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Abstract

Diffractive snapshot hyperspectral imaging based on the
deep optics framework has been striving to capture the
spectral images of dynamic scenes. However, existing deep
optics frameworks all suffer from the mismatch between the
optical hardware and the reconstruction algorithm due to
the quantization operation in the diffractive optical element
(DOE) fabrication, leading to the limited performance of
hyperspectral imaging in practice. In this paper, we propose
the quantization-aware deep optics for diffractive snapshot
hyperspectral imaging. Our key observation is that common
lithography techniques used in fabricating DOEs need to
quantize the DOE height map to a few levels, and can freely
set the height for each level. Therefore, we propose to inte-
grate the quantization operation into the DOE height map
optimization and design an adaptive mechanism to adjust
the physical height of each quantization level. According to
the optimization, we fabricate the quantized DOE directly
and build a diffractive hyperspectral snapshot imaging sys-
tem. Our method develops the deep optics framework to be
more practical through the awareness of and adaptation to
the quantization operation of the DOE physical structure,
making the fabricated DOE and the reconstruction algo-
rithm match each other systematically. Extensive synthetic
simulation and real hardware experiments validate the su-
perior performance of our method.

1. Introduction
Hyperspectral imaging has been beneficial to a plethora

of sensing applications, from the fundamental research
fields, e.g., biomedical inspection, material analysis, and
environmental monitoring [1, 4, 9, 27], to computer vision
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applications, e.g. appearance acquisition, face recognition,
and object tracking [13,32,46]. Conventional hyperspectral
imaging systems scan scenes along either the spatial or the
spectral dimensions and thus require multiple sensor expo-
sures to capture a full hyperspectral image [21]. These sys-
tems are unsuitable for measuring dynamic scenes, making
snapshot hyperspectral imaging with just one sensor expo-
sure one of the most attractive solutions.

Various snapshot hyperspectral imaging systems have
been developed for capturing hyperspectral images of dy-
namic scenes [3,11]. Classic methods based on geometrical
optics mainly consist of a series of refractive or reflective
optical elements [10, 25, 28, 41], being large in form fac-
tor and thus suffering from the system complexity and cal-
ibration difficulty. To overcome the limitations, diffractive
snapshot hyperspectral imaging systems have been devel-
oped by replacing the geometrical optical elements with a
thin diffractive optical element (DOE) [6,18,22,33]. Funda-
mentally, diffractive snapshot hyperspectral imaging needs
to design the DOE height map for hyperspectral image en-
coding and the reconstruction algorithm for hyperspectral
image decoding. Previous methods try to design the DOE
height map with hand-crafted or heuristic knowledge on the
point spread function (PSF) but isolate the DOE hardware
from the reconstruction algorithm [22]. Recently, the deep
optics framework has been introduced with the core idea of
an end-to-end optimization of optical hardware and the re-
construction algorithm [12, 20, 29, 36, 37], which has been
the most promising method in diffractive snapshot hyper-
spectral imaging [5, 15].

The bottleneck in the deep optics framework is that the
DOE height map optimization does not model the phys-
ical quantization in DOE fabrication. Existing deep op-
tics frameworks all employ full precision (generally 32-
bit float) in DOE height map optimization and assume the
same full precision in DOE fabrication. However, common
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lithography techniques used in fabricating physical DOEs
need to configure the quantization levels of the DOE height
map [30]. Mature lithography techniques usually support
no more than 16 quantization levels and only 4 quantization
levels if high lithography stability is required. In this case,
the DOE height map optimized with full precision has to be
quantized during the physical fabrication. Thus, the fabri-
cated DOE would deviate from the optimized DOE due to
the quantization operation, which breaks the link and leads
to a mismatch between the optical hardware and the recon-
struction algorithm, reducing the energy of deep optics and
limiting the performance of the diffractive snapshot hyper-
spectral imaging.

