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Abstract

This paper aims at recovering the shape of a scene with

unknown, non-Lambertian, and possibly spatially-varying

surface materials. When the shape of the object is highly

complex and that shadows cast on the surface, the task be-

comes very challenging. To overcome these challenges, we

propose a coordinate-based deep MLP (multilayer percep-

tron) to parameterize both the unknown 3D shape and the

unknown reflectance at every surface point. This network

is able to leverage the observed photometric variance and

shadows on the surface, and recover both surface shape and

general non-Lambertian reflectance. We explicitly predict

cast shadows, mitigating possible artifacts on these shad-

owing regions, leading to higher estimation accuracy. Our

framework is entirely self-supervised, in the sense that it re-

quires neither ground truth shape nor BRDF. Tests on real-

world images demonstrate that our method outperform ex-

isting methods by a significant margin. Thanks to the small

size of the MLP-net, our method is an order of magnitude

faster than previous CNN-based methods.

1. Introduction

Recovering the 3D shape of a non-Lambertian object

from its multiple photometric images taken by a fixed cam-

era remains a challenging task. The diverse nature of

real-world materials manifests a wide range of speculari-

ties on the surface, impeding traditional photometric meth-

ods [12, 20, 31, 32]. Moreover, shadows commonly appear

in non-convex objects occluding part of the object surface,

hindering surface normal estimation. Previous attempts to

handle shadows often rely on a rather restrictive Lambertian

assumption [5]. The problem becomes much complicated if

both specularities and shadows appear on the surface.

With the recent advent of deep learning, tremendous pro-

gresses have been made in many computer vision problems,

and there is no exception for photometric 3D reconstruc-

tion [6, 11, 15, 16, 23, 33]. Current existing deep learning

methods often tackle the problem in a supervised training

manner. The underlying physics principle of image for-

mation are not duly utilized. In addition, the lack of in-

terpretability of deep learning methods prevents leveraging

the interactions between object appearance and surface nor-

mals. Despite various synthetic datasets with augmentation

strategies [7,11,16,23], it remains an open challenge to pro-

cess real-world images with both specularities and shadows.

In this paper, we propose an unsupervised neural net-

work method that overcomes the issues mentioned above.

Our framework takes the image coordinates corresponding

to a surface point as the input, and directly outputs the sur-

face normal, reflectance parameters (i.e. diffuse albedo and

specular parameters), and depth at that surface point. We

proposed a series of neural specular basis functions to ac-

count for the different types of specularities in the real-

world. Our neural bases provide the parameterization for

the surface reflectance and fit the object’s appearance to ob-

tain the accurate surface normal. Furthermore, our frame-

work explicitly parameterizes the shadowed regions by trac-

ing through the estimated depth map. These shadowed re-

gions are then excluded from computation in order to avoid

possible rendering artifacts. Following the inverse graph-

ics rendering idea, we use the estimated surface normal and

neural reflectance to re-render the pixel intensities of the

surface point under different light directions. Our frame-

work is optimized by minimizing the difference between

the reconstructed and observed images during the inference

time. Therefore, there is no need for any ground truth data

or pre-training. Our method outperforms both the super-

vised and self-supervised state-of-the-art methods on the

challenging real-world dataset of DiLiGenT [24]. Com-

pared to other self-supervised deep methods [13, 26], our

framework is ten times faster.

2. Related Work

Conventional approaches: The photometric stereo is

firstly introduced by Woodham [30], which assumes the sur-

face of the objects to be Lambertian and convex to avoid the

specular effects and shadows. This problem can therefore

be solved in a closed-form manner by least-squares. The

above strict assumptions were gradually liberalized by later

studies [12, 20, 21, 31, 32]. These methods can tolerate the
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Figure 1. We propose an self-supervised framework that estimates the surface normal, diffuse albedo, specularity, and shadow of an object.

Our method learns the neural basis to fit the observed specularities accurately and gives clues for normal estimation. We also explicitly

parameterize the shadows based on the estimated depth, alleviating artifacts on these shadows.

existence of non-Lambertian effects by treating the specu-

larities and cast shadows on the object as outliers. However,

they may also erase other clues specularities can bring.

