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Abstract

Sparsely annotated semantic segmentation (SASS) aims

to train a segmentation network with coarse-grained (i.e.,

point-, scribble-, and block-wise) supervisions, where only

a small proportion of pixels are labeled in each image. In

this paper, we propose a novel tree energy loss for SASS

by providing semantic guidance for unlabeled pixels. The

tree energy loss represents images as minimum spanning

trees to model both low-level and high-level pair-wise affini-

ties. By sequentially applying these affinities to the net-

work prediction, soft pseudo labels for unlabeled pixels are

generated in a coarse-to-fine manner, achieving dynamic

online self-training. The tree energy loss is effective and

easy to be incorporated into existing frameworks by com-

bining it with a traditional segmentation loss. Compared

with previous SASS methods, our method requires no multi-

stage training strategies, alternating optimization proce-

dures, additional supervised data, or time-consuming post-

processing while outperforming them in all SASS settings.

Code is available at https://github.com/megvii-

research/TreeEnergyLoss.

1. Introduction

Semantic segmentation, aiming to assign each pixel a se-

mantic label for given images, is one of the fundamental

tasks in computer vision. Previous methods [4,18,25,26,36]

tend to leverage large amounts of fully annotated labels like

Fig. 2(b) to achieve satisfying performance. However, man-

ually annotating such high-quality labels is labor-intensive.

To reduce the annotation cost and preserve the segmentation

performance, some recent works research on semantic seg-

mentation with sparse annotations, such as point-wise [2]

and scribble-wise ones [17]. As shown in Fig. 2(c-d), the

point-wise annotation assigns each semantic object with a
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(b) Pseudo proposal

(a) Auxiliary task

(d) Consistency learning

(c) Regularized loss

(e) Our tree energy loss
Figure 1. Illustration of current SASS approaches. S and E denote

the segmentation and auxiliary models, respectively. Our method

leverages the minimum spanning trees (MSTs) to capture both

low-level and high-level affinities to generate soft pseudo labels,

performing online self-training.

single-pixel label while the scribble-wise annotation draws

at least a scribble label for the object.

As illustrated in Fig. 1(a-d), existing approaches are

mainly based on auxiliary tasks, pseudo proposals, regular-

ized losses, and consistency learning to solve SASS. How-

ever, there are some shortcomings in these approaches. The

predictive error from the auxiliary task [15,34,35] may hin-

der the performance of semantic segmentation. The pro-

posal generation [17,39,42] is time-consuming and usually

calls for a multi-stage training strategy. The regularized
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(a) Image (b) Full (c) Point (d) Scribble (e) Block

Figure 2. Different types of training annotations for semantic segmentation. The background class is annotated in black.

losses [20, 21, 29, 30, 32] ignore the domain gap between

the visual information and the high-level semantics, and the

consistency learning [3, 13, 22, 24, 44, 45] fails to directly

supervise the unlabeled pixels at the category level. In this

paper, we aim to alleviate these shortcomings and introduce

a simple yet effective solution.

In SASS, each image can be divided into labeled and

unlabeled regions. The labeled region can be directly su-

pervised by the ground truth, while how to learn from the

unlabeled region is an open question. For the region of the

same object, the labeled and unlabeled pixels share simi-

lar patterns on low-level color (RGB value of image) and

high-level responses (features produced by CNN). Utiliz-

ing such similarity prior in SASS is intuitive. Inspired by

the tree filter [1, 41], which can model the pair-wise sim-

ilarity with its structure-preserving property, we leverage

this property to generate soft pseudo labels for unlabeled

regions and achieve online self-training.

Specifically, we introduce a novel tree energy loss (TEL)

based on the low-level and the high-level similarities of im-

age (see Fig. 1(e)). In TEL, two minimum spanning trees

(MSTs) are built on the low-level color and the high-level

semantic features, respectively. Each MST is obtained by

sequentially eliminating connections between adjacent pix-

els with large dissimilarity, so less related pixels are sepa-

rated and the essential relation among pixels is preserved.

Then, two structure-aware affinity matrices obtained by ac-

cumulating the edge weights along the MSTs are multiplied

with the network predictions in a cascading manner, pro-

ducing soft pseudo labels. Finally, the generated pseudo

labels are assigned to the unlabeled regions. Combining the

TEL with a standard segmentation loss (e.g., cross-entropy

loss), any segmentation network can learn extra knowledge

from unlabeled regions via dynamic online self-training.