In this paper, we propose the quantization-aware deep
optics (QDO) for diffractive snapshot hyperspectral imag-
ing. Specifically, We explicitly model the quantization op-
eration during the DOE height map optimization, which is
conducted together with the optimization of reconstruction
algorithm, to bridge the gap between the DOE optimization
and the DOE fabrication. By leveraging the fact that the
DOE height map of each quantization level can be freely set
to be an arbitrary value within a specific range, we further
propose an adaptive quantization-aware mechanism by ad-
justing the physical height of each level during DOE height
map optimization. Finally, we fabricate the DOE with the
height map quantized according to the optimization and
build a diffractive hyperspectral snapshot imaging system.

Our method develops the deep optics framework to be
more practical through the awareness of and adaptation to
the quantization operation of the DOE physical structure,
making the fabricated DOE and the reconstruction algo-
rithm match each other systematically. Extensive synthetic
simulation and real hardware experiments validate the su-
perior performance of our method.

Our contributions are summarized as follows:

• We propose a quantization-aware deep optics model
by jointly optimizing the quantized DOE and the re-
construction algorithm for diffractive snapshot hyper-
spectral imaging.

• We propose an adaptive mechanism by adjusting the
physical height of each quantization level during DOE
height map optimization to approximate the oracle per-
formance with impossible full-precision fabrication.

• We fabricate the quantized DOE optimized by the pro-
posed method and build a diffractive snapshot hyper-
spectral imaging system.

2. Related Work
Snapshot Hyperspectral Imaging. Snapshot hyperspec-
tral imaging needs only one 2D exposure to capture the en-
coded information of the 3D hyperspectral images, which

has a distinct advantage over conventional hyperspectral
imaging systems in capturing dynamic scenes. Based on
compressive sensing theory [14], coded aperture snapshot
spectral imagers (CASSI) is one of the representative so-
lutions that can efficiently encode the hyperspectral image
into one sensor image [3, 19, 42–45, 48]. However, CASSI
uses a series of refractive or reflective optical elements as
the optical encoder and suffers from system complexity
and calibration difficulty. Thus, actual imaging applica-
tions are limited to laboratory environments. With the de-
velopment of computational photography, diffractive hyper-
spectral imaging systems have been introduced that employ
diffractive optic elements to reduce the physical size and
complexity. Jeon et al. engineer the DOE with the heuris-
tic idea to generate an anisotropic shape of the spectrally
varying PSF [22]. Dun et al. learn a rotationally symmet-
ric DOE with concentric ring decomposition [15]. Baek et
al. extend the diffractive snapshot hyperspectral imaging by
integrating with the depth information [5]. Diffractive snap-
shot hyperspectral imaging systems circumvent the need for
many optical elements, allowing casual users to capture hy-
perspectral images. Our work inherits the advantages of
diffractive hyperspectral imaging and tries to fix the devi-
ation between theoretic modeling and physical fabrication.
Deep Optics. The deep optics framework, which jointly
optimizes an optical encoder and computational decoder in
an end-to-end manner, has been widely explored in recent
years [5, 12, 15, 20, 29, 36–40]. Sitzmann et al. apply the
deep optics framework on extended depth of field and super-
resolution imaging [36]. Chang and Wetzstein use deep op-
tics for monocular depth estimation and 3D object detec-
tion [12]. Ikoma et al. propose a more accurate occlusion-
aware image formation model for deep optics in monocular
depth estimation [20]. Besides, the deep optics has been
applied in hyperspectral imaging [5, 15].