Supervised methods: With the progress of deep learn-

ing in many of the computer vision areas, the learning-based

methods are the ones that have achieved the best perfor-

mance in photometric stereo recently [6,9,11,15,16,23,29,

33, 36]. Santo et al. [23] proposed the first network-based

method, which per-pixelly estimates the normal by taking

observed pixels in a pre-defined order. Chen et al. [6, 7]

proposed a feature-extractor and features-pooling strategy

to obtain the spatial information for photometric stereo. Re-

cently, more works [29, 33] exploited the local and global

photometric clues for this problem. These learning-based

methods require a large amount of data with ground truth

surface normal at the training stage. The synthesized data

with some augmentation strategies are commonly used as

collecting a large-scale real-world dataset is exceptionally

expansive and impractical.

Self-supervised methods: In contrast to the above-

mentioned learning-based methods method, self-supervised

methods do not require ground truth normal at supervision.

Instead, the network is optimized by minimizing the differ-

ence between the reconstructed images and observed im-

ages. Taniai et al. [26] proposed a self-supervised network

that takes the whole set of images at the input, directly out-

put the surface normal, and aiming to reconstruct the ob-

served images. Their network structure is further expanded

by Kaya et al. [13] to deal with interreflection in the context

of uncalibrated photometric stereo. Both of them implicitly

encode specular components as features for the network and

fail to consider shadows in the rendering equation.

Neural radiance fields: Recently, neural radiance fields

introduced by NeRF [19] is widely adopt in many recon-

struction tasks in computer vision. Many works also ex-

tend the neural radiance fields to recover both the shapes

and materials of the object [2, 25, 34, 35]. These works are

solving multi-view reconstruction problems. They gener-

ally assume the input being images of an object captured

from multiple viewpoints under fix illumination. In con-

trast, the photometric stereo problem we are focusing in this

paper assumes multiple images taking from the same view-

point, but with different illuminations.

3. Proposed Method

As shown in Fig. 1, our framework aims at decoupling

the surface into normal, diffuse albedo, specularity, and

shadow. We model the specularity by learning a set of

neural specular bases. Our method estimates the depth by

querying the relative depth of the surface points. In the fol-

lowing subsections, we illustrate the details of each module

in our framework.

3.1. Rendering Equation

Following the conventional calibrated photometric

stereo problem, we assume that the light source is in dis-

tance over the images with known light direction l =
[lx, ly, lz]

T ∈ S2 (the space of 3-dimensional unit vec-

tors) and light intensity Li ∈ R+. And the camera to

be in orthographic position, hence, viewing direction v =
[0, 0,−1]T ∈ S2. For simplicity, without any loss of gen-

erality, we omit the light intensity Li in the following for-

mulations by dividing the observations (i.e. images Ii) with

the corresponding lighting intensities, I = Ii/Li. We also

assume that there are no inter-reflections between the sur-

faces so that the point light source is the only light source

to illuminate the target object.

Given a light source from the direction l illuminates a

surface point with surface normal n ∈ S2. The observation
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Figure 2. The four modules of our MLP-based deep photometric stereo framework: (a) neural specular bases modeling SΦ (see Sec. 3.2)

fits a suitable set of suitable BRDF bases to the target specularities; (b) surface modeling MΘ (see Sec. 3.3) estimates the surface normal,

as well as parameters of the BRDF given the image coordinates as input; (c) ZΨ estimates a dense depth map, which enables the shadow

rendering (see Sec. 3.4) by checking the visibility of the light source at each surface point; and (d) the rendering equation (see Sec. 3.1).

All MLPs are optimized in a self-supervised manner by minimizing the reconstruction error between reconstructed and observed images.

I viewing from direction v can be written as

I = sρ(l,v,n)max(lTn, 0), (1)

where s ∈ {0, 1} is a binary variable with a value of 0 at

shadows, and 1 otherwise; ρ(l,v,n) represents the BRDF

of the surface point, which is a function of the light, view di-

rection, and the surface normal; max(lTn, 0) is the shading

component.