To comprehensively validate the effectiveness of TEL,

we further enrich the SASS scenarios by introducing a

block-wise annotation setting (see Fig. 2(e)), where the

amount of annotations is located between the full and scrib-

ble settings. In this way, we can grade the SASS into three

levels, i.e., point, scribble, and block. Experimental re-

sults show that TEL can significantly boost segmentation

performance without introducing extra computational costs

during inference. Equipped with recent segmentation net-

works, our method can achieve state-of-the-art performance

under various annotated settings.

The main contributions are summarized as follow. We

propose a novel tree energy loss (TEL) for SASS. TEL

leverages minimum spanning trees to model the low-level

and high-level structural relation among pixels. A cas-

caded filtering operation is further introduced to dynami-

cally generate soft pseudo labels from network predictions

in a coarse-to-fine way. TEL is clean and easy to be plugged

into most existing segmentation networks. For comprehen-

sive validation, we further introduce a block-annotated set-

ting for SASS. Our method outperforms the state-of-the-arts

under the point-, scribble- and block-annotated settings.

2. Related Works

Sparsely Annotated Semantic Segmentation: Sparsely

annotated semantic segmentation aims to train the segmen-

tation model with coarse-grained annotated data. Previous

works mainly focus on the point-level and the scribble-level

supervisions. What’s the Point [2] first presents the seman-

tic segmentation task with point annotations. It combines

the objectness prior, the image-level supervision, and point-

level supervision into the loss function. PDML [24] pro-

poses the point-based distance metric learning to model the

intra- and inter-category relations across images. WeClick

[19] utilizes temporal information of the video sequence

and distills the semantic knowledge from a more complex

model. Seminar [3] introduces seminar learning through

EMA-based teacher models. To narrow the performance

gap with fully annotated methods, an increasing number

of scribble-annotated semantic segmentation methods have

appeared. ScribbleSup [17] constructs a graphical model

to alternatively propagate the scribble annotations and learn

the model parameters. RAWKS [34] and BPG [35] adopt

edge detectors to progressively refine the predictions for

sharper semantic boundaries. A2GNN [42] blends the

multi-level supervision and solves the segmentation prob-

lem with graph neural networks. PSI [39] utilizes multi-

stage semantic features to progressively infer the predic-

tions and pseudo labels. URSS [22] learns to reduce the

uncertainty of the segmentation model by random walks,

coupled with a self-supervised learning strategy. To capture

the relation between labeled and unlabeled pixels, a variety

of regularized losses [20, 21, 29, 30] are proposed. These

methods use the low-level (i,e., spatial and color) informa-
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Figure 3. Flowchart of the proposed single-stage SASS method, which is realized by incorporating an auxiliary branch into the traditional

segmentation model S(·). During training, the predicted masks P are split into the labeled and unlabeled parts, which are supervised by

the segmentation loss Lseg and the tree energy loss Ltree, respectively. To obtain pseudo labels for unlabeled pixels, the Tree Affinity

Generation procedure (Eqs. 3-5) first utilizes the color information I and semantic features F to generate the low-level and high-level

affinity matrices Alow, Ahigh. Then the Cascaded Filtering operation (Eqs. 6-7) converts the network predictions P into soft pseudo labels

Ỹ . During testing, the auxiliary branch is removed to avoid extra computational costs.

tion of images and train the model in two stages. In the

first stage, the segmentation model is just trained with seg-

mentation loss. Then a regularized loss is further adopted

to fine-tune the model in the second stage.

Tree Filter: Modeling pair-wise relation is significant for

many computer vision tasks. Regarding an image as an

undirected planar graph, where nodes are all pixels and

edges between adjacent nodes are weighted by the appear-

ance dissimilarity, the minimum spanning tree (MST) can

be constructed by removing edges according to substantial

weights. Since the gradient between adjacent pixels can

be viewed as the intensity of object boundaries, the nodes

tend to interact with each other preferentially within the

same object on the tree. Due to the structure-preserving

property of MST, the traditional tree filters are applied in

stereo matching [40, 41], salient object detection [33], im-

age smoothing [1], denoising [27], and abstraction [14]. Re-

cently, LTF [26] presents a learnable tree filter to capture the

long-range dependencies for semantic segmentation. LTF-

V2 [25] combines the learnable tree filter and the Markov

Random Field [16] to further improve the performance.