However, current deep optics models do not consider
the impact of fabrication quantization in the simulation
model, regarding the height map as a smooth structure
(32-bit float). This problem causes the mismatch between
the optimized and the fabricated DOE, which degrades re-
construction quality in physical systems. In contrast, our
quantization-aware models fix this mismatch by directly
modeling a quantized DOE.
Quantization-aware Training. Quantization-aware train-
ing is demanded in low-precision network training. Un-
like the post-training quantization method, the forward
and backward propagation are performed on models with
quantized weights [16, 23]. The critical challenge of
quantization-aware training is to approximate the gradient
of non-differentiable operations. The common approach
Straight Through Estimator (STE) [8] approximates every
non-differentiable operation as an identity function. Al-
though STE performs well in practice [34, 50], its training
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Figure 1. The overview of the proposed quantization-aware deep optics for diffractive hyperspectral snapshot imaging. The quantization-
aware DOE produces a height map in multi-level style, and the diffractive imaging model uses the quantized height map to encode the
hyperspectral image to one RGB image. The computational decoder takes the encoded RGB image as input and reconstructs the original
hyperspectral image. All the pipeline, including the quantization-aware DOE is differentiable so that we can train the entire model in an
end-to-end manner.

process is hard to be interpreted mathematically and un-
stable in certain situations [47]. Other methods solve this
problem by avoiding direct use of non-differentiable oper-
ations [7, 24, 26, 31]. Particularly, Liu et al. [26] propose
the alpha-blending approach using a combination of a full-
precision branch and a quantized branch to represent the
quantized weight, which allows the gradient update to the
full-precision weight in backward propagation and finally
transit the weight to a quantized result.

Our method integrates the quantization-aware training
method alpha-blending with the deep optics framework to
train a quantized DOE height map. Unlike the purpose
of low-precision training that compresses models, what we
need is a height profile that can be directly used for DOE
fabrication. Thus, we further propose an adaptive mecha-
nism to the quantization-aware training approach to reduce
the quantization error, which promotes the quantized DOE
to be more suitable for this joint optimization task.

3. Diffractive Imaging Model

Diffractive snapshot hyperspectral imaging is striving to
capture spectral images of dynamic scenes. We propose a
new imaging framework, QDO, for diffractive snapshot hy-
perspectral imaging, as shown in Fig. 1. This section de-
scribes the diffractive imaging model as the foundation of
QDO.

3.1. Point Spread Function

The imaging system consists of a DOE for optical encod-
ing and a bare RGB sensor for capturing the encoded image.
We build the PSF of the system based on Fourier optics [17].

Fig. 2 illustrates the process of the wave field emitted from a
point source light propagating through the DOE to the sen-
sor plane. Suppose the point source with wavelength λ is
located at a distance d from the DOE (d � λ), the wave
field at the position (x, y) of the DOE can be formulated as:

U0(x, y, λ) = ei
2π
λ
x2+y2

d , (1)

where i is the imaginary unit.
Once the wave field passes through the DOE, A

phase delay φ(x, y) is introduced. Then, the wave field
U1(x, y, λ) can be formulated as

U1(x, y, λ) = A(x, y)U0(x, y, λ)e
i 2πλ φ(x,y,λ), (2)

where A(x, y) is the optical aperture of the system. The
phase delay φ(x, y) is determined by the height map of the
DOE H(x, y) as:

φ(x, y, λ) = (nλ − 1)H(x, y). (3)

where nλ is the refractive index of the DOE material at
wavelength λ. Generally, the height map of the DOE
H(x, y) has a rotationally symmetric parameterization to
reduce the computational complexity [15].

When the wave field reaches the sensor plane at depth z,
the wave field U2(x, y, λ) can be obtained from U1(x, y, λ)
by Fresnel diffraction law.

U2(x, y, λ) = F−1
{
F {U1} ei

2π
λ ze−iπλz(f

2
x+f

2
y)
}
, (4)

where fx and fy are the frequency variables of x and y re-
spectively, and F denotes the Fourier transform.
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Figure 2. The propagation of the wave field from the source
through the quantized DOE to the sensor plane.