3.2. Reflectance Modeling

The Lambertian surface assumes the BRDF ρ(l,v,n) =
ρd is always a positive constant. This unrealistic assump-

tion fails to account for those materials with high specular

effects. It can be beneficial to model the specular part in

BRDF and leverage its information for photometric stereo.

In order to take both the diffuse and specular effects into ac-

count, here we choose a more realistic way to model the sur-

face reflectance, i.e. the microfacet BRDF models [27, 28],

where the BRDF is separated into the diffuse and specular

components

ρ(l,v,n) = ρd + ρs(l,v,n). (2)

Neural Specular Basis Previous deep-learning-based

approaches implicitly handle the specularity on images by

feeding them as features into their neural network [13, 26],

or processed by max-pooling [6, 7]. However, as the specu-

larities, at the core, are reflections on the surface, explicitly

model these effects by using clues from physical reflection

constraints will certainly bring merits to the photometric

stereo problem.

To relieve the burden of fitting such a neural specular

BRDF, we need to introduce some reasonable and realis-

tic assumptions. Recalling that the BRDF can be converted

to a half-vector h based function with only four parame-

ters [22], we assume that our specular BRDF is isotropic

and is only the function of half-vector h and surface normal

n. This assumption omits the Fresnel reflection coefficient

and the geometric attenuation, which only has limited ef-

fects at grazing angles [3]. Besides, observing the fact that

many surface points in the real-world object are similar, if

not identical, in the material. We further assume that the

specular BRDF ρs(l,v,n) at each surface point lies on a

non-negative linear combination of the atoms of specular

basis. Similar approaches for simplifying the BRDF model

to be the combination of different bases were also used in

previous works [10, 17]. The specular BRDF can then be

written as

ρs(l,v,n) = c
T D(h,n), h =

l+ v

||l+ v||
, (3)
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Figure 3. Visualization on the estimated svBRDFs. We select four different surface points on the object “Harvest” and showcase our

estimated BRDF spheres on the right. The results demonstrate that our model can recover the metallic and diffuse materials. We scale up

the observed images and normalize the BRDF spheres for better visualization.

where h is the half-vector between lighting and viewing di-

rection; and D(h,n) = [b1, b2, · · · , bk]
T is the underly-

ing specular basis of the target object; [c1, c2, · · · , ck]
T
:=

c ∈ R
k
+ represent the weights of each specular basis; k

is the number of different bases. We assume that c is an

element-wise non-negative vector, suggesting that the sur-

face reflectance is represented by positive combination of a

small number of basis materials.

We use an MLP to parameterize the specular basis by

D(h,n) = SΦ(h,n), (4)

The network SΦ(h,n) only takes h,n at the input, outputs

the different specular basis in form of [b1, b2, · · · , bk]
T , as

shown in Fig. 2. Φ are its weights that can be optimized

during testing. It is well established that a variety of re-

flectance maps can be represented by a linear combination

of a few basis functions [8,17,18]. We empirically set k = 9
when testing our model on real datasets. In Fig. 3, we re-

rendered several spheres by using our estimation on the re-

flectance and neural basis of the surface points. As shown in

Fig. 3, our neural reflectance modeling can approximate the

spatially-varying and non-Lambertian materials very well.

It can recover the diffuse surface, and also reliably construct

the high-peak and long-tail metallic specularites.

3.3. Surface modeling

We model the surface normal, diffuse, and neural basis

coefficients of an object by an MLP MΘ. It takes the im-

age coordinates of the pixels x = [x, y]T ∈ R
2 as input.

The output is the corresponding surface normal n, diffuse

albedo ρd, and the coefficients c of the bases at each coor-

dinate x.

n, ρd, c = MΘ(x), (5)

where c represents the coefficients that can be used to re-

construct the specular component ρs in Sec. 3.2; and Θ is

the weights of this MLP that can be optimized.

