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Abstract

We propose Path-CNN, a method for the segmentation

of centerlines of tubular structures by embedding convolu-

tional neural networks (CNNs) into the progressive minimal

path method. Minimal path methods are widely used for

topology-aware centerline segmentation, but usually these

methods rely on weak, hand-tuned image features. In con-

trast, CNNs use strong image features which are learned

automatically from images. But CNNs usually do not take

the topology of the results into account, and often require

a large amount of annotations for training. We integrate

CNNs into the minimal path method, so that both techniques

benefit from each other: CNNs employ learned image fea-

tures to improve the determination of minimal paths, while

the minimal path method ensures the correct topology of the

segmented centerlines, provides strong geometric priors to

increase the performance of CNNs, and reduces the amount

of annotations for the training of CNNs significantly. Our

method has lower hardware requirements than many re-

cent methods. Qualitative and quantitative comparison with

other methods shows that Path-CNN achieves better perfor-

mance, especially when dealing with tubular structures with

complex shapes in challenging environments.

1. Introduction

Topology-aware centerline segmentation for tubular

structures plays a crucial role in computer vision. One of

its most important application areas is the quantitative anal-

ysis of roads and rivers in satellite images for measurement,

planning, or navigation. These are challenging tasks due to

the complex shape of roads and rivers, and the high vari-

ability of their environment.

When using common methods for object segmentation

for this task, usually a binary mask of the tubular structure

is computed in the first step. After that, post-processing, of-

ten based on heuristics, is necessary, in order to determine

the centerline and to deal with small gaps on the tubular

structure due to noise or image clutter. In contrast, min-

imal path methods based on Dijkstra’s algorithms [7] or

(a) Input image (b) Segmented centerlines

Figure 1. Short cuts due to complex centerline geometry. (a) The

input is a satellite image of roads. (b) Start point (magenta box)

and end point (cyan circle) of a road are given. Results of a pre-

vious method using only hand-tuned tubularity measure (yellow

line) and two methods using CNNs (blue and green lines) contain

short cuts. Our approach achieves the correct centerline (red line),

although it is much longer than the results with short cuts.

the fast marching method [5] provide a more elegant solu-

tion. As in most minimal path methods, we assume that the

start point xs and end point xe of the centerline are given,

and focus on the determination of the path itself. Often,

the start and end points are automatically obtained using

application specific methods, such as [19]. Minimal path

methods allow finding the best path as the global optimum

of a cost function, while inherently enforcing strict line-

topology, i.e., the result is always a sequence of coordinates

of points on the centerline. Also, small gaps on the path

can be completed automatically. However, minimal path

methods usually utilize hand-tuned image features, such as

differential measures [8,13], to distinguish between tubular

structures and the background. Such features are efficient to

compute, but they are relatively weak and may lead to short

cuts for images containing challenging environments. With

convolutional neural networks (CNNs), stronger image fea-

tures can be extracted automatically from images. Although

these features alone cannot ensure the topology of the cen-

terlines, they can be used to better classifying the pixels and

thus improve the results of minimal path methods. How-
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ever, CNNs often require large amounts of annotated train-

ing data, which can be expensive to obtain. If only limited

annotations are available, often CNN-based methods can-

not be fully trained, and thus they also result in short cuts.

Examples of short cuts are shown in Fig. 1.

In this work, we propose a novel method, Path-CNN,

to embed CNNs into the progressive minimal path method

[15], so that these two techniques operate alternately and

benefit from each other: On the one hand, we use CNNs to

learn image features automatically so that a wider variety

of short cuts can be detected, and therefore minimal paths

can be better determined. Instead of learning features for

isolated pixels as in most previous approaches, our CNNs

learn features for rectified patches along paths. On the other

hand, the progressive minimal path method not only ensures

the line-topology of the results, but also provides strong ge-

ometric priors, which are used in turn to reduce the num-

ber of training samples for CNNs significantly. Although

we only use centerlines as training data, our method not

only determines centerlines, but also produces binary seg-

mentation masks for tubular structures. To the best of our

knowledge, this is the first approach to employ such geo-

metric priors for CNNs to segment centerlines of tubular

structures. Compared with most other approaches based on

deep learning, our method has lower requirements not only

for the amount of annotations and but also for hardware.

2. Related Work

In this section, we review the two main components of

minimal path methods: Image features and minimal path

computation. We also emphasize the differences between

our method and other recent methods for road extraction.

