depth (Seg.:Depth = 9:1).
The opposite case (Seg.:Depth = 1:9) is also considered.

#labels Method Seg. (IoU) 1+  Depth (aErr) |

full Supervised Learning 73.36 0.0165
Supervised Learning 63.37 0.0161
Semi-supervised Learning 64.40 0.0179

1:9 Perceptual-Map 68.84 0.0141
Direct-Map 67.04 0.0153
Ours 71.89 0.0131
Supervised learning 72.71 0.0250
Semi-supervised Learning 72.97 0.0395

9:1 Perceptual-Map 73.36 0.0237
Direct-Map 73.13 0.0288
Ours 74.23 0.0235

Table 4. Multi-task learning results on Cityscapes. ‘#label” indi-
cates the number ratio of labels for segmentation and depth, e.g.
‘1:9° means we have 10% of images annotated with segmentation
labels and 90% of images have depth groundtruth.

We report the results in Tab. 4. The performance of su-
pervised learning (SL) on the task with partial labels drops
significantly. Though SSL improves the performance on
segmentation, its performance on depth drops in both cases.
In contrast to SL and SSL, our method and Perceptual-Map
obtain better results on all tasks in both settings by learning
cross-task consistency while our method obtains the best
results by joint space mapping. This demonstrates that our
model can successfully learn cross-task relations from un-
balanced labels thanks to its task agnostic mapping function
which can share parameters across multiple task pairs.

Cross-task consistency learning with full supervision.
Our method can also be applied to fully-supervised learning
setting where all task labels are available for each sample
by mapping one task’s prediction and another task’s ground-
truth to the joint space and measuring cross-task consistency
in the joint space. We applied our method to NYU-v2 and
compare it with the single task learning (STL) networks,
vanilla MTL baseline, recent multi-task learning methods,

i.e. MTAN [36], X-task [068], and several methods focusing
on loss weighting strategies, i.e. Uncertainty [29], Grad-
Norm [1 1], MGDA [50] and DWA [36] in Tab. 5.

Method Seg. (IoU) 1 Depth (aErr) |  Norm. (mErr) |

STL 37.45 0.6079 25.94

MTL 36.95 0.5510 29.51

MTAN [36] 39.39 0.5696 28.89

X-task [68] 38.91 0.5342 29.94

Uncertainty [29] 36.46 0.5376 27.58

GradNorm [11] 37.19 0.5775 28.51

MGDA [50] 38.65 0.5572 28.89

DWA [36] 36.46 0.5429 29.45

Ours 41.00 0.5148 28.58

Ours + Uncertainty 41.09 0.5090 26.78

Table 5. Multi-task fully-supervised learning results on NYU-v2.
‘STL’ indicates standard single-task learning and ‘MTL’ means the
standard multi-task learning network.

MTL, MTAN, X-task and Ours are trained with uniform
loss weights. We see that our method (Ours) performs bet-
ter than the other methods with uniform loss weights, e.g.
MTAN and X-task, where X-task regularizes cross-task con-
sistency by learning perceptual loss with pre-trained cross-
task mapping functions. This shows that cross-task consis-
tency is informative even in the fully supervised case and our
method is more effective for learning cross-task consistency.
Compared to recent loss weighting strategies, our method
(Ours) obtains better performance on segmentation and depth
estimation than other methods while slightly worse on nor-
mal estimation compared with GradNorm and Uncertainty.
This is because the loss weighting strategies enable a more
balanced optimization of multi-task learning than uniformly
loss weighting. Thus when we incorporate the loss weigh-
ing strategy of Uncertainty [29] to our method, i.e. (Ours +
Uncertainty), our method obtains further improvement and
outperforms both GradNorm and Uncertainty.
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4.3. Ablation study

Here, we conduct an ablation study to evaluate the effect
of task-pair conditional mapping function and the regulariza-
tion in Eq. (4). To this end, we report results of our method
without task-pair condition network (ag), denoted as ‘Ours
(w/o cond)’ where we use a single mapping (my) for all
task pairs, and also our method without the regularization in
Eq. (4), denoted as ‘Ours (w/o reg)’ in Tab. 6. First our full
model outperforms both Ours (w/o cond) and Ours (w/o reg)
which shows that both the components are beneficial. Ours
(w/o cond) which employs the same mapping for all the task
pairs still achieves better performance than the SL baseline.
Surprisingly, even after removing the regularization, despite
the performance drop, the pairwise mappings can still be
regulated with a lower learning rate to avoid learning trivial
mappings and it still outperforms the SL baseline.

#labels Method Seg. (IoU) T Depth (aErr) |  Norm. (mErr) |

Supervised Learning 27.05 0.6624 33.58

random Ours (w/o cond) 34.13 0.5968 31.65
Ours (w/o reg) 33.87 0.5887 31.24

Ours 34.26 0.5787 31.06
Supervised Learning 25.75 0.6511 33.73

one Ours (w/o cond) 29.19 0.6181 32.62
Ours (w/o reg) 28.36 0.6407 32.92

Ours 30.36 0.6088 32.08

Table 6. Ablation study on NYU-v2. ‘cond’ indicates whether
using conditional mapping function. ‘reg’ indicates whether we
use regularization in Eq. (4).

4.4. Qualitative results

Here, we present some qualitative results and refer to the
supplementary for more results.
Mapped outputs. Here, we visualize the intermediate fea-
ture maps of m*~ %t and m!~ ! for one example in NYU-v2
in Fig. 3 where s and ¢ correspond to segmentation and
surface normal estimation respectively. We observe that
the functions map both task labels to a joint pairwise space
where the common information is around object boundaries,
which in turn enables the model to produce more accurate
predictions for both tasks.
Predictions. Finally we show qualitative comparisons be-
tween our method, SL and SSL baselines on NYU-v2 in
Fig. 4. We can see that our method produces more accurate
predictions by leveraging cross-task consistency. We also
provide additional experiments in supplementary.

5. Conclusion and Limitations

In this paper, we show that cross-task relations are crucial
to learn multi-task dense prediction problems from partially
annotated data in several benchmarks. We present a model
agnostic method that learns relations between task pairs in
joint latent spaces through mapping functions conditioned
on the task pair in a computationally efficient way and also

segmentation prediction mapped outputs

normal ground-truth

mapped outputs

Figure 3. Intermediate feature map of the mapping function of
the task-pair (segmentation to surface normal) of one example in
NYU-v2. The first column shows the prediction or ground-truth
and the second column present the corresponding mapped feature
map (output of the mapping function’s last second layer ).

image seimentation depth normal

Ground-
Truth

segmentation loU: 30.88
-

Seimentation loU: 32.83 depth aErr 0.3471

depth aErr 0.3031 normal mErr 27.31

normal mErr 25.83

segmentation loU: 45.33 normal mErr 21.98

Figure 4. Qualitative results on NYU-v2. The fist column shows
the RGB image, the second column plots the ground-truth or pre-
dictions with the ToU (1) score of all methods for semantic segmen-
tation, the third column presents the ground-truth or predictions
with the absolute error (J), and we show the prediction of surface
normal with mean error () in the last column.

depth aErr 0.2374

avoids learning trivial mappings with a regularization strat-
egy. Finally, our method has limitations too. Despite the
efficient learning of cross-task relations through a condi-
tioned network, modeling cross-task relations for all task
pairs may not be required. Thus it would be desirable to
automatically identify which tasks are closely related and
only learn such cross-task relations.
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