We use a similar MLP architecture and positional encod-

ing strategy from NeRF [19] to build our network, and the

embedding in input coordinates x. The difference is that

while NeRF also takes different viewing directions as input

to model the view-dependent effects of the objects’ appear-

ance, our MΘ network only estimates the “static” properties

of the target object. Instead, we cover the “light-dependent”

variance of the object by neural reflectance modeling. Our

design will encourage the network to correctly decompose

surface normal and material property of the object.

3.4. Shadow handling

We now look at the shadow factor s in the image ren-

dering Eq. (1). Due to the rugged surface of the objects in

the world, shadows may appear at the reflecting surface. As

shown in Fig. 4, shadow occurs when the object itself oc-

cludes the surface. Rendering of the shadowed region relies

on the relative geometry and depth of the object with re-

spect to the light directions. Hence, we introduce a depth

MLP ZΨ to model the object’s depth value z ∈ R between

the object surface points to the camera. The depth MLP

takes images coordinates as input, outputs the correspond-

ing depth value of the given coordinates z = ZΨ(x).

To examine whether the object occludes the light source

and hence causing the shadow, we can draw a line from

the surface point x toward the light source. Denote this

line in the world coordinates as L = X − tl, where t ∈
(0,+∞); the X = [x, y, z] represent the surface points with

its depth value z given by ZΨ(x). We can further simplify

the equation by using the function Lz to denote the z-axis

value of L. Now, by traveling along the light direction, i.e.

t ∈ (0,+∞), we can compute the shadow factor by

s = step
(

min
x(t)

(ZΨ(x(t))− Lz(x(t)))
)

, x(t) = x− tl′,

(6)

where the step(·) denote the Heaviside step function, which

outputs 1 if input is positive, and 0 otherwise; l′ = [lx, ly]
T

is the projection of light direction l at xy-plane. In imple-

mentation, we set the step size for shadow rendering to be

32 (with logspace intervals).
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Figure 4. Shadow parameterization and rendering. As shown in the left figure, shadows are caused by self-occlusion. To determine whether

a surface point x falls into the shadow region, we trace the point to the light source and sample multiple points x(t) along this ray. Given

the light direction l and the estimated depth map ZΨ(x), we can query the depth and compare the values to effectively parameterize and

render the shadow by Eq. (6).

4. Implementation

We use the positional encoding [19] strategy to encode

the input before inputting them into the MLP. For surface

modeling net MΘ, we encode the input with 10 levels of

Fourier functions, the network MΘ uses 12 fully-connected

ReLU layers with 256 channels. The surface normal n is

output at 8-th layer while the BRDF parameters are output

at the last layer. We also use 10 encoding functions to em-

bed the input of depth net ZΨ, which has 8 fully-connected

ReLU layers with 256 channels. For the neural basis MLP

SΦ, we use only 3 encoding functions to embed the input.

The network SΦ consists of 3 fully-connected ReLU layers

with 64 channels. Please refer to the supplementary ma-

terial for more implementation details. Overall, the three

MLP-networks are rather lightweight (i.e. small footprint)

with total combined parameters of merely 1.1M. In contrast,

the CNN-based self-supervised method [13] contains 3.7M

parameters. Besides, our model is shallow and require less

computation than previous works. Hence, our framework

is much faster in inference time. The inference time in the

10 objects of DiLiGenT dataset range from 3 min to 9 min,

with an average of 6 min per object. In contrast, CNN-based

methods [13, 26] took about an hour per object.