Image features Minimal path methods often use tubular-

ity measures as image features. Such measures can be in-

terpreted as the probability that a pixel belongs to a tubu-

lar structure. Widely used features, such as Hessian-based

measures [8, 23] or flux-based features [13, 27], are hand-

tuned. There are also learning-based features. For exam-

ple, [24] uses features based on decision trees, and [18]

uses a CNN. However, these features are learned for iso-

lated pixels. Also, these features are static, i.e., they are

computed before the minimal path computation starts, and

remain constant thereafter. In contrast, we use path-based

features. While being stronger than their pixel-based coun-

terparts, such features can only be computed dynamically,

i.e., during the minimal path computation.

Minimal path computation There are different methods

to overcome short cuts when computing minimal paths.

With domain-lifting, additional dimensions are introduced

into the parameter space to represent more features such as

line width or orientation [14,20], but the computational cost

increases significantly with the dimensionality. In [3,4], fast

marching methods with anisotropic features are proposed,

but such features require more complex numerical schemes

than commonly used isotropic features. We use Dijkstra’s

algorithm, in which both anisotropic and isotropic features

are used in the same way, without the need for further nu-

merical schemes. In [28], more complex graph structures

are used to represent higher-order constraints such as curva-

ture or torsion, but this results in high computation time and

limited feature types. In [2, 12], additional keypoints are

inserted heuristically, and progressive minimal path meth-

ods [4,15] employ path-based features computed on-the-fly.

But these approaches still rely on hand-tuned features based

on appearance or geometry. Also, the path-based features in

these approaches are still derived from pixel-based features.

In contrast, we use dynamic features which are learned di-

rectly using paths. Furthermore, our method can handle a

wider variety of short cuts in a uniform way.

Methods for road extraction For road extraction us-

ing satellite images, there exist recent approaches (e.g.,

[1, 16, 19]). However, there are important distinctions be-

tween these methods and ours. First, existing methods usu-

ally require large amounts of training data. For example,

[19] uses one of the largest public datasets of road images

[1], and employs U-Net to obtain features for further re-

finement. In contrast, by combining minimal path methods

and CNNs, our method requires much less annotated train-

ing data than U-Net and most other architectures, i.e., our

method performs better if the available annotation is very

sparse. Second, many models, such as [1], have relatively

high requirements for hardware, whereas our model can be

trained and deployed efficiently using only 2GB GPU mem-

ory. Third, previous methods were only applied to extract

roads in urban or suburban areas, while our method has

been used also for roads in other environments and rivers.

Furthermore, although our method is trained only with cen-

terline annotations, it also produces a classification of each

pixel in the image, which corresponds to a binary segmenta-

tion. In this way, further properties of the tubular structures,

such as width or area, can also be determined.

3. Minimal Path Framework

Segmentation of tubular structures can be formulated

naturally using the minimal path framework, which re-

lies on Dijkstra’s algorithm in discrete cases, or the fast

marching method in continuous cases. Our approach fo-

cuses on Dijkstra’s algorithm. Let image I induce a graph

G = (V, E), where V and E are the sets of vertices and

edges, respectively. Each vertex corresponds to a pixel

in I , and vertices of neighboring pixels are connected by

edges. Function w uses image features to assign positive

weights to the edges. A path γ is a sequence of vertices

{v0, v1, . . . , v|γ|}. Given a start point xs and an end point
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Algorithm 1: Unified Dijkstra’s algorithm.

Input: Start point xs, end point xe, image I , graph

G = (V, E), initial edge weights wini,

Output: predecessor function π
1 for each x ∈ V do

2 π[x]← none; d[x]←∞;

3 d[xs]← 0; Q ← V; S ← ∅;

4 while xe /∈ S do // Main loop

5 u← argmin
x∈Q d(x);

6 Q ← Q− {u}; S ← S ∪ {u};
7 for each v ∈ N (u) do

8 w[eu,v] = AdaptWeight(u, v,wini, π, I);
9 if d[v] > d[u] +w[eu,v] then

10 d[v]← d[u] +w[eu,v];
11 π[v]← u;

12 return π

xe, the minimal path γ̂xs,xe
, which corresponds to the cen-

terline of a tubular structure in the image, can be determined

by minimizing the following cost function

γ̂xs,xe
= argmin

γ∈Γ(xs,xe)

|γ|∑

i=1

w[evi−1,vi ], (1)

where Γ(xs,xe) is the set of all paths connecting xs and xe,

and vi is the i-th vertex on the path γ. Consecutive vertices

vi−1 and vi on γ are connected by edge evi−1,vi .

