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Abstract

Abductive reasoning seeks the likeliest possible expla-
nation for partial observations. Although abduction is fre-
quently employed in human daily reasoning, it is rarely ex-
plored in computer vision literature. In this paper, we pro-
pose a new task and dataset, Visual Abductive Reasoning
(VAR), for examining abductive reasoning ability of ma-
chine intelligence in everyday visual situations. Given an in-
complete set of visual events, AI systems are required to not
only describe what is observed, but also infer the hypothe-
sis that can best explain the visual premise. Based on our
large-scale VAR dataset, we devise a strong baseline model,
REASONER (causal-and-cascaded reasoning Transformer).
First, to capture the causal structure of the observations, a
contextualized directional position embedding strategy is
adopted in the encoder, that yields discriminative represen-
tations for the premise and hypothesis. Then, multiple de-
coders are cascaded to generate and progressively refine the
premise and hypothesis sentences. The prediction scores of
the sentences are used to guide cross-sentence information
flow in the cascaded reasoning procedure. Our VAR bench-
marking results show that REASONER surpasses many fa-
mous video-language models, while still being far behind
human performance. This work is expected to foster future
efforts in the reasoning-beyond-observation paradigm.

1. Introduction
Abduction · · · consists in studying facts and devising a
theory to explain them.

– Charles Sanders Peirce (1839 – 1914)

Abductive reasoning [50] was coined by Charles Sanders
Peirce, the founder of American pragmatism, around 1865.
It is inference to the most likely explanation or conclusion
for an incomplete set of observations. Abductive reasoning
is invariably employed in our everyday life; the generated
hypothesis (H) is expected to best explain what happens
before, after, or during the observation (O). Fig. 1 gives
some examples. If you see O: “the road is wet”, abduction
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Figure 1. Abductive reasoning is inference to the most likely ex-
planation for an incomplete set of observations.

will lead you to the best explanation H: “it rained earlier”
(i.e., H→O). One morning you find O: “sister leaves home
hurriedly”, then you conclude H: “she will be late for class”
(i.e., O → H). You see O1: “a boy throws a frisbee out
and his dog is running after it”. One minute later you find
O2: “frisbee is in the boy’s hand”. You can imagine H:
“the dog just caught the frisbee back” (i.e., O1→H→O2).
Although abductive reasoning has long been considered as a
core ability of everyday human cognition [39,54,56], it still
remains an untouched domain in computer vision literature.

In this article, we propose Visual Abductive Reasoning
(VAR), a novel task and dataset for investigating the abduc-
tive reasoning ability of AI systems in daily visual situa-
tions. In particular, inspired by the recent advance of causal
reasoning in NLP community (i.e., abductive text genera-
tion [5] and counterfactual story revision [51]), we explore
the use of natural language as the expression form to fully
capture the complexity of real situations. This also better re-
flects the nature of human mind, which relies on linguistic
thinking [37, 38]. VAR requires the AI systems to describe
the incomplete observation (i.e., visual premise) and write
down the hypothesis that can best explain the premise. This
allows to thoroughly evaluate the entire abduction proce-
dure, as accurate understanding of the premise is the basis
of abductive reasoning. Moreover, this can hasten the devel-
opment of this new field, by comparing and embracing ideas
for a relevant, well-established, yet different task – dense
video captioning (DVC) [29]. In contrast to DVC that fo-
cuses only on describing the observation, VAR yields a new
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visual-linguistic reasoning paradigm – inference beyond ob-
servation. Three characteristics make VAR uniquely chal-
lenging: i) VAR needs imagination to find hypotheses out-
side the observation. ii) VAR seeks to discover the plausi-
ble causal structure among the observed events. iii) VAR is
more related to the kind of human reasoning in daily situa-
tions where the information at hand is often incomplete [25]
and absolutely certain conclusions cannot be reached[5,26].

Our dataset is collected to address the characteristics of
the VAR task (cf. §3). It contains 9K examples from 3,718
videos. Each example consists of several chronologically-
ordered events, most of which are logically related. For
each event, abduction oriented description is written by peo-
ple, and its role of premise or explanation is also annotated.
When presenting each example to the AI system, the expla-
nation event is masked and premise events are visible. The
AI system is required to understand the partial, noisy obser-
vations (i.e., premise events) and construct the most plau-
sible explanatory hypothesis – accurately describing both
the observable premise events and the masked explanation
event. The examples are on average 37.8s long, with 4.17
events, and harvested from diversely event-rich sources, i.e.,
YouTube Lifestyle videos, movies and TV shows.

To lay a solid foundation for future efforts, a new model,
named REASONER (causal-and-cascaded reasoning Trans-
former), is proposed (cf. §4). Specifically, REASONER is
building upon a Transformer encoder-decoder architecture.
In the encoder of REASONER, a contextualized directional
position embedding strategy is adopted to capture causal de-
pendencies among the premise events. Hence the context
of the premise events can be gathered in a causality-aware
manner, enabling REASONER to learn discriminative repre-
sentations for the premise and explanatory hypothesis. Then
REASONER cascades a set of decoders for premise/hypoth-
esis sentence production and refinement. For each gener-
ated sentence, the associated prediction score is viewed as
the confidence and embedded into the next decoder as a
signal for inspiring more information to flow from high-
confident sentences to the low-confident ones. This leads
to a confidence-guided multi-step reasoning strategy, boost-
ing the reasoning power of REASONER eventually.