3. Methodology

In this section, we first emphasize our motivation in

Sec. 3.1. Then the overall architecture combining the tradi-

tional segmentation loss with the proposed tree energy loss

(TEL) is introduced in Sec. 3.2. After that, we describe the

details of TEL in Sec. 3.3. Finally, we discuss the main

differences from previous related works in Sec. 3.4.

3.1. Motivation

The SASS task aims to train a dense prediction model

with coarse-grained (i.e., point-, scribble- or block-wise) la-

bels, where the annotations of most pixels are invisible dur-

ing training. In SASS, the whole image can be separated

into two parts: labeled set ΩL and unlabeled set ΩU . For

the labeled set ΩL, one can simply use the corresponding

ground truth for training. As for the ΩU , it tends to be ig-

nored in the traditional semantic segmentation framework,

resulting in performance degradation. This paper aims to

present a simple yet effective solution for SASS. Since pix-

els belonging to the same object share similar patterns at

different feature levels, we leverage these similarities to

provide the additional supervision for unlabeled pixels in

ΩU . Inspired by tree filter [1, 26, 41], we model such pair-

wise similarity based on its structure-preserving property.

The pair-wise similarity together with the network predic-

tion is used to generate soft pseudo labels for unlabeled pix-

els. Cooperated with the supervised learning in ΩL, an on-

line self-training framework is constructed, achieving the

progressive improvement of both network predictions and

pseudo labels during training.

3.2. Overall Architecture

Fig. 3 illustrates the overall architecture of our method,

which is composed of a segmentation branch for labeled

pixels and an auxiliary branch for unlabeled pixels. The

segmentation branch assigns the sparsely annotated label Y
to the labeled pixels. For the auxiliary branch, the pair-wise

affinity matrices Alow, Ahigh are generated from the origi-

nal image I and the embedded features F . Then the affinity

matrices Alow, Ahigh are used to refine the network predic-

tion P and generate soft pseudo label Ỹ . The soft labels

generated are assigned to the unlabeled pixels. Therefore,

the overall loss function includes a segmentation loss Lseg

and a tree energy loss Ltree,

L = Lseg + λLtree, (1)

where λ is a balance factor for two losses. By leverag-

ing two losses jointly, complementary knowledge can be
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Figure 4. The process of Tree Affinity Generation. An initial graph

is first built on the given low-level color or high-level semantic

features, then the MST is obtained by the edge pruning algorithm

[9]. On the MST, the distance between two vertices is calculated

by the sum of edge weights along their hyper-edge. An example

is illustrated in red dashed lines. Finally, the affinity projection is

conducted to project the distance map into an affinity matrix.

learned by the whole segmentation network. For the Lseg ,

we follow previous works [19±21, 29, 30] and formulate it

as a partial cross-entropy loss:

Lseg = −
1

|ΩL|

∑

∀i∈ΩL

Yi log(Pi), (2)

where Pi and Yi are the network prediction and the corre-

sponding ground truth at the location i. As for the proposed

Ltree, it will be presented in the next section.

3.3. Tree Energy Loss

Given the training images with sparse annotations, TEL

learns to provide category guidance for unlabeled pixels.

The TEL mainly includes the following three steps: (1) A

tree affinity generation step to model the pair-wise rela-

tion. (2) A cascaded filtering step to generate pseudo labels.

(3) A soft label assignment step to assign pseudo labels for

unlabeled pixels. Here, we will introduce TEL in detail.