To minimize (1), we use a unified formulation of Dijk-

stra’s algorithm adapted from [6], as shown in Algorithm 1.

For each vertex u, π(u) specifies its predecessor in the path,

while d(u) is the path weight, i.e., sum of weights of all

edges on the path between u and the start point xs. N (u)
denotes the set of neighboring vertices of u. We introduce a

new function AdaptWeight to transform wini. In the stan-

dard Dijkstra’s algorithm, AdaptWeight just returns the ini-

tial weight wini[u, v] for edge eu,v , i.e., w = wini. An

improved version of AdaptWeight is proposed in Sec. 4 be-

low. V is divided into two disjoint sets Q and S . For each

vertex u in S , d(u) and π(u) are finalized, while in Q, they

may still be updated. In each iteration of the main loop, the

vertex u with minimum path weight is moved from Q to S ,

and it is checked for each neighbor v ∈ N (u) whether d(v)
can be reduced by reaching v via eu,v . If this is the case,

then u becomes predecessor of v. Once the end point xe is

added to S , γ̂xs,xe
can be extracted by starting at xe, and

recursively looking up the predecessors using π, until the

start point xs is reached. The centerlines obtained in this

way automatically have strict line-topology.

Usually, the initial weight wini for edge e is defined as

wini[e] =
1

V(e) + ϵ
+ λ · L(e), (2)

(a) Input image (b) Tubularity (c) Short cut

Figure 2. A short cut due to similar appearance of foreground and

background. The region in the red box in (a) has similar tubularity

as the foreground in (b), leading to a short cut in (c).

where V(e) is a tubularity measure, and ϵ is a small con-

stant to avoid division by zero. The term λ · L(e) controls

the smoothness of the path, where L(e) is the Euclidean

length of e, and λ is a constant. In our method, the tubular-

ity measure [8] is used.

4. Path-CNN Method

In this section, we propose Path-CNN, a new approach

to solving a common problem of minimal path methods:

The short cut problem. To do so, we embed CNNs into the

progressive minimal path method [15] in such a way that

these two techniques naturally complement each other to

achieve better performance.

4.1. Taxonomy of Short Cuts

Short cuts are incorrect centerlines found by minimal

path methods. There are mainly two reasons for short cuts,

which we refer to as Type 1 and Type 2, respectively. In

cases of Type 1, the correct path may be very long and

curved, so that a wrong but shorter connection, despite run-

ning through the background, still achieves a lower cost (1),

such as the examples in Fig. 1b. In cases of Type 2, the

background may appear very similar to the foreground. For

example, in Fig. 2a, the red box indicates a background re-

gion similar to the river nearby. This region has also high

tubularity (Fig. 2b), leading to a short cut (Fig. 2c). Most

previous methods only attempt to avoid short cuts of Type 1,

and some methods deal with Type 2 under certain assump-

tions for the geometry or appearance of the tubular struc-

tures (e.g., [4]). In contrast, our method takes both types

into account in a general and uniform way.

4.2. Path Classification

To avoid short cuts, we add a step into Dijkstra’s algo-

rithm: A CNN is applied to classify image patches extracted

using local paths, and the classification result is used to de-

tect possible short cuts.
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Algorithm 2: AdaptWeight for Path-CNN.

Input: vertices u and v, weight wini, π, image I
Output: adapted weight wa

1 γL ← ComputeLocalPath(u, π);
2 P ← CropTubularPatch(γL, I);
3 Prect ← RectifyPatch(γL, P );
4 c← Classify(Prect);
5 if c = Foreground then

6 wa = wini[eu,v];
7 else // c = Background, add penalty

8 wa = wini[eu,v] +wp;

9 return wa

Local paths Following [15], the local path γL(u) at a ver-

tex u ∈ S is defined as the path of a constant length L0.

γL(u) can be determined by starting at u with an empty

path, and recursively looking up the predecessors using π,

until the path length reaches L0. Intuitively, we can avoid

γ̂xs,xe
with short cuts by detecting and avoiding its segment

γL which contains such short cuts. Using our method de-

scribed below, we are able to use local paths to cope with

short cuts of Types 1 and 2 by applying a single CNN.