Extensive experimental results are provided in §5. First,
to comprehensively probe deep neural models on this chal-
lenging task, we establish a group of baselines based on
current top-leading DVC models. The benchmarking re-
sults on VAR dataset show that REASONER outperforms the
best competitor by a large margin, e.g., 33.44 vs 28.71 in
terms of BERT-S, but is still far behind human performance
(42.96). This shows that VAR is especially challenging for
current video-language models. Then a set of user studies
and ablative experiments are conducted for a thorough eval-
uation. For completeness, we further test REASONER on
the DVC task and confirm again its superiority.

Concurrent to us, [16] studies image-based abductive rea-
soning: AI systems are required to identify, ground, or com-
pare given inferences. Overall, we feel vision-based abduc-
tive reasoning is an intriguing problem worthy of exploring.

2. Related Work
Dense Video Captioning (DVC). Different from the clas-
sic video description task [28,45,63,64,72,75] that aims to
describe a short video clip using a single sentence, DVC is
to comprehensively describe all the events in an untrimmed
video through a multi-sentence paragraph [29]. Typical DVC
models [29,42–44,57,70,76,77] follow a two-stage, bottom-
up paradigm: first parse a video into several temporal events
and then decode a description from each detected event. As
the problem of event detection is ill-defined[10], some alter-
ative solutions either adopt a single-stage strategy to simul-
taneously predict events and descriptions [34, 67], or turn
to a top-down regime: first generate paragraphs, and then
ground each description to a video segment [10, 36]. A few
other methods [22,31,49] focus purely on generating better
paragraph captions from a provided list of events.

Both VAR and DVC are concerned with video-based
text generation; a part of our dataset is sourced from Ac-
tivityNet Captions [29], a famous DVC dataset. However,
DVC is aware of general fact based plain narrative, while
VAR addresses cause-effect chain based abductive reason-
ing. Rather than accurately understanding what is observed,
VAR further requires invoking what might have happened
or will happen. In our experiments, we involve several re-
cent DVC models as baselines for our VAR task and also
report the performance of our REASONER on the DVC task.
Context-Aware Text Generation. Our work is also related
to some context-aware text generation tasks in the NLP lit-
erature. For instance, text infilling [78], also known as the
cloze task [60], is to generate a span of missing tokens in
a text chunk, while sentence/story infilling [18, 20] aims to
generate missing sentences in long-form text. The gener-
ated tokens/sentences are expected to smoothly blend into
and fit the context syntactically [78], semantically [18, 20],
and logically [23]. Counterfactual story revision [51] re-
quires generating a new ending, given a story context altered
by a counterfactual condition. Our work draws inspira-
tion from abductive text generation [5], which investigates
abductive reasoning via a natural language inference task:
write an appropriate reason that could explain observations
described by narrative text. Unlike these language tasks
addressing inter-sentential relationship understanding only,
our VAR task requires abduction and narrative for a se-
quence of partially observable visual events. Moreover, our
VAR task setting is more general; it is not limited to the
strict form of abductive reasoning in [5], i.e., generate a hy-
pothesis (H) of what happened between the observed past
(O1) and future (O2) contexts: O1→H→O2, but involves
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O→H and H→O abductive reasoning cases.
Visual Future/State Prediction. Our work is, to some de-
gree, relevant to future prediction – a popular research
area in computer vision. In this area, a huge spectrum of
topics/tasks are put forward, including forecasting future
frames [41, 66], future features [59, 65], future actions [1,
27, 30, 53, 58], future human motions [14, 21, 40], future
human trajectories [2], future goals [13], etc. Rather than
studying the future generation at the semantic-category or
color-pixel level, event-level prediction was recently ad-
dressed in [33] and [48]. However, [33] only requires
choosing from two candidates for future event prediction,
making the take less challenging. [48] targets to describe
past, present, and future events for a single image, while
our VAR task requires making full use of the information
from a set of premise events. There are also some efforts
made towards understanding the dynamics/transformations
between states [17, 47, 71] or goal-conditioned procedure
planning [7], while either relying on a pre-defined, limited
action prediction space [7, 17], or using simulated environ-
ments [7, 17]. Our VAR task is essentially to discover and
describe the causal relations in real visual environments. It
is not constrained to a narrow view of predicting either fu-
ture events or between-state changes, but tries to infer the
missing parts in the cause-effect chains, even with some un-
related premise events. All of these together make VAR a
unique and challenging visual reasoning task.
Position Encoding in Transformers. Due to the permuta-
tion invariant nature of the attention operation, [55] learns
and encodes position embeddings into Transformer tokens.
Subsequent language-Transformers hence explore further
variations, like incorporating sinusoid prior with more pa-
rameters [9], simplifying position embeddings as learnable
scalars [52], disentangling special tokens ([CLS]) [24], etc.
Some recent vision-Transformers [8, 69] consider direc-
tional relative distance between 2D positions, and/or the in-
teractions between visual tokens and position embeddings.
REASONER encodes the relations of premise events in a
directional and contextualized manner for causal relation
modeling, and leverages the prediction scores of descrip-
tions for confidence-guided multi-step reasoning.