Tree Affinity Generation. An image can be represented as

an undirected graph G = (V,E), where the vertice set V
consists of all pixels and the edges between two adjacent

vertices make up the edge set E. As shown in Fig. 4, we

adopt the architecture of a 4-connected planar graph, where

each pixel is adjacent to up to 4 neighboring ones. Let the

vertice i and vertice j be adjacent on the graph, the low-

level and high-level weight functions between them can be

respectively defined as

ωlow
i,j = ωlow

j,i = |I(i)− I(j)|
2
,

ωhigh
i,j = ωhigh

j,i = |F (i)− F (j)|
2
,

(3)

where I(i) ∈ R
3×h×w and F (i) ∈ R

256×h×w are the RGB

color and the semantic features of pixel i, respectively. h
and w are the height and width of the downsampled input

image. F (i) is produced by a 1 × 1 convolutional layer,

from the features before the classification layer of the seg-

mentation model. Once obtained the edge weights, a MST

can be constructed by sequentially removing the edge with

the largest weight from E while ensuring the connectivity

of the graph. We construct both the low-level and the high-

level MSTs with the Bor̊uvka algorithm [9]. Based on the

topology of MST, vertices within the same object share sim-

ilar feature representations and tend to interact with each

other preferentially.

Similar to [26, 41], the distance between two vertices of

the MST can be calculated by the weight summation of their

connected edges. And the distance of the shortest path be-

tween vertices, denoted as the hyper-edge E, forms the dis-

tance map of the MST,

D∗
i,j = D∗

j,i =
∑

(k,m)∈E
∗

i,j

ω∗
k,m, (4)

where i, j, k and m are vertice indexes, ∗ ∈ {low, high}.

To capture the long-range relation among vertices, we

project the distance maps to positive affinity matrices,

Alow = exp
(

−Dlow/σ
)

,

Ahigh = exp
(

−Dhigh
)

,
(5)

where σ is a preset constant value to modulate the color

information. Given a training image, the low-level affinity

Alow is static while the high-level affinity Ahigh is dynamic

during training. They capture pair-wise relations at differ-

ent feature levels. By utilizing them jointly, complementary

knowledge can be learned.

Cascaded Filtering. Since the low-level affinity matrix

Alow contains object boundary information while the high-

level affinity matrix Ahigh maintains semantic consistency,

we introduce a cascaded filtering strategy to generate the

pseudo labels Ỹ from the network prediction:

Ỹ = F
(

F(P,Alow), Ahigh
)

, (6)

where P is the prediction after the softmax operation. By

serially multiplied with low-level and high-level affinities,

the network prediction can be refined in a coarse-to-fine

manner, yielding high-quality soft pseudo labels. The fil-

tering operation F(·) is presented as follow:

F(P,A∗) =
1

zi

∑

∀j∈Ω

A∗
i,jPj , (7)

where Ω = ΩL ∪ ΩU is the full set of all pixels, and

zi =
∑

j Ai,j is the normalization term. To speed up the

calculation of Eq. 7, we adopt the efficient implementation

in LTF [26] to realize the linear computational complex-

ity. As shown in Fig. 5, the pseudo labels generated with

cascaded filtering can preserve sharper semantic boundaries

than the original predictions via considering the structural

information. Since the semantic boundary is significant to

semantic segmentation while mislabeled in sparse annota-

tions, the performance of the segmentation model can be

boosted by assigning pseudo labels for unlabeled pixels.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Visualization of the network predictions the correspond-

ing pseudo labels in our training framework. (a) Input image.

(b) Sparse annotation. (c) Full annotation. (d) Network predic-

tion. (e) Initial pseudo label generated with the low-level affinity.

(f) Final pseudo label generated with multi-level affinities.

Soft Label Assignment. Now that we obtain the pseudo la-

bels, the TEL is designed for soft pseudo label assignment:

Ltree = δ(P, Ỹ ), (8)

where δ is a label assignment function, which measures the

distance between predicted probability P and pseudo label

Ỹ . Some natural choices of δ can be L1 distance, L2 dis-

tance, and so on. We empirically select L1 distance as the

label assignment function. For ablations about δ, please re-

fer Sec. 4.4. In this way, the final formation of TEL is de-

scribed as follows,

Ltree = −
1

|ΩU |

∑

∀i∈ΩU

|Pi − Ỹi|. (9)

Note that the TEL only focuses on the unlabeled regions

since the labeled regions are learned with explicit accurate

supervision. Instead of generating pseudo labels from the

sparse annotations, our TEL generates the soft labels from

network prediction. Thus, the data-driven model learning

procedure will benefit our online self-training strategy.