CNN and path-based features To use path-based fea-

tures, we introduce three new operations into the func-

tion AdaptWeight: Cropping of tubular patches along lo-

cal paths, rectification of these patches, and classification

of rectified patches using a CNN. All these steps must be

computed on-the-fly, i.e., during the minimal path compu-

tation, since local paths need to be computed using π in the

set S , but S is non-empty only after the main loop of Algo-

rithm 1 has started in Line 4.

Details of AdaptWeight are shown in Algorithm 2. The

initial edge weights wini are computed using tubularity

measure. Depending on the classification result of the CNN,

the final weight w is either equal to wini, or much higher

than wini. First, we extract the local path γL at vertex u.

Then, the image region along γL is cropped to a tubular im-

age patch P with constant width, so that γL is the centerline

of P . In the subsequent step of rectification, the tubular

patch P is transformed into a rectangular patch by warping

it along its centerline, and rotated into a canonical orien-

tation, resulting in a rectified patch Prect. Then Prect is

classified by the CNN, which has been trained using recti-

fied image patches in the canonical orientation, instead of

using non-rectified image patches of arbitrary orientations.

Subsequent steps depend on the classification result of the

CNN: If Prect is classified as foreground, we conclude that

u (the start point of γL) is inside certain tubular structures.

In this case, the weight of the edge between u and v does

not change. This is the same as in the standard Dijkstra’s

algorithm. On the other hand, if Prect is classified as back-

ground, then we conclude that u is not inside a tubular struc-

ture, and consequently γL is more likely to be part of a short

cut than part of the final minimal path γ̂xs,xe
, i.e., a pos-

sible short cut is detected at u. In this case, we increase

the weight of the edge eu,v from its initial value wini by a

penalty wp, which is a large positive number. So, even if v
eventually turns out to be on γ̂xs,xe

, the probability that u
is predecessor of v on γ̂xs,xe

is significantly reduced due to

wp, since v might be reached via other neighboring vertices

v′ with lower path weight d(v′) + ev,v′ .

We have put the new steps for the classification of Prect

into Algorithm 2 to better emphasize the difference to the

standard Dijkstra’s algorithm. In an actual implementation,

Prect only needs to be classified once for all neighbors of u.

Illustration One step of the main loop of the complete al-

gorithm is demonstrated in Fig. 3. Suppose u is the element

inQ with minimum path weight d = 10, its neighbors inQ
have temporal path weights of d(v1) = 20 and d(v2) = 12,

and the edge weights are w[eu,v1
] = 5 and w[eu,v2

] = 8.

After computing local path γL (black line starting at u), the

tubular patch P can be extracted (blue stripe around γL).

Magenta and green shapes inside P represent its texture.

We then transform and rotate P into a canonical orientation

to obtain Prect, and γL is accordingly transformed into a

straight vertical line segment γL,rect in the middle of Prect.

The texture of P undergoes the same transformation and ro-

tation. The CNN-classifier checks whether Prect is in fore-

ground. If this is the case, then d(v1) and d(v2) are updated

as in the standard Dijkstra’s algorithm: The previous value

of d(v1) is larger than d(u) + w[eu,v1 ] = 15, so d(v1) is

updated to 15, and π(v1) = u. d(v2) is not updated, since

d(u)+w[eu,v2
] = 18 > d(v2). In contrast, if Prect is not in

foreground, then γL is a possible short cut. Thus the weights

w[eu,v1
] and w[eu,v2 ] are both increased by a high penalty

wp = 1000 to reduce the probability that u becomes a ver-

tex on the final minimal path. In this case, neither d(v1) nor

d(v2) changes, and π is not updated.

F-maps Our method not only provides centerlines of

tubular structures, but also classifies pixels into foreground

or background (Line 4 in Algorithm 2). To avoid confusion

with centerline segmentation, we use the term F-map (fore-

ground map) instead of segmentation to refer to the image

region classified as foreground. F-maps have a remarkable

property: Our CNN-classifiers are trained using only cen-

terline annotations, but the resulting F-maps provide binary

segmentation masks for the foreground.

4.3. Training and Inference

To train the CNN, we use centerlines without width in-

formation as annotations. Rectified patches along these cen-

terlines are used as positive samples, while negative sam-

ples are not rectified. For example, in positive samples for
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classifier

Figure 3. An illustration of one step of the complete algorithm.