The PSF P is the intensity of the squared value of the
wave field U2(x, y, λ) as:

P (x, y, λ) ∝ |U2(x, y, λ)|2 (5)

3.2. Sensor Model

After formulating the PSF, we can use the system to cap-
ture images. The original hyperspectral images I(x, y, λ)
will be firstly modulated by the PSF as a convolution:

I ′(x, y, λ) = P (x, y, λ)⊗ I(x, y, λ), (6)

where ⊗ is the convolution operator.
Then the hyperspectral image is captured by the sen-

sor with a spectral response function Rc(λ) for each wave-
length and becomes an RGB image Ic∈{R,G,B}. This imag-
ing process usually introduces some sensor noise.

Ic∈{R,G,B}(x, y) =

∫ λ1

λ0

I ′(x, y, λ)Rc(λ)dλ+ η, (7)

where λ0 is the minimum wavelength, λ1 is the maximum
wavelength, and η is the sensor noise.

4. Quantization-aware DOE
From the diffractive imaging model in Sec. 3, we can

see that the height map of the DOE H(x, y) determines the
PSF of the systems. Thus, great efforts have been made to
optimized the DOE height map to realize customized en-
coding [15, 37]. Here, we want to emphasize that existing
deep optics frameworks assume full-precision height map in
the PSF formulation, which is ideal but impossible in prac-
tice. In this section, we introduce the practical QDO, which
models the quantization operation in the PSF formulation
to obey the physics in the DOE fabrication. Based on the

QDO model, we further propose an adaptive mechanism to
decide the height map for each quantization level. We name
the QDO mode with the proposed adaptive mechanism as
“QDO+A”.

4.1. Quantization-aware Model

Here, we introduce the quantization-aware model that
considers the quantization operation during the DOE op-
timization. We leverage the alpha-blending method [26]
to train the quantized DOE. Assume we can obtain a full-
precision height map Hf through direct optimization like
previous methods [5, 15]. Then the quantization-aware
height map Hq is a weighted summation of the quantized
branch and the full-precision branch:

Hq = α×Q(Hf ) + (1− α)×Hf , (8)

where Q(·) is the quantization function and α is the blend-
ing parameter.

The quantization function Q(·) is used to quantize the
full-precision height map into L evenly divided levels
hl∈{1,2,··· ,L} within the max physical height hmax:

Q(H) = hmax ×
b(L− 1)×Hf/hmax) + 0.5c

L− 1
(9)

The blending parameter α increases with the training
step s as:

α(s) =


0 s ≤ T0
1−

(
T1−s
T1−T0

)3
T0 < s ≤ T1

1 T1 < s

, (10)

where T0 and T1 are the indicators of the training step when
the blending starts and ends respectively. At training steps
before T0, α is 0 and the height map Hq is full-precision.
During training steps between T0 and T1, the cubic function
changes α from 0 to 1, and the quantization-aware height
map Hq is transiting from the full-precision version to the
quantized version. After step T1, the α becomes 1, and the
height map Hq is completely quantized.

4.2. Adaptive Mechanism

The full precision height map is ideal in the deep op-
tics framework, so the quantized DOE under the constraint
of quantization level should as much as possible approxi-
mate the oracle performance of the full precision optimiza-
tion. Based on the observation that DOE height map of
each quantization level can be freely set to be arbitrary
value within a specific range, we further propose an adap-
tive quantization-aware mechanism by adjusting the physi-
cal height of each level during DOE height map optimiza-
tion, which can effectively decrease the quantization devia-
tion from the full precision height map.
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tive weights will adjust the physical height of each quantization
level during training.

With the adaptive mechanism, the quantization-aware
height map Haq can be formulated as:

Haq = α× F (Q(Hf )) + (1− α)×Hf , (11)

where F (·) is the adaptive operator performed on the evenly
quantized height map Q(Hf ). Fig. 3 shows the detailes of
the adaptive mechanism. Specifically, The adaptive opera-
tor adds a trainable weight Wl∈{1,2,...,L} on the quantized
height map of the DOE in each quantization level as:

F (Q(Hf )) = Q(Hf ) +Wl (12)

where l indicates the specific quantization level.
The physical height of each level is adjusted by training

Wl∈{1,2,...,L} to minimize the mean square error between
the quantized height map and the full-precision height map
as:

Laq =
1

J
‖F (Q(Hf ))−Hf‖22, (13)

where J indicates the pixel count of the height map. This
objective is treated as a part of the training loss.