3. Our VAR Task and Dataset
3.1. VAR Task

Our visual abductive reasoning (VAR) task is designed
to test the abductive reasoning ability of machine intelli-
gence in everyday visual environments E . Formally, given
a video example V ⊂ E that contains a set of N events,
i.e., V = {O1, · · ·, On−1, H,On, · · ·, ON−1}, which are
logically related and chronologically organized, we denote
{On}N−1

n=1 as premise events – partial observation of E , and
H as explanation event that can best explain the premise
events. Conditioning on the past and/or future visual con-

Premise (E1:         , E3:         ) ,
Premise (E1:         , E2:         ) , Explanation (E3:         )

Explanation (E2:         )

Premise (E2:         , E3:         ) , 

Legal Example

Illegal Example

E1: A man falls off a running horse.
E2: The man lies on the ground and 
      gets hurt.

E3: The man is taken to the hospital.

Event Descriptions 

Explanation (E1:         )

Event1 (E1) Event2 (E2) Event3 (E3)

Figure 2. An illustrative example of our VAR dataset (§3.2).

text {On}N−1
n=1 only, the AI system is asked to describe these

premise events, and, more importantly, infer and write down
the most plausible explanatory hypothesis for the premise.
Naturally, such a hypothesis is expected to be consistent
with the content of the explanation event H . The abduction
ability can thus be thoroughly examined by assessing the
quality of both the premise-based descriptions and explana-
tory hypothesis sentences – adequent understanding of the
premise is a necessary prerequisite for abductive reasoning.

3.2. VAR Dataset

Guided by the above task setup, we build a large-scale
dataset for VAR. Fig. 2 depicts an illustrative example.

3.2.1 Dataset Collection
Data Source. VAR dataset is collected from three sources:
• 23,457 Youtube lifestyle Vlog videos from ActivityNet

Captions [29] and VLEP [33] datasets. These videos
cover rich social scenarios and human activities.

• 13,799 TV show and movie videos from TVC dataset [32]
and a famous Youtube channel, Fandango MovieClips1.
These videos are key scenes in popular TV shows and
films containing wide-ranging genres.

YouTube videos include diverse daily events, but last rel-
atively short durations with short intervals (about min-
utes). While TV shows and movie videos usually have lim-
ited scenarios, they contain rich artificial cause-effect chains
in their story-lines and last relatively long durations with
long intervals (spanning even years). Thus gathering these
videos together makes our dataset a good testbed for VAR.
Data Cleaning. The collected videos are accompanied by
event labels, and videos containing only one single event are
first dropped. Then, for each of the rest videos, three human
experts are invited to examine if there exists cause-effect re-
lations between the video events. We only preserve quali-
fied ones with more than two votes in the affirmative, finally
resulting in 3,718 videos in total for further annotation.

3.2.2 Dataset Annotation
For each video in VAR, the annotation contains three steps:
Step 1: Event Type Annotation. For an event E of video
V , if E can well explain some other events in V; or in other
words, if we can imagine that E could happen by only con-
sidering the other events V/E, event E will be labeled as

1https://youtube.com/user/movieclips
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Split #Example #Event #Video

Train 7,053 12,582 3,000

Val 460 860 205

Test 1,093 2,044 513
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Table 1 & Figure 3. Summative statistics of VAR dataset (§3.2.3).

explanation and the other events V/E will be labeled as
premise. Fig. 2 gives an example. For the video containing
three events: E1 “a man falls off a running horse”, E2 “the
man lies on the ground and gets hurt”, E3 “the man is taken
to the hospital”, we can derive two legal examples for our
VAR dataset: {premise (E1, E2), explanation (E3)}, and
{premise (E1, E3), explanation (E2)}.
Step 2: Abductive Reasoning Aware Description Anno-
tation. Although some videos are collected with event-level
descriptions/plot summaries, we re-annotate all the events
with abductive reasoning oriented descriptions. Specifically,
instead of capturing all the visual details in video caption-
ing, like {“a boy in a black jacket plays frisbee with his
white dog in a park”, “the dog catches the blue frisbee and
runs back”, “the boy smiles, takes the frisbee and pats the
dog}, our descriptions are only aware of describing the vi-
sual content related to abductive reasoning, like {“a boy
throws a frisbee out and his dog is running after it”, “the
dog catches the frisbee back”, “the boy gets the frisbee”}.
Step 3: Validation. Finally, each annotated example is ex-
amined by three verifiers: the verifiers are shown with only
the premise events and language-based explanation (i.e., de-
scription on the explanation event), and vote for: “Is the ex-
planation sound?”. If an example wins majority approval, it
will be accepted; otherwise, it will be relabeled or dropped.