Indices are omitted because they are obvious in the shown setting.

Red color indicates changes compared to the previous step.

road segmentation, there must be a vertical road in the cen-

ter of the rectified patch (Fig. 4a). In negative samples, ei-

ther there is no road at all (Fig. 4b), or the road deviates

strongly from the vertical position (Fig. 4c, d). For data

augmentation, rectified patches are only rotated in a very

small range to compensate the possible numerical inaccura-

cies of centerlines.

(a) Positive (b) Negative (c) Negative (d) Negative

Figure 4. Samples for the training of our CNN. Positive samples

must have a vertical road in the center of the rectified patch.

The inference using CNN is embedded as the function

Classify in the minimal path computation in Algorithm 2.

The input images of the CNN are rectified patches along lo-

cal paths, which are provided by the minimal path method.

4.4. Interplay of Minimal Path Method and CNN

The two main components of our method, i.e., the mini-

mal path method and CNNs, benefit from each other to im-

prove the overall centerline segmentation.

Using CNNs, local paths in the minimal path method can

be better classified by exploiting strong classifiers to learn

features automatically. Also, given sufficient training sam-

ples, short cuts of Type 1 and 2 can be detected using a

single classifier. However, two difficulties remain: CNNs

cannot ensure topology of the centerline. Also, during in-

ference using our method, CNNs need rectified samples as

input, instead of axis-aligned samples. These samples must

be first generated with other means.

The two difficulties of CNNs are addressed naturally us-

ing minimal path methods. Line-topology of the centerlines

is ensured as an inherent property of minimal path methods,

and rectified patches can be obtained by computing local

paths on-the-fly. Rectification provides a strong geometric

prior which significantly reduces the degree of freedom of

input samples, i.e., the diversity of image patches caused by

rotation and curvature is removed, since all paths become

straight segments in the canonical orientation. This has two

advantages. First, less data is needed to train the CNNs.

Second, it is easier for CNNs to classify paths, especially

for complex shapes, such as paths with high curvature.

5. Experimental Results

We conducted experiments using four datasets of satel-

lite images, including: EPFL [25] (14 images of roads in

suburban areas), ROAD (20 images of roads in rural areas),

RIVER (20 images of rivers in the wild), and MRD [17] (a

road dataset with over 1000 high-resolution images). Be-

sides centerlines, EPFL contains also width information for

roads, so we generated masks of roads for this dataset. The

images in ROAD and RIVER with centerline annotations

were created by ourselves using data from GoogleEarth,

since we were not aware of annotated datasets containing

roads and rivers in such environments.

Our experiments are divided into two parts. In the first

part, we study the classification performance of the CNNs,

and illustrate the impact of integrating CNNs into the min-

imal path framework. In the second part, we apply our

method to segment centerlines of tubular structures between

user-specified start and end points, and compare our results

with results of other minimal path methods and U-Net.

5.1. Classification Performance of CNN

In our method, the CNNs are used in two different ways

compared to the usual application of CNNs. First, our

CNNs are applied only to rectified patches, instead of ar-

bitrary axis-aligned patches. Second, our CNNs are embed-

ded into minimal path methods. In this section, we study

the effects caused by these differences.

The EPFL dataset was used for experiments in this sec-

tion. Samples from 5 images were used as training set, and

samples from the other 9 images were used as test set. For

each experiment, we used roughly 1000 positive samples

and 3000 negative samples for training. The trained CNNs

were tested on a test set of about 3000 rectified positive sam-

ples and 9000 negative samples. The experiments were re-

peated for different sizes of the image patches, ranging from

11×11 to 71×71. We tested different CNN architectures as

well, including DenseNet121 [11], InceptionV3 [26], Mo-

bileNet [10], MobileNetV2 [22], and ResNet50 [9]. A com-

parison of them is shown in Fig. 5. It turns out that preci-
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Figure 5. Results of CNNs trained with rectified image patches.

(a) Pixel-based CNN (b) No rectification (c) Rectification

Figure 6. Regions classified as foreground. (a) M1: Pixel-based

classification. (b) M2: Path classification, trained without rectifi-

cation. (c) M3: Path classification, trained using rectified samples.

sion does not always improve with increasing patch size,

and the classification performance of different architectures

does not differ significantly. Based on the trade-off between

accuracy and speed, we selected MobileNet as our CNN,

and consequently the maximum GPU memory consumption

during testing is only about 2 GB. We used patches of the

size 31× 31 for all experiments.