Reconstruction loss. The reconstruction loss is defined

as mean absolute errors between the observed intensity Iob

and reconstructed intensity:

Lrec =
∑

all pixels

|I − Iob|. (7)

Geometry Constraint. We introduce a geometry con-

straint between the estimated surface normal n and depth

network ZΨ as below

Lgeo =
∑

all pixels

(1− n
T∇ZΨ). (8)

In the early stage of optimizing the network ZΨ, we intro-

duce shadow guidance sg to help with the training. As-

sume that observation under n different light direction is

Original Ours ACLS

PNSR: 31.04 dB PNSR: 29.04 dB

Figure 5. Re-rendered image by our estimated svBRDFs. From

left to right, we showcase the original image captured from “Har-

vest”, the re-rendered image using our estimated neural svBRDFs,

and the re-rendered image by ACLS [1], respectively. Our method

achieves a better quality in reconstruction, being 2dB higher in

peak signal-to-noise ratio (PSNR). ACLS failed to recover the

spatially-varying materials (the red cloth and the human faces are

all fainted in ACLS’s result).

[I1, I2, ..., In]. We then set a threshold as 0.1λm, where

λm = 1
n

∑

Ii is the mean intensity. Those pixel intensities

that are smaller than the threshold will be discard. We use

Eq. (6) for shadow rendering once the depth network ZΨ is

stable.

Smoothness constraint. Previous self-supervised meth-

ods suffered from poor network initialization [13,26]. Their

networks required a pre-computed surface normal map as

the early network guidance. In contrast, our model does

not need any pre-computed surface normal as guidance. In-

stead, to cope with the poor network initialization problem,

we use a smoothness constraint to guide the network in the

early stages since the albedo and surface normal of real-

world objects usually present a piece-wise smooth pattern

Ltv = Vl1(ρd, c) + Vl2(n), (9)

where Vl1 represents the total variation function with abso-

lute loss and Vl2 with square loss.

To sum up, we optimize the parameters of the MLPs

MΘ, SΦ, ZΨ by minimizing the following loss function:

L = Lrec + Lgeo + βLtv , where β is the hyper-parameter

controlling the total variation loss. We set it as β = 0.01;

and it will then be set to 0 after the first half iterations.
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Table 1. Quantitative comparison on the DiLiGenT dataset. The metric here is mean angular error (MAE); the lower MAE is preferred.

GT normal Methods Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

No Ours 2.43 3.64 8.04 4.86 4.72 6.68 14.90 5.99 4.97 8.75 6.50

No TM18 [26] 1.47 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83

No BK21 [13] 3.78 5.96 13.14 7.91 10.85 11.94 25.49 8.75 10.17 18.22 11.62

No L2 [30] 4.10 8.40 14.90 8.40 25.60 18.50 30.60 8.90 14.70 19.80 15.40

Yes PX-NET [16] 2.00 3.50 7.60 4.30 4.70 6.70 13.30 4.90 5.00 9.80 6.17

Yes WJ20 [29] 1.78 4.12 6.09 4.66 6.33 7.22 13.34 6.46 6.45 10.05 6.65

Yes CNN-PS [11] 2.20 4.10 7.90 4.60 8.00 7.30 14.00 5.40 6.00 12.60 7.20

Yes GPS-Net [33] 2.92 5.07 7.77 5.42 6.14 9.00 15.14 6.04 7.01 13.58 7.81

Yes PS-FCN [7] 2.82 7.55 7.91 6.16 7.33 8.60 15.85 7.13 7.25 13.33 8.39

5. Experiments

In this section, we evaluate our method and its variants

on the challenging real-world dataset DiLiGenT [24]. We

used all the n = 96 images under different light directions

for optimizing the network, except the object “Bear”. We

discard the first 20 images of “Bear”, as they are found to

be over-saturated in previous work [11]. The batch size is

set as 8 images per batch. We iterate in total 6000 iterations

when optimizing the network. We use Adam [14] optimizer

with a learning rate of 5 × 10−4 and other parameters at

their default settings. Our method is implemented in Py-

Torch and is running on a RTX 3090 GPU. The inference

(i.e. training) time in the 10 objects of DiLiGenT dataset

range from 3 min to 9 min, with an average of 6 min per

object. In contrast, previous CNN-based methods [13, 26]

took about an hour per object.

We also evaluate our method in two other challenging

real world datasets: Gourd&Apple dataset [1], and Light

Stage Data Gallery [4]. Please refer to supplementary ma-

terial for more details.