3.2.3 Dataset Features and Statistics
To offer deeper insights into our VAR dataset, we next dis-
cuss its distinctive properties and detailed statistics.
Abductive Reasoning Orientated. VAR is the first dataset
that underpins machine intelligence study of abductive rea-
soning in visual daily scenarios. It is designed to reason
beyond visual premise for a plausible explanation, distin-
guishing it from existing video-language datasets/tasks.
Diversity. To capture diverse cause-effect relations and ab-
duction cases, our VAR dataset covers i) various daily
events/activities, e.g., work, leisure, household; ii) rich sce-
narios, e.g., lifestyle recording, scripted drama; iii) different
durations and intervals, ranging from minutes to years.
Large-Scale. As shown in Table 1, VAR consists of 8,606
data examples, collected from 3,718 unique videos that span
over 153 hours in total. On average, each video in VAR con-
tains 4.17 events that last 37.8 seconds, resulting in a total
of 15K corresponding descriptive sentences of 13.5 words.
Dataset Split. We separate the VAR dataset into train/
val/test sets and arrive at a unique split of 7,053/460/
1,093 examples with no overlapping video between val/
test and train sets. We provide more detailed statistics

in both Table 1&Fig. 3 and the supplement.

4. Methodology
Problem Statement. Given a videoV withN temporally or-
dered events, i.e., V={O1, · · ·, On−1, H,On, · · ·, ON−1},
the premise events, i.e., {On}N−1

n=1 , and explanation event,
i.e., H , are logically related. The AI system is only pre-
sented with a partially observable version of V , i.e., Ṽ =
{O1, · · ·, On−1, H̃, On, · · ·, ON−1}, where H̃ is obtained
by setting all the pixel values of H as zero. The AI system
is required to not only describe the premise, but also reason
about the most likely explanation for the premise, i.e., gen-
erateN sentences S={SO

n }N−1
n=1 ∪SH that describe the con-

tent of the N events in V , while conditioning on Ṽ only:

P (S|Ṽ) = P (SH |Ṽ)
∏

n
P (SO

n |Ṽ)

=
∏

l
P (wH

l |wH
<l, Ṽ)

∏
n

∏
l
P (wOn

l |wOn
<l , Ṽ);

(1)

where wl is the l-th word in a generated sentence S ∈ S.
It is worth mentioning that, when H =∅, our VAR task is
degraded into a classic DVC task [29] which focuses only
on describing the content of observed events {On}N−1

n=1 .
Core Idea. Building upon a Transformer encoder-decoder
architecture (Fig. 4), our REASONER is aware of two core
challenges posed by the VAR task: i) inferring cause-effect
relations, and ii) reasoning beyond the partial observation.
To address i), a contextualized directional position embed-
ding strategy is adopted to capture causal relations residing
in the input video Ṽ , leading to a Causality-aware encoder
(§4.1). To accommodate ii), a confidence-guided multi-
step reasoning strategy is developed, i.e., utilize the predic-
tion scores of sentences to guide cross-sentence information
flow, yielding a cascaded-reasoning decoder (§4.2).

4.1. Causality-Aware Encoder

For notational simplicity, we redefine the partially obser-
vable video Ṽ={O1, · · ·, On−1, H̃, On, · · ·, ON−1} as Ṽ =
{En}Nn=1, where Eh refers to the masked explanation
event H̃ , and {En} ̸=h indicates the visible, premise events
{On}N−1

n=1 . Let us denote the initial features of theN events as
{En∈ Rd}Nn=1. For each premise event En ̸=h, correspond-
ing feature En ̸=h is obtained by aggregating the visual fea-
tures of its frames. For the masked explanation event Eh,
we set Eh=0d. The Causality-aware encoder is to leverage
the context from the past and/or future observable events
{En}̸=h to reinforce their own representations as well as
posit a meaningful representation for the most likely ex-
planatory hypothesis, i.e., the masked explanation event Eh.

The attention operation is the core of Transformer:

A∼ XW q(XW k)⊤, Y = softmax(A)XW v. (2)

where the output Y ∈ RN×d is with the same length N
and embedding dimension d as the input X ∈ RN×d, and
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Figure 4. Network architecture of REASONER. See §4 for more details.

Figure 5. Illustration of our contextualized directional position
embedding U (§4.1). Darker color indicates larger attention.

W q,k,v∈Rd×d project the input into query, key, and value
matrices, respectively. As the attention computation is in-
variant with respect to reordering of the inputs, explicit po-
sition encoding is widely adopted, in two typical ways: i)
Absolute position encoding [61]: each position n is assigned
an embedding, i.e., Un=FAbs(n)∈R1×d, and the position
embeddings are directly added to the input, i.e., X←X+U .
FAbs(·) can be a linear projection [12], a sinusoidal function
[61], etc. ii) Relative position encoding [55]: the position
embeddings are constructed considering the pairwise rela-
tionships between positions, i.e., Unm=FRel(n,m)∈R.
Contextualized Directional Position Embedding. Since
the VAR task is essentially aware of the plausible chains of
cause-effect, the relative ordering of the input events mat-
ters. We continue in the vein of relative position encod-
ing [55, 69] and adopt a contextualized directional position
embedding strategy, i.e., Unm=FRel(n,m,Xn)∈R:

FRel(n,m,Xn)=XnR
⊤
ℓ(n,m),

ℓ(n,m)=n−m+N,
(3)

where R∈R(2N−1)×d is a learnable matrix, and ℓ(·, ·) is a
directional indexing function, i.e., ℓ(n,m) ̸= ℓ(m,n). The
directional projection FRel is conditioned on the visual con-
text, i.e., Xn, since the causal dependency between events
is typically related to specific content, e.g., when we see
people are laughing, we tend to look back only a short time
into the past to figure out the reason; when we see a man
falls off his horse, we worry about whether he gets hurt and
the impact on his future life. Some more visual examples re-
garding our contextualized directional position embedding
strategy can be found in Fig. 5. Then, U∈RN×N is injected
by manipulating on the attention matrixA∈RN×N:

Anm ∼ XnW
q(XmW k)⊤+Unm. (4)

We further set Anh = 0 to encourage leveraging the con-
text from the observable events {En} ̸=h to infer the masked
explanation event Eh, rather than vice versa. The Causality-
aware encoder in REASONER is therefore achieved by

stacking several Transformer encoder blocks [61] with our
contextualized directional position embedding strategy. We
denote the output event representations as {Ṽn∈Rd}Nn=1.