3.4. Discussion

Tree filter has been applied in many vision tasks thanks

to the property of structure-preserving. Previous methods

apply tree filters to original images for image smoothing [1]

and stereo matching [41], or intermediate features for fea-

ture transform [25, 26]. Our method is inspired by these

works but for a totally different purpose. We capture both

low-level and high-level affinities and apply them to net-

work predictions for soft pseudo label generation in SASS,

achieving single-stage dynamic online self-training. To the

best of our knowledge, it is the first time that the tree filter

is introduced in solving the SASS problem.

4. Experiment

4.1. Datasets and Annotations

Datasets. Pascal VOC 2012 [8] contains 20 object cate-

gories and a background class. Following previous meth-

ods [3, 22, 30, 39], the augmented dataset [11] with 10,582

training and 1,449 validation images are used. Cityscapes

[6] is built for urban scenes. It consists of 2,975, 500, 1,525

fine-labeled images for training, validation, and testing, re-

spectively. There are a total of 30 annotated classes in the

dataset, and 19 of which are used for semantic segmenta-

tion. ADE20k [43] is a challenging benchmarks with 150

fine-grained classes. It collects 20,210, 2,000, and 3,352

images for training, validation, and testing.

Annotations. For point-supervised and scribble-supervised

settings, the point-wise annotation [2] and the scribble-wise

annotation [17] of Pascal VOC 2012 dataset are respec-

tively used. For the block-supervised setting, we synthesize

the block-wise annotations on Cityscapes and the ADE20k

datasets. Specially, given the full annotations, we remove

the labeled pixels sequentially from semantic edges to inte-

rior regions until the ratio of the rest labeled pixels reaches

the preset threshold. Examples of synthetic block-wise an-

notations can be found in our supplementary material.

4.2. Implementation Details

We adopt three popular semantic segmentation models

(i.e., the DeeplabV3+ [5], the LTF [26], and the HRNet

[28]) for experiments. The ResNet-101 [12] and the HR-

NetW48 [28] pre-trained on ImageNet [7] dataset are used

as backbone networks. For data augmentation, random hor-

izontal flip, random resize in [0.5, 2.0], random crop, and

random brightness in [−10, 10] are employed. The input

resolutions are 512 × 512, 1024 × 512, and 512 × 512 for

Pascal VOC 2012, Cityscapes, and ADE20k datasets, re-

spectively. And the corresponding initial learning rates are

0.001, 0.01, and 0.02. The SGD optimizer with the mo-

mentum of 0.9, weight decay 1e−4 polynomial schedule is

utilized. The total training iterations are 80k, 40k, and 150k

for Pascal VOC 2012, Cityscapes, and ADE20k datasets,

respectively. In our practice, we set λ = 0.4 in Eq. 1. As

for σ in Eq. 5, we set σ = 0.02 in Pascal VOC 2012 dataset,

and σ = 0.002 in Cityscapes and ADE20k datasets due to

the low-level appearance variety of the semantic categories.

All experiments are conducted on Pytorch [23] with 4 Tesla

V100 (32G) GPUs.

4.3. Comparison with State-of-the-art Methods

Point-wise supervision. Point-supervised semantic seg-

mentation is an extreme setting in SASS. What’s the Point

[2] provides the point-wise annotations for Pascal VOC

2012 dataset. However, it only labels the foreground classes

and lacks the annotations of the background class. Follow-
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Method Backbone Publication Supervision Multi-stage Alt. Opt. Extra Data CRF mIoU