5.1. Evaluation on real­world dataset

Surface normal evaluation. In Table 1, we present the

quantitative comparison of our method against other meth-

ods on the DiLiGenT dataset. We use the mean angular

error (MAE) as the metric in the paper. The lower MAE is

preferred. We classify the previous methods into two cat-

egories: the supervised methods, which need ground truth

surface normal at the training stage; and the self-supervised

which does not need ground truth surface normal and di-

rectly estimates the normal at testing time. As reported in

the Table 1, our method achieves the best performance over

the other self-supervised methods at average MAE errors.

Comparing to the previous self-supervised method [13,26],

our method is 2.33 degrees better in MAE errors. Thanks to

our neural reflectance modeling, our method shows its sig-

nificant advantages on shiny objects like “Reading”, “Cow”

and “Goblet”. We present the visualization of “Cow” and

“Pot2” in Fig. 6. “Cow” is a typical metallic-painted object

Table 2. Quantitative results on DiLiGenT with different number

of images at the input. The average MAEs are shown in table.

GT Normal # inputs 96 16 10 8

No Ours 6.50 6.82 7.47 7.70

Yes LMPS [15] 8.43 9.66 10.02 10.39

Yes PX-Net [16] 6.17 – 8.37 –

Yes SPLINE-NET [36] – – 10.35 –

with a high peak of specularities; while “Pot2” shows more

broad and soft specular effects. Our method achieves the

best performance in both two cases.

svBRDF evaluation. In Fig. 3, we visualize the esti-

mated svBRDFs on the challenging object “Harvest”. “Har-

vest” contains many different type of materials over the sur-

face. From diffuse (see point A), to specular (see point

D), our model presents visually pleasing estimated BRDF

spheres over these different points. To quantitatively eval-

uate our method, we re-rendered the observed image with

our estimated reflectances, and ground truth lights. The

results are shown in Fig. 5. We compare our re-rendered

images with ACLS [1]. ACLS’s BRDF fitting results are

provided by Shi et al. [24], where it takes the ground truth

surface normal when fitting the BRDF. By looking at the

re-rendered images, our method achieve much higher re-

construction quality (2dB higher in peak signal-to-noise ra-

tio (PSNR)). In comparison, ACLS [1] failed to faithfully

recover the spatially-varying materials.

Results with Sparse Inputs. To evaluate how the per-

formance changes with a different number of images at the

input, we test our method on the DiLiGenT dataset. We fol-

low the previous work LMPS [15] to use the same inputs

for our method. The results and comparison are presented

in Tab. 2. From left to right, our method takes 96 images, 16

images, 10 images and 8 images at the input separately. To

our best knowledge, the trained model of SPLINE-Net [36]

and PX-Net [16] is not publicly available. Hence, we report

the value from their original paper. Although our method is

not designed for sparse inputs, we still perform significantly

better than previous work under a small number of inputs. It
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Figure 6. Qualitative results on “Cow” and “Pot2”. For each object, the odd numbered rows show the observed image and estimated normal

by different methods; the even numbered rows show the angular (normal) error in degrees by different methods.

demonstrates that our method is robust to the sparse inputs.

5.2. Ablation Study

Shadow handling: To show the efficacy of our shadow

handling mechanism, we conduct ablation study by remov-

ing the shadow rendering module, denote as “w/o shadow”.

Quantitative comparisons are shown in Table 3, where one

can see that the mean angular error on all objects increases

1.96 degrees. Notably, the performance degradation is ma-

jorly caused by objects “Buddha”, “Harvest” and “Read-

ing”. This is as expected, because these objects have rather

complex (concave) surface geometry, more susceptible to

cast shadows. Our proposed shadow handling method at-

tends to these shadowed regions better, achieving high re-

covery accuracy. In Fig. 7, we give the visualization of the

effects of our shadowing module on the object “Reading”.