4.2. Cascaded-Reasoning Decoder

With the discriminative representations {Ṽn}Nn=1 of the
observable premise events {On}N−1

n=1 as well as the explana-
tory hypothesis H̃ , the cascaded-reasoning decoder first
generates a descriptive sentence for each event/hypothesis
individually, and then refines all the sentences in a compre-
hensive, confidence-guided, and step-by-step manner.
Initial Description Generation. For each event representa-
tion Ṽn ∈Rd, a multi-modal, masked Transformer decoder
is first adopted for initial description generation:

[Ṽ 0
n ,H0

n] = D0([Ṽn,Hn]), (5)

where Hn∈RLn×d is a set of Lnwords embeddings. During
training, it is computed over the groundtruth description,
i.e., ŜEn, and masked attention [61] is adopted to prevent
the leakage of future words. During inference, it is recur-
rently generated. Learnable modal-type embeddings [11,
31] are also added into the input yet omitted for brevity. By
fusing visual and linguistic representations as the input, D0

conducts cross-modal reasoning, and hence generates im-
proved event representation, i.e., Ṽ 0

n ∈ Rd, and updated
visual-linguistic state, i.e., H0

n ∈ RLn×d, for each event
En. Then a captioning head is adopted to map H0

n into
word distribution. The probability of l-th word is given as:

P (wEn
l |wEn

<l , Ṽ) =P (wEn
l |wEn

<l ,H
0
n)

=softmax(H0
n(l)Ω

⊤),
(6)

where Ω∈R|Ω|×d is the embedding matrix of the word vo-
cabulary Ω, and H0

n(l)∈Rd denotes l-th vector of H0
n. As

standard, the description S0,En = {wEn
l }

Ln

l=1 for event En

is generated by greedy prediction, and we set the averaged
prediction score as the confidence: c0n=

1
Ln

∑
iP (wEn

l ).
Iterative Description Refinement. To better respond to
the fundamental challenge of VAR task in reasoning be-
yond observation, we further cascade several Transformer
decoder blocks over D0 for iterative description refinement.
This allows REASONER to make full use of both visual and
linguistic context from the past and/or future observable
events, and improves the explanatory hypothesis in a step-
by-step manner, boosting the reasoning ability eventually.
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  Sentence from   Sentence from

time

: He is using a 
brush to polish the 
wood surface. 

: He is using a brush 
to cover each picket in a 
stain.  

: He then wipes 
the table with a towel. 

: The picket is stained 
and is waiting to dry.

DKD0E1

Eh

Figure 6. Sentences from the cascaded-reasoning decoder (§4.2).

Specifically, our whole refinement procedure can be de-
fined in a recursive, confidence-guided form:

[Ṽ k
n ,Hk

n]=Dk([Ṽ k−1
n ,Hn, {hk−1

n }Nn=1]), k={1, 2, · · ·,K}

P (wEn
l |wEn

<l , Ṽ)=P (wEn
l |wEn

<l ,H
k
n)

=softmax(Hk
n(l)Ω

⊤),

(7)

where Dk refers to k-th refinement module and all the
refinement modules are weight-sharing Transformer de-
coders; hk−1

n ∈Rd indicates a condensed representation of
Hk−1

n ∈ RLn×d: hk−1
n = maxpool(Hk−1

n ). In this way,
each Dk can leverage inter-sentential relationship in previ-
ously generated descriptions {hk−1

n }Nn=1 for refinement and
better reason about the explanatory hypothesis. Moreover,
we introduce the event confidence, i.e., {ckn}Nn=1, as a kind
of bias into the refinement procedure: leverage the informa-
tion from those more confident descriptions to help improve
the predictions with relatively lower confidence. Without
causing ambiguity, we denote X as the input of the decoder
Dk, i.e., X=[Ṽ k−1

n ,Hn, {hk−1
n }Nn=1] and omit the super-

script k. For each input “token” Xi, its confidence score
cni is the one of its sourced event Eni , and we normalize
{cn}Nn=1 over all the N events. Analogous to Eq. 4, the at-
tention computation in Dk is modified as:

Aij ∼ XiW
q(XjW

k)⊤+ Fc
Rel(cni , cnj ),

Fc
Rel(cni , cnj ) = rc

ι(cni
,cnj

),
(8)

where the learnable vector rc∈R2B−1 can be viewed as a
bucket to store the relative confidence weight; and the di-
rectional indexing function ι(·, ·) is given as ι(cni

, cnj
) =

⌈cni
·B⌉−⌈cnj

·B⌉+B. With such confidence-guided decod-
ing scheme, descriptions are refined by intelligently gath-
ering context from more reliable sentences, while ignoring
noisy cues from less confident ones. By stacking several
such decoders {Dk}k, outputs will be progressively im-
proved (Fig.6). Related experiments can be found in §5.2.