5. Hyperspectral Image Reconstruction
Once the hyperspectral image is encoded into an RGB

image by following the diffractive imaging model, it needs
an computational decoder to reconstruct hyperspectral im-
age from the encoded image Ic∈{R,G,B}. We adopt the Res-
UNet [49], a variant of the U-Net [35], as the decoder. As
shown in Fig. 4, we configure six layers in both downsam-
pling and upsampling stages and a middle layer between the
two stages. Each layer is a residual convolutional block and
ELU is used as the activation for each layer. We also add an
extra convolution layer with Sigmoid activation to limit the
output values between 0 and 1.

32
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256

512 1024 2048 1024 512
256

128
64

32Encoded 
RGB

1*1
conv.

HS 
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ƉOWHUBVL]H N
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ƉOWHUBVL]H N
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Figure 4. The structure of reconstruction network Res-UNet in
our implementation. There are 13 residual convolution blocks in
total, of which 6 blocks perform max pooling on their output, and
the other 6 blocks upsample their input. Long connections are
added across the blocks with the same filter size. Its output will be
clipped to (0, 1) by the final Sigmoid activation.

The training loss function L consists of reconstruction
loss Lh on the hyperspectral image reconstruction, adaptive
quantization loss Laq on the DOE height map, and L2 reg-
ularization on network weights:

L = Lh + βLaq + γ‖ω‖22, (14)

where β and γ are scaling parameters, which are set to 10−2

and 10−4 respectively, and ω denotes weights of the recon-
struction network. The reconstruction loss Lh evaluates the
mean absolute error between the reconstructed hyperspec-
tral image Î and the ground truth I:

Lh =
1

K
‖Î − I‖1, (15)

where K denotes the pixel count of the image.
The DOE height map and the reconstruction network

are trained in an end-to-end manner. We train the whole
model for 50 epochs with a batch size of 4 using Adam op-
timizer. The initial learning rate is 0.01 for the DOE part
and 0.001 for the network part, with decays rates of 80%
for every epoch. The quantization-aware blending starts
at epoch 5 and ends at epoch 40. We use the NVIDIA
GeForce RTX 3090 GPU as the computation platform, and
all models are implemented using TensorFlow 2. We have
released the code at https://github.com/wang-
lizhi/QuantizationAwareDeepOptics.

6. Synthetic Simulation
To evaluate the effectiveness of our model, we conduct

synthetic simulation on ICVL dataset [2]. We randomly di-
vide the 201 spectral scenes into three parts, which are used
for training (167 scenes), validation (17 scenes), and test
(17 scenes), respectively. For each scene, we cut it into 9
overlapping patches with a size of 512 × 512. We set the
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PSNR↑ SSIM↑ RMSE↓ ERGAS↓
Levels DO QDO QDO+A DO QDO QDO+A DO QDO QDO+A DO QDO QDO+A

Full 36.82 - - 0.974 - - 0.0167 - - 10.35 - -
32 36.75 36.80 36.82 0.974 0.974 0.974 0.0168 0.0167 0.0167 10.43 10.36 10.35
16 36.55 36.70 36.77 0.973 0.974 0.974 0.0172 0.0169 0.0168 10.69 10.50 10.42
8 35.17 36.21 36.44 0.969 0.972 0.973 0.0204 0.0180 0.0174 12.61 11.10 10.80
4 31.68 33.89 35.32 0.939 0.962 0.968 0.0319 0.0250 0.0205 19.16 14.85 12.35
2 28.56 33.42 33.97 0.891 0.952 0.958 0.0479 0.0288 0.0255 27.50 15.69 14.53

Table 1. The numerical comparison of the reconstruction results on the ICVL dataset among the conventional deep optics model (DO) that
ignores DOE quantization in the fabrication [5, 15], the proposed QDO and QDO+A models. We compare the results with quantization
levels from 2 to 32. Metrics of the ideal full-precision model are listed in the first row as references.