(1) DeeplabV2 [4] VGG16 TPAMI’17 Full - - - ✓ 71.6

(2) DeeplabV2 [4] ResNet101 TPAMI’17 Full - - - ✓ 77.7

(3) DeepLabV3+ [5] ResNet101 ECCV’18 Full - - - - 80.2

(4) LTF [26] ResNet101 NeurIPS’19 Full - - - - 80.9

What’s the point [2] (1) ECCV’16 Point - - - - 43.4

KernelCut Loss [30] (2) ECCV’18 Point ✓ - - ✓ 57.0

A2GNN [42] (2) TPAMI’21 Point ✓ - - ✓ 66.8

Seminar [3] (3) ICCV’21 Point ✓ - - - 72.5

SPML [13] (2) ICLR’21 Point - - ✓ ✓ 73.2

TEL (3) CVPR’22 Point - - - - 64.9

TEL (4) CVPR’22 Point - - - - 68.4

TEL w. Seminar (3) CVPR’22 Point ✓ - - - 74.2

ScribbleSup [17] (1) CVPR’16 Scribble ✓ ✓ - ✓ 63.1

NormCut Loss [29] (2) CVPR’18 Scribble ✓ - - ✓ 74.5

DenseCRF Loss [30] (2) ECCV’18 Scribble ✓ - - ✓ 75.0

KernelCut Loss [30] (2) ECCV’18 Scribble ✓ - - ✓ 75.0

GridCRF Loss [20] (2) ICCV’19 Scribble ✓ ✓ - - 72.8

BPG [35] (2) IJCAI’19 Scribble - - ✓ - 76.0

SPML [13] (2) ICLR’21 Scribble - - ✓ ✓ 76.1

URSS [22] (2) ICCV’21 Scribble ✓ - - ✓ 76.1

PSI [39] (3) ICCV’21 Scribble - ✓ - - 74.9

Seminar [3] (3) ICCV’21 Scribble ✓ - - - 76.2

A2GNN [42] (4) TPAMI’21 Scribble ✓ - - ✓ 76.2

TEL (3) CVPR’22 Scribble - - - - 77.1

TEL (4) CVPR’22 Scribble - - - - 77.3

Table 1. Experimental results of the point- and the scribble-annotated semantic segmentation methods on the Pascal VOC 2012 validation

set. Experimental settings for multi-stage training (Multi-stage), alternating optimization (Alt. Opt.), extra supervised data (Extra Data)

during training, and CRF post-processing (CRF) during testing are considered. Top two results are highlighted in blue and red.

ing previous works [3, 21], we adopt the point-wise back-

ground annotations from the scribble annotations in Scrib-

bleSup [17]. The experimental results are reported in Tab. 1.

When equipped with DeeplabV3+, our baseline employ-

ing the partial cross-entropy loss can produce 58.5% mIoU.

Incorporating the TEL, the segmentation model achieves

6.4% mIoU improvements compared with our baseline. It

demonstrates that our method is effective and easy to be

plugged into the existing segmentation frameworks. Among

recent methods, Seminar [3] has a similar workflow with the

semi-supervised mean-teacher method [31] and achieves

72.5% mIoU. We apply our method to the Seminar by re-

placing the DenseCRF loss with the proposed TEL. It shows

that TEL can bring additional 1.7% mIoU improvements

and achieve state-of-the-art performance.

Scribble-wise supervision. As shown in Tab. 1, the pro-

posed TEL can be applied in the single-stage training frame-

work and calls for no additional supervised data during

training or CRF post-processing during testing. Scrib-

bleSup [17] presents an alternative proposal generation

and model training method and achieves 63.1% mIoU. To

achieve higher performance, the regularized losses are de-

signed by mining pair-wise relations from low-level image

information. BPG [35] and SPML [13] utilize the edge de-

tectors (i.e., the pre-trained HED method [38]) for seman-

tic edge generation and over-segmentation. However, ex-

tra supervised data are required to learn the edge detectors.

Among all the recent methods, A2GNN achieves the best

performance. It first generates seed labels by mixing up

multi-level supervisions, then refines the seed labels with

affinity attention graph neural networks. Finally, the CRF

post-processing is adopted. Compared with A2GNN, our

method can be trained in a single-stage manner while out-

performing it by 1.1% mIoU without any post-processing.

Fig. 6 illustrates some qualitative results on Pascal VOC

2012 dataset. Although the annotations are quite sparse, our

method can leverage the structure information among la-

beled and unlabeled regions and generate promising masks

with fine semantic boundaries.

Block-wise supervision. To further evaluate the robustness

of TEL, we carry out additional experiments with block-

wise annotations. Notice that the Pascal VOC 2012 dataset
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is relatively easy since the prediction of pixels close to the

semantic boundaries is usually ignored in accuracy calcu-

lation (shown in Fig. 2(b)), so we resort to the Cityscapes

and the ADE20k datasets. To evaluate the performance with

different sparsity, we generate the block-wise annotations at

three different levels, including 10%, 20%, and 50% of full

labels. The 100% ratio indicates the fully annotated set-

ting, which servers as the upper bound of the SASS meth-

ods. The baseline is the segmentation network trained with

the partial cross-entropy loss only. We compare our TEL

with the state-of-the-art DenseCRF Loss [30] and report the

results in Tab. 2. For all block-annotated settings, we use

the default hyper-parameters for DenseCRF Loss reported

in the paper and it achieves higher accuracy compared with

the baseline. However, the performance improvement is rel-

atively limited. The proposed TEL captures both the low-

level and the high-level relation and outperforms the Dense-

CRF Loss in all block-supervised settings.