4.3. Training Objective
Given the groundtruth sentences {ŜEn}Nn=1 correspond-

ing to the N events {En}Nn=1 of video Ṽ , REASONER is
trained by minimizing the negative log-likelihood over the
outputs of the cascaded-reasoning decoder {Dk}Kk=0:

LMain = −
∑K

k=0

∑N
n=1

∑Ln
l=1 P (ŵEn

l |ŵEn
<l ,H

k
n), (9)

where ŜEn={ŵEn
l }

Ln

l=1. As the teacher forcing scheme [68]
is used for training, Hn in Eq. 5 and 7 is embedded over
one-hot encoded groundturth words {ŵEn

l }l. We further

adopt a hypothesis reconstruction based optimization crite-
rion, to provide the encoder with more explicit supervision
signals for explanatory hypothesis reasoning:

LAux = ∥FProj(Ṽh)−FProj(V̂h)∥2, (10)

where Ṽh and V̂h are embeddings for the explanatory hy-
pothesis obtained from the masked and original videos, i.e.,
Ṽ and V , respectively, and FProj is a projection head, based
on a small multi-layer perceptron. This auxiliary training
objective forces REASONER to “imagine” an effective rep-
resentation Ṽh that better aligns with the original content of
Eh. V̂h is from the momentum version of the encoder.

4.4. Implementation Details
Details on implementing the algorithm are as follows:

• Detailed network architecture: The encoder (§4.1) of
REASONER is implemented as two Transformer encoder
blocks, and each decoder module (§4.2), i.e., Dk, is imple-
mented as two Transformer masked decoder blocks. They
have d = 768 hidden size and 12 attention heads. We use
a bucket size B=10 to quantize confidence scores (Eq.8).
We stack a total of K=3 decoders for cascaded reasoning.
• Data preprocessing: For each video event, action/appear-
ance features are pre-extracted using ActivityNet [6] pre-
trained ResNet200[15]/BN-Inception [19], as in [31,67,77].
We uniformly sample 50 frames per event and concate-
nate their features as the corresponding event representation
which is denoted in a vector form in §4.1-4.3 for ease of no-
tation. Sentences are padded or truncated into 20 words.
• Training/Inference: For the first decoder D0, we adopt
scheduled sampling [4] to make the later decoders fully
trained. The coefficient between the main and auxiliary
training objectives is set as 0.2. During inference, the final
descriptive sentences are generated from the last decoder
DK , using deterministic decoding, i.e., greedy search. All
the experiments are conducted on 2 NVIDIA GeForce RTX
2080 Ti GPUs with a 11GB memory per-card.

5. Experiments
We first provide benchmarking results on our VAR dataset

(§5.1). Then, to verify the efficacy of our core model de-
signs, we conduct a set of diagnostic studies (§5.2). Finally,
for comprehensive evaluation, we test our REASONER on
the classic, dense video captioning (DVC) task [29] (§5.3).

5.1. Performance on VAR Task
Competitor. We benchmark five top-leading DVC models
on VAR to reveal the abductive reasoning ability in existing
techniques. They include three Transformer-based [9, 31,
77] and two RNN-based [67, 70] models, which are trained
on train set of our VAR dataset with pre-provided event
segments using their original training protocols.
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Premise Event Explanation Event
Method Encoder Decoder

BLEU@4 METEOR ROUGE CIDEr BERT-S BLEU@4 METEOR ROUGE CIDEr BERT-S

Human - - 13.26 21.27 39.47 155.72 45.33 11.35 19.36 36.92 147.79 40.59
VTrans [77] CVPR18 Trans. Trans. 4.20 9.94 21.13 31.09 29.05 0.71 6.92 19.12 7.11 22.13

MFT [70] ECCV18 RNN RNN 3.93 9.69 20.81 30.96 27.41 1.81 7.16 19.16 17.67 25.90
Trans-XL [9] ACL19 Trans. Trans. 3.98 9.53 21.02 30.87 29.12 2.96 7.51 20.94 24.54 27.23

MART [31] ACL20 Trans. Trans. 3.74 9.48 21.17 29.22 29.03 2.86 7.47 20.87 24.05 27.77
PDVC [67] ICCV21 Trans. RNN 4.28 9.95 21.19 33.59 29.37 3.00 8.54 20.71 25.14 27.80

REASONER Trans. Trans. 5.03 ↑0.72 10.75 ↑0.80 24.81 ↑3.62 38.27 ↑4.68 34.88 ↑5.51 3.44 ↑0.44 9.05 ↑0.49 22.89 ↑1.95 30.75 ↑5.61 30.64 ↑2.84

Table 2. Quantitative results on the test set of our VAR dataset. ‘Trans.’ indicates Transformer-based architecture. See §5.1 for details.