Levels QDO (‖Hq −Hf‖1) QDO+A (‖Haq −Hf‖1)
32 20.707 0.763
16 44.075 1.965
8 94.192 1.822
4 202.510 18.911
2 285.000 188.010

Table 2. Quantization deviation (MAE, smaller is better) in nm
between the full-precision height map and the quantized height
map in proposed quantization-aware models with or without the
adaptive mechanism.

physical parameters about the hardware system according
to the physical experiment configurations in Sec. 7. Specif-
ically, the DOE pixel size is 4µm × 4µm. The distance
between the scene and the DOE is 1m, and the distance be-
tween the DOE and the sensor plane is 50mm. The DOE
uses the refractive indices of SK1300 fused silica material,
and the base plane thickness is set to 2mm. We also mea-
sure the RGB response curve of the FLIR GS3-U3-41S4C-
C camera and configure it as spectral response functions in
the simulation.

6.1. Comparison with Conventional Deep Optics

Since the quantization deviation becomes insignificant
when the quantization levels are more than 32, we perform
synthetic simulations with from 2 to 32 quantization lev-
els to compare the performance of different DO models on
hyperspectral image reconstruction. For the conventional
DO models in [5, 15], the DOE height map is optimized in
full precision (32-bit float) in the training and quantized to
multi-level style in the testing.

Tab. 1 shows the numerical results of the conventional
model, the non-adaptive quantization-aware model and the
adaptive quantization-aware model. The performance of
the ideal model with full-precision DOE height map is also
shown as references. We can see that both quantization-
aware models outperform the conventional model at each
quantization level, which demonstrates the effectiveness of

Encoding PSNR↑ SSIM↑ RMSE↓ ERGAS↓
Fresnel 27.41 0.869 0.0556 32.18
CASSI 30.66 0.899 0.0354 20.74

DO 31.68 0.939 0.0319 19.16
QDO 33.89 0.962 0.0250 14.85

QDO+A 35.32 0.968 0.0205 12.35

Table 3. Quantitative comparison among CASSI, Fresnel lens, the
conventional deep optics model, the QDO model, and the QDO+A
model.

the quantization-aware optimization for diffractive snapshot
hyperspectral imaging. Further, the adaptive quantization-
aware model performs much better than the non-adaptive
quantization-aware model at each level, indicating the su-
periority of the adaptive mechanism.

Here, we show an in-depth analysis of the quantized
DOE height maps Hq and Haq in our models. We calcu-
late the mean absolute error (MAE) between the quantized
and the full precision height maps of the QDO and QDO+A
models. The results in Tab. 2 illustrate that the adaptive
mechanism effectively reduces the quantization deviation
between the quantized height map and its full-precision
weight, thus leading to a significant improvement on the hy-
perspectral image reconstruction to approximate the oracle
performance.

Fig. 5 shows the reconstruction results of three repre-
sentative images. To simultaneously present the results of
all spectral bands, we convert the hyperspectral images to
sRGB according to the spectral response function we use
in simulation. Clearly, QDO and QDO+A can produce vi-
sually pleasant results with less artifact and sharper edges
compared with the conventional model. We also plot spec-
tral curves of random patches as shown in Fig. 5e. The spec-
tral curves reconstructed by the proposed models are closer
to the ground truth. Also, QDO+A has a distinct advantage
over the QDO on both spatial image quality and spectral
curve fidelity, which is consistent with the numerical com-
parison results.
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Figure 5. The visual comparison of the reconstruction results. Consistent with the numeric results in Tab. 1, visual perceptual results show
that our quantization-aware models can effectively reduce the degradation of reconstruction results caused by DOE quantization, and the
spectral results reconstructed by the QDO and the QDO+A model are also closer to the ground truth. Red rectangles in ground truth images
indicate the area used for plotting the spectral curves.