4.4. Ablation Study

We perform thorough ablation studies for TEL. The

scribble-supervised results of DeeplabV3+ on the Pascal

VOC 2012 dataset are reported unless otherwise stated.

Loss formation. TEL learns to assign soft labels for un-

labeled pixels. The experiments about the loss formation

in Eq. 8 are carried out to evaluate the effectiveness of the

TEL. The baseline model achieves 68.8% with partial cross-

entropy loss. As shown in Tab. 3a, the performance can be

improved by different formations of TEL. Among them, the

L1 distance achieves the best result with 77.1% mIoU, thus

we choose it as the final implementation of our TEL.

Affinity level. The TEL leverage both low-level and high-

level structural information to generate pseudo labels for

unlabeled pixels. To evaluate their effectiveness, we carry

out ablation studies in Tab. 3b. Compared with the base-

line, introducing low-level and high-level information can

achieve 7.5% and 3.1% mIoU improvement, respectively.

Adopting both of them, our method achieves 77.1% mIoU,

which is 8.3% higher than the baseline.

Affinity generation. The TEL captures the low-level and

high-level structural information to generate the affinity ma-

trices in Eq. 5. As shown in Tab. 3c, we compare different

methods of pair-wise affinity generation, including the Bi-

lateral Filter (BF) for low-level affinity and the Non-Local

operation (NL) for high-level affinity. The implementations

for BF [30] and NL [37] are adopted. Our method gener-

ates affinity matrices based on the MST. Compared with BF,

our method requires fewer hyper-parameters while achiev-

ing higher accuracy. As for high-level affinity, our method

achieves 1.7% higher mIoU than NL. These results demon-

strate the effectiveness of TEL in both the low-level and the

high-level affinity generation.

Affinity aggregation. How to aggregate the multi-level in-

image point sup. scribble sup. ground truth

Figure 6. Qualitative results for the proposed TEL on Pascal VOC

2012 dataset. The point sup. and the scribble sup. indicate the

point and the scribble supervision, respectively.

Δ𝑃 = 5.6%
Δ𝑃 = 7.3%

Figure 7. Qualitative evaluation about the network predictions

and the soft pseudo labels in unlabeled regions during training.

The results of 20% block-wise annotations on Cityscapes are il-

lustrated. ‘TEL pred’ and ‘TEL soft label’ are the network pre-

dictions and the generated pseudo labels of the TEL model, re-

spectively. ∆P denotes the precision difference between the base-

line training framework and the proposed TEL framework. Extra

knowledge can be learned by the segmentation network by incor-

porating TEL into the baseline.

formation is significant to pseudo-label generation. We con-

struct different variants of TEL based on the aggregation

strategy. As shown in Tab. 3d, LH-P denotes the variant

of parallel aggregation. In this case, the low-level and the

high-level affinity matrices are multiplied with network pre-

dictions separately to produce two pseudo labels, and both

of them are used as the guidance for unlabeled pixels. In

contrast to the parallel aggregation strategy, the cascading

aggregation strategies merge network predictions with the

multi-level affinity matrices one by one to refine the pseudo

labels sequentially. Among the cascading strategies, we find

that aggregating the low-level information first (denoted as

LH-C) achieves better results than the variant of aggregat-

ing the high-level information first (denoted as HL-C). The

low-level affinity is generated from the static color infor-
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Model Backbone Method
Cityscapes ADE20k

10% 20% 50% 100% 10% 20% 50% 100%

HRNet HRNetW48

Baseline 52.8 58.6 68.8 78.2 30.2 33.1 37.2 42.5

DenseCRF Loss [30] 57.4 61.8 70.9 - 31.9 33.8 38.4 -

TEL 61.9 66.9 72.2 - 33.8 35.5 40.0 -

DeeplabV3+ ResNet101

Baseline 48.4 52.8 60.5 80.2 30.8 33.4 36.6 44.6

DenseCRF Loss [30] 55.6 61.5 69.3 - 31.2 34.0 37.4 -

TEL 64.8 67.3 71.5 - 34.3 36.0 39.2 -

Table 2. Single-stage training results for block-wise annotations on Cityscapes and ADE20k validation sets.