Vtransformer        : [A young girl walks around to the pool and jumps.] [A man is seen speaking to the camera and 
begins playing the instrument.] [A man is talking to the camera.]
MART        : [A female gymnast walks up to a beam, ready to perform.] [She does several flips and tricks.] [She 
dismounts, throwing her arms into the air.]
PDVC        : [Woman is standing at the end of a diving board and then she falls off of the diving board.] [Jumps off 
of the diving board.] [Girl is now standing on the trampoline and is shown smiling and talking.]
                    (Ours): [A woman stands on a diving board and stretches out on a pool.] [The diver jumps off the 
diving board and does a flip into the water making a small splash.] [She smiles and waves hands on the podium.]
Groundtruth: [A woman walks on a springboard and jumps in the air.] [She then flips and dives in the water with 
a small splash.] [She stands on the podium waving her hands to the audience.] 

Premise (E1)Premise (E1) Explanation (Eh)Explanation (Eh) Premise (E3)Premise (E3)Premise (E1) Explanation (Eh) Premise (E3)

REASONER

[67]

[31]

[77]

Figure 7. Qualitative comparison (§5.1) of REASONER and [31, 67, 77] on VAR test.

Premise Event
Prefer A Neutral Prefer B

REASONER 34.2 41.4 15.9 PDVC [67]
REASONER 16.0 35.3 39.5 Human

Explanation Event
Prefer A Neutral Prefer B

REASONER 29.9 13.7 10.4 PDVC [67]
REASONER 8.9 22.1 64.8 Human

Table 3. User study of pairwise model pref-
erence (%). “Neutral” means A and B models
are “equally good”. Percentage of “equally
bad” are omitted. See §5.1 for details.

Evaluation Metric. Five well-known automated metrics,
i.e., BLEU@4 [46], CIDEr [62], METEOR [3], ROUGE-
L [35], and BERTScore [74], are used for evaluation.

Quantitative Result. Table 2 summarizes the benchmarking
results on the test set of our VAR dataset. For detailed
analysis, we report the performance over the observable
premise events and invisible explanation events separately.
Moreover, to probe the upper bound of model performance,
we evaluate human performance by asking ten volunteers
to perform VAR. Specifically, we randomly sample 500 ex-
amples from unique videos in VAR test. The volunteers
are only provided with partially observable videos and re-
quested to write down the corresponding descriptions and
hypotheses. The human-written descriptions and hypothe-
ses are evaluated by the automatic metrics, and evaluation
scores are shown in the first row of Table 2. Several es-
sential conclusions can be drawn from Table 2: i) Humans
are good at VAR; although human-written hypotheses for
explanation scored lower than the descriptions for the vi-
sual premise, they are still very plausible in absolute terms.
ii) All traditional DVC models [9, 31, 67, 70, 77] struggle
with VAR that humans excel at. Their generated hypothe-
ses are usually untrusted, and far worse than their created
premise narratives. This suggests that existing video-based
language generation models are not good at reasoning be-
yond observation. iii) Our REASONER outperforms other
AI models [9,31,67,70,77], in both explanatory hypothesis
reasoning and premise description, demonstrating the effec-
tiveness of our whole model design. Compared to other AI
models, REASONER also yields a relatively smaller perfor-
mance drop, from premise description to hypothesis reason-
ing. This suggests that REASONER can make better use of
the context of observed events to infer the explanatory hy-

pothesis. iv) Although our REASONER shows more promis-
ing results, there still remains a significant gap from human
performance, that is waiting for more sophisticated abduc-
tive reasoning models to conquer.

User Study. For comprehensive performance assessment,
we further carry out a subjective evaluation, based on pair-
wise model comparison. Specifically, we randomly sample
500 examples from unique videos in VAR test. Three vol-
unteers are presented the outputs of a pair of systems (i.e.,
REASONER vs PDVC [67] or human) on the sampled exam-
ples, and requested to do a comparison about which one is
better, or “equally good” or “equally bad”. The human pref-
erence results are collected in Table 3, and again the statis-
tics for premise events and explanation events are presented
separately. The human subjective judgments are generally
accordant with the trends reflected by Table 2. Specifically,
the human pairwise comparison results confirm the superi-
ority of REASONER over PDVC, the second-best model in
Table 2: REASONER receives 34.2 and 29.9 percent prefer-
ence votes on the premise description and explanatory hy-
pothesis, respectively. However, human-written hypotheses
and descriptions are much more favorable than our results,
showing again VAR is a very challenging task.

Qualitative Analysis. A test video example in VAR dataset
is shown in Fig. 7. It contains the explanatory hypotheses
and premise descriptions from our REASONER and other
competitors [31, 67, 77] as well as groundtruth sentences.
We can find that our REASONER is able to discover and cor-
rectly describe the cause-effect chain, and hence generate a
plausible hypothesis, i.e., making a small splash, that well
explains the observed events, i.e., standing on the podium.
In contrast, other competitors typically produce unsatisfac-
tory results, especially for the explanatory hypothesis.
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5.2. Diagnostic Experiment
A set of ablative studies is conducted on VAR
test for indepth analyzing each component
in our REASONER, using BLEU@4, CIDEr and
BERT-S metrics, averaged over all the events.
Key Component Analysis. We first study the
efficacy of core model components. The first
row in Table 8a gives the performance of a ba-
sic Transformer model, which simply uses ab-

Causality-Aware Cascaded-Reasoning# Encoder (§4.1) Decoder (§4.2) BLEU@4 CIDEr BERT-S