Observing the image and its ground truth normal of this ob-

ject, we can see that “Reading” is a highly non-convex ob-

ject with many specularities and shadows. The shadowed

region is especially big when the light comes from the right

direction, as shown in the lighting direction C and D in the

figure. Our render shadows under these lighting directions,

despite some minor errors, accurately predicting the shad-

owed regions. The error map shown at the right-most of the

Table 3. Evaluations of the different variants of the proposed

method. The second row is without using the early stage smooth-

ness constraint; the third row is the method without the shadow

factor s; the last row is without using specular component ρs. The

metric here is MAE; lower is preferred.

Methods Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Avg.

Proposed 2.43 3.64 8.04 4.86 4.72 6.68 14.90 5.99 4.97 8.75 6.50

w/o Ltv 2.44 3.66 8.56 4.93 5.27 6.77 21.67 6.73 6.88 9.19 7.61

w/o s 2.13 4.29 11.09 6.81 5.69 8.30 17.88 7.79 7.80 12.68 8.44

w/o ρs 3.13 6.48 10.58 6.93 27.23 15.19 29.65 8.27 14.14 11.41 13.30

third row in Fig. 7 corresponds to the difference between the

MAE yielded by our proposed model and its no-shadow-

variant (“w/o s”). The negative areas, i.e., blue regions in

the error map, are those where our proposed model outper-

forms the alternative. The full model performs better in the

region where the shadows are evident.

Effectiveness of smoothness constraint: To show the

effectiveness of proposed smoothness constraint, we con-

duct the experiments without using this loss, denote as “w/o

Ltv”, shown in Table 3. The mean angular error on average

is 1.11 degrees lower by leveraging this constraint.

Effectiveness of specular modeling: We further test the
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A

B

C

D

Observed Images at: A B C D

Rendered Shadows at: A B C D

Our Depth GT Normal Ours (w/ shadow) Ours (w/o shadow) w/ vs. w/o shadow

Light directions

Figure 7. We select 4 different light directions. Their distribution is labeled as red points in the light distributions image in the second row.

The first row shows the observed images under these 4 different light sources. The second row presents the results of our rendered shadow

region under the corresponding illuminations. In the third row, we showcase the estimated depth, ground truth surface normal, estimated

surface normal (with and without the shadow factor). In the right-most image on the third row, we also compare our estimated normal “w/

shadow” and “w/o shadow”. The blue color in the comparison corresponds to the area where “w/ shadow” outperforms “w/o shadow”.

model without using any specular modeling, denote as “w/o

ρs”, shown in Table 3. The performance is significantly

worse without using the specular ρs. We can see that with

specular components, our method improves a lot for the

shiny objects like “Cow”, “Goblet” and “Harvest”.

6. Discussions and Conclusions

In this paper, we have proposed an MLP-based ap-

proach for non-Lambertian shape reconstruction. The key

novelty of our method is the neural parameterizations of

spatially-varying surface reflectances, and of surface geom-

etry. By leveraging the physical principle of image render-

ing, we explicitly tackle the reflectance and cast shadows

by neural network. Despite being an unsupervised method,

our method outperforms existing state-of-the-art supervised

methods on real-world datasets. Our method is inspired by

NeRF [19], which uses a coordinate-based MLP to model

the mapping from 3D coordinates to appearance. In con-

trast, we factorize the image appearance into multiple com-

ponents: normal, diffuse albedos, neural specular bases, and

shadows. The fitting on these physical-based rendering fac-

tors restores the object’s surface properties faithfully. Be-

sides, we explicitly parameterize diffuse, specularities, and

shadows to ensure the inverse rendering follows a physi-

cally meaningful and explainable manner. Our method also

relates to [13, 26], which aim at optimizing a CNN-based

self-supervised architectures. Our MLP-based framework

is significantly faster than those CNN-based methods. We

will release the code and models.

Limitations and future work: Our estimation of depth

is sensitive to the accuracy of normal estimation and sur-

face discontinuities. Introducing more constraints for accu-

rate depth estimation would certainly help to identify more

accurate shadows. Our model may fail in the presence of

strong inter-reflections. Finding an efficient model to trace

secondary and tertiary rays bouncing between surfaces is

also an interesting future direction.
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