6.2. Comparison with Other Optical Encodings

To evaluate the performance of our models in snap-
shot hyperspectral imaging, We compare with representa-
tive snapshot hyperspectral imaging system, i.e., Fresnel
lens and CASSI [3]. To make the comparison fair, we adopt
the same reconstruction network as we use in Sec. 5 for all
optical encoding models. Meanwhile, all models are trained
for 50 epochs with the same optimizer configuration, and
the quantization level number is set to 4 for the DO, QDO,
and QDO+A.

Tab. 3 shows the reconstruction results of different en-
coding approaches. We can see that all three kinds of DO
encodings have advantages over other snapshot hyperspec-
tral encodings, and the proposed quantization-aware model
and its adaptive mechanism further promote the advantages.

7. Physical Experiment

We fabricate the optimized DOE of the 4-level QDO+A
model using multi-level lithography technologies. Own-
ing to the quantization-aware model, the optimized DOE

structure is already quantized, which means no extra quan-
tization is needed and the height map can be directly used
for DOE fabrication. Fig. 6 shows the detailed structure of
the optimized DOE and its PSF in 31 spectral bands from
400nm to 700nm. Then, we build the prototype hyperspec-
tral imaging system using the fabricated DOE. The cam-
era model and all physical parameters in fabrication experi-
ments have been listed in the Sec. 6. The fabricated DOE is
installed on the camera using a customized connector that
supports C-mount on the camera side and holds the DOE
50mm away from the sensor plane. The diameter of the
DOE is half an inch, and the diffractive pattern area size is
4.096mm. The area without the diffractive pattern of the
DOE is blocked by a customized steel aperture.

Fig. 7 shows the DOE we fabricated and the prototype
camera we built. Fig. 8 shows the captured RGB images
of the prototype camera and the reconstruction results. We
also capture ground truth spectral curves with a commercial
spectrometer (StallerNet Blue). We can see that our method
can produce visually pleasant images and high-accuracy
spectral curves.
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Figure 7. The fabricated DOE and the camera prototype we build
for diffractive snapshot hyperspectral imaging.

8. Discussion

Limitations. The proposed quantization-aware methods
have limited effective scopes, and the approximation of the
optical modeling might prevent the designed system from
having a large valid field-of-view. Please check the supple-
mentary material for a detailed discussion.
Conclusion. In this work, we proposed the quantization-
aware deep optics for diffractive snapshot hyperspectral
imaging, which can jointly optimizes a quantized DOE as
the encoder and a reconstruction network as the decoder.
We also presented an adaptive mechanism for this frame-
work to further reduce the quantization deviation by adjust-
ing the physical height of each level. We fabricated a proto-

(a) Captured RGB Images

1

2

3

4

(b) Reconstruction (Visualized to RGB Image)

1 2 3 4

Wavelength (nm)

Radiance

(c) Reconstruction Spectral Curves

(d) Spectral Images (420nm, 470nm, 530nm, 620nm, and 700nm)

Figure 8. The captured encoded images, reconstruction results
(RGB visualization), spectral curves, and spectral images in rep-
resentative bands. Our system can produce visually pleasant hy-
perspectral images and accurate spectrum, indicating the effective-
ness of our model in the physical system.

type and built a real hardware systems according to the pro-
posed models for diffractive snapshot hyperspectral imag-
ing. Synthetic simulation and physical experiments have
verified the effectiveness of our model. The quantization-
aware deep optics are also applicable for other tasks, in-
cluding low-level imaging and high-level vision. We would
make more efforts on the generalization.
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