1 3.39 30.04 26.35
2 ✓ 3.91 32.32 29.85
3 ✓ 4.05 33.71 29.94
4 ✓ ✓ 4.66 36.13 33.44

(a) Key components

Un/Unm

(§4.1) Formulation BLEU@4 CIDEr BERT-S

Absolute Un=FAbs(n) 4.20 33.27 29.95
Directional Unm=FRel(n,m) 4.35 34.25 31.79

Contextualized
Directional Unm=FRel(n,m,Xn) 4.66 36.13 33.44

(b) Position embedding strategy

Dk (§4.2) B@4 CIDEr BERT-S

K = 0 3.91 32.72 29.50
K = 1 4.34 34.89 31.60
K = 2 4.61 35.53 32.57
K = 3 4.66 36.13 33.44
K = 4 4.66 36.05 33.51
K = 5 4.60 35.90 33.32

(c) Cascaded reasoning

Fc
Rel (Eq. 8) BLEU@4 CIDEr BERT-S

4.45 35.22 33.17
✓ 4.66 36.13 33.44

(d) Confidence embedding
Loss (§4.3) BLEU@4 CIDEr BERT-S

LMain 4.40 35.51 32.83
LMain+LAux 4.66 36.13 33.44

(e) Training objective

Table 4. A set of ablation studies (§5.2) on the test set of our VAR dataset.

solute position embedding in the encoder and only adopts
one single decoder, i.e.,D0. The results in the first two rows
reveal that contextualized directional position embedding
(§4.1) consistently improves the performance over the three
metrics. Moreover, from the first and third rows we can
observe that confidence-guided multi-step reasoning (§4.2)
indeed boosts the performance. By further considering the
scores in the last row, we can safely conclude that combin-
ing the two model designs together leads to the best results.
Contextualized Directional Position Embedding. Next,
to thoroughly study the impact of our contextualized direc-
tional position embedding strategy (§4.1), we report the per-
formance of two alternatives in Table 8b. Specifically, “ab-
solute” refers to the widely used, learnable absolute position
embedding, while “directional” indicates learning relative
position embedding without considering any input context.
As seen, our contextualized directional position embedding
is significantly better than the two alternatives.
Cascaded Reasoning. Table 8c reports the performance
with different steps of our cascaded reasoning (§4.2), i.e.,
K = {0, 1, · · ·, 5}. When K = 0, only one decoder D0 is
adopted and the CIDEr score is just 32.72. However, after
adding an extra refinement decoder, the score is greatly im-
proved to 36.13. The increasing trend is gradually saturated
until K > 3. We therefore use K =3 as our default setting
for balancing performance and inference efficiency.
Confidence Embedding. We inject sentence scores into the
cascaded reasoning for guiding information flow (Eq. 8). As
shown in Table 8d, removing confidence embedding hinders
the performance, e.g., 36.13→35.22 in terms of CIDEr.
Training Objective. Finally we examine our training ob-
jective design (§4.3). Table 8e demonstrates a beneficial
impact of the hypothesis reconstruction loss LAux (Eq.10).

5.3. Performance on DVC Task
For completeness, we report performance on DVC task.

Dataset. As a gold-standard dataset for DVC, ActivityNet
Captions [29] contains a total of 20k untrimmed videos

Method BLEU@4 METEOR CIDEr

HSE [73] ECCV18 9.84 13.78 18.78
Trans-XL [9] ACL19 10.39 15.09 21.67
VTrans [77] CVPR18 9.75 15.64 22.16
MART [31] ACL20 10.33 15.68 23.42
PDVC [67] ICCV21 11.80 15.93 27.27

REASONER 12.45 ↑0.65 16.43 ↑0.50 30.08 ↑2.81

Table 5. Quantitative results (§5.3) on the ae-val set of Activi-
tyNet Captions [29]. The scores are mainly borrowed from [67].

(10,009/4,917/5,044 for train/val/test). Each video
lasts 120s and is annotated with 3.65 temporally-localized
sentences on average. Following [31,57,77], val set is fur-
ther split into two subsets: ae-val with 2,460 videos and
ae-test with 2,457 videos without overlapping.
Evaluation Metric. As in [31,57,77], BLEU@4 [46], ME-
TEOR [3], and CIDEr [62] metrics are used for evaluation.
Quantitative Result. REASONER is trained on the train
set and evaluated on ae-val set in paragraph-level. Since
we focus only on descriptive quality, the sentences are gen-
erated from a provided list of events, like in [22,31,49]. As
shown in Table 5, REASONER outperforms state-of-the-art
DVC models over all the metrics, e.g., +2.81 performance
gain in CIDEr. This proves the strong reasoning ability of
REASONER and emphasizes the value of our VAR task in
promoting innovations of powerful video-language models.

6. Conclusion
We introduce VAR (Visual Abductive Reasoning) – a

novel task that investigates the abductive reasoning abil-
ity of machine intelligence in the visual world. We estab-
lish REASONER, a new Transformer based visual-language
model, which captures the context from visual premise in a
causality-aware manner, and generates premise descriptions
and hypothesis sentences in a confidence-guided, step-by-
step fashion. REASONER shows promising results on both
VAR and dense video captioning tasks. We also observe a
remaining large headroom for AI systems in VAR, which is
expected to encourage exciting avenues in the future.
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