Formation Equation mIoU

Cross Entropy −
∑

Ỹ logP 76.0

Dot Product −
∑

PT Ỹ 76.6

L2 Distance
∑

|P − Ỹ |
2

75.1

L1 Distance
∑

|P − Ỹ | 77.1

(a) Ablation of the loss formation for TEL in

Eq. 8.

Low-level High-level mIoU

68.8

✓ 76.3 (+7.5)

✓ 71.9 (+3.1)

✓ ✓ 77.1 (+8.3)

(b) Effect of the the low-level and the high-

level affinities in TEL.

Information Method mIoU

Low-level
BF 75.0

MST 76.3 (+1.3)

High-level
NL 70.2

MST 71.9 (+1.7)

(c) Impact of affinity generation methods based

on different levels of image information.

Variant LH-P HL-C LH-C

mIoU 76.4 75.8 77.1

(d) Affect of the affinity aggregation strategies.

λ 0.1 0.2 0.3 0.4 0.5

mIoU 74.9 76.0 76.4 77.1 77.0

(e) Effectiveness evaluation of λ in Eq. 1.

σ 0.01 0.02 0.03 0.04 0.05

mIoU 76.6 77.1 76.8 77.0 76.3

(f) Effectiveness evaluation of σ in Eq. 5.

Table 3. Ablation studies on the proposed TEL. We train on the scribble annotations and test on the Pascal VOC 2012 validation set.

mation, which may bring noise due to the inconsistency be-

tween low-level color and high-level category information.

Incorporating the learnable high-level affinity can improve

the semantic consistency.

Hyper-parameters. We evaluate the hyper-parameters of

our method, including the λ in Eq. 1 and the σ in Eq. 5. λ
is the factor to balance the segmentation loss and TEL. The

results are reported in Tab. 3e, and we choose λ = 0.4 for

our TEL. σ is a normalization term for the low-level affinity

matrix projection. We evaluate the influence of σ and report

the results in Tab. 3f. The value of σ is not sensitive to

the segmentation accuracy and the highest mIoU is obtained

when σ equals 0.02 on the Pascal VOC 2012 dataset.

Quality of pseudo labels. We evaluate the quality of

pseudo labels for unlabeled pixels on Cityscapes dataset.

The baseline segmentation model is HRNet. As shown in

Fig. 7, for the model learned with TEL, the precision of

the pseudo label is higher than the network prediction at

the beginning of the training process, which provides im-

port guidance for model learning. As the number of iter-

ations increases, the precision gap between the prediction

and pseudo label is gradually narrowed while the perfor-

mance of both is improved all the time. Compared with the

baseline, TEL can help the segmentation model learn extra

knowledge from unlabeled data and achieve performance

improvement (from 5.6% to 7.3% mIoU during training).

4.5. Limitations

This paper provides a simple yet effective solution for

SASS and achieves state-of-the-art performance. However,

it also has some limitations. First, the low-level affinity

is generated from the static image, which may bring about

noise in the pseudo label. For example, objects with differ-

ent categories may have similar color information. Second,

TEL ignores the inherent relation between the pseudo label

and the sparse ground truth. Learning from noise label [10]

and alternative optimizer like [20] are possible solutions to

solve these problems, respectively.

5. Conclusion

This paper presents a novel tree energy loss (TEL) for

sparsely annotated semantic segmentation. The TEL cap-

tures both the low-level and the high-level structural in-

formation via minimum spanning trees to generate soft

pseudo labels for unlabeled pixels, then performs online

self-training dynamically. The TEL is effective and easy

to be plugged into most of the existing semantic segmen-

tation frameworks. Equipped with the recent segmentation

model, our method can be learned in a single-stage man-

ner and outperforms the state-of-the-art methods in point-,

scribble-, and block-wise annotated settings without alter-

nating optimization procedures, extra supervised data, or

time-consuming post-processes.
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