We use the image in Fig. 1 from EPFL to compare three

methods M1, M2, and M3 for pixel classification. M1 and

M2 both employ the same classifier Ca trained using axis-

aligned patches, while M3, i.e., our Path-CNN, uses a clas-

sifier Cr trained using rectified patches. M1 applies Ca di-

rectly to each pixel individually, while M2 and M3 both use

our framework and embed the classifier into the Dijkstra’s

algorithm. With our sparse training data, M1 results in a

large number of gaps, and the tubular structures are difficult

to recognize (Fig. 6a). In contrast, by embedding the same

CNN Ca into our minimal path method, the F-map of M2

shows much more geometric details of the roads (Fig. 6b).

Trained with rectified patches, the F-map of M3 contains

even less noise and discontinuities in the tubular structures

(Fig. 6c). The maps in Fig. 6a, b, and c lead to the blue,

green, and red paths in Fig. 1b, respectively.

5.2. Centerline Segmentation

Data The overview of data for our experiments are shown

in Tab. 1. For each test path, we set start and end points

manually. Our training sets are quite small. For example,

for MRD we used patches from 12 images, which in total

amount to the size of only 3 full images. In contrast, recent

approaches [1, 19] both used 25 images for training and 15

EPFL ROAD RIVER MRD

Train. images 5 6 6 3 (12)

Test images 9 14 14 49

Test paths 130 64 14 751

Table 1. Overview of data used in experiments.

for testing. Our method is trained only using centerlines

without width information.

Baselines We compared our method with five other ap-

proaches, including DIJK, DIJK-CNN, PROG, PROG-

CNN, and U-Net [21]. DIJK and DIJK-CNN are the stan-

dard Dijkstra’s algorithm [7] using different tubularity mea-

sures: DIJK uses the measure [8], while DIJK-CNN uses

MobileNet features (i.e., pixel-wise classification results

of a MobileNet like the M1 method in Sec. 5.1). Simi-

larly, PROG and PROG-CNN are the progressive minimal

path method [15] using the measure [8] and MobileNet fea-

tures, respectively. Like DIJK and PROG, our method also

uses the tubularity measure [8] to compute the initial edge

weight wini. In DIJK and DIJK-CNN, the edge weight re-

mains constant, while PROG and PROG-CNN adapt the

edge weight by classifying local paths. But unlike our ap-

proach, there is no cropping or rectification in PROG or

PROG-CNN. Instead, only mean values of the tubularity

measure [8] or MobileNet features on the local paths are

used for classification. Similar to the definition of F-map

for our method, we define the F-map of PROG and PROG-

CNN as regions classified as foreground. DIJK and DIJK-

CNN have no classification step, therefore we define the

F-map of DIJK and DIJK-CNN as regions for which the

distance to the start point will not change anymore (i.e., the

region S in Algorithm 1) when the end point is reached.

Error analysis To measure the errors of the results quan-

titatively, we used the mean distance between segmented

centerlines and the corresponding ground truth, defined as:

ed =
1

N

∑

γ

∑

xi∈γ

ed(xi) =
1

N

∑

γ

∑

xi∈γ

|xi − xgt(i)|, (3)

where N is the total number of points on all segmented cen-

terlines γ, xi are the coordinates of points on γ, and xgt(i)

are the closest points to xi on the ground truth. The re-

sults are summarized in Tab. 2. For all datasets, our method

achieved the lowest mean distances. The errors of DIJK and

PROG are higher than our results by a factor of at least 2.

DIJK-CNN and PROG-CNN achieve lower errors, which

are still significantly higher than those of our results.

In Fig. 7, the errors ed for points on the segmented cen-

terlines are divided into three intervals, i.e., errors smaller

than 5 pixels, between 5 and 10 pixels, and larger than 10

pixels, respectively. The lowest error bound is set to 5 pix-

els, because this is roughly half the width of the tubular
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Dataset DIJK PROG DIJK-CNN PROG-CNN Our method

EPFL 4.74 (2.82) 3.36 (2.00) 2.82 (1.68) 2.74 (1.63) 1.68

ROAD 6.69 (2.25) 5.98 (2.01) 3.91 (1.32) 3.68 (1.24) 2.97

RIVER 19.01 (5.03) 18.43 (4.88) 7.16 (1.89) 6.31 (1.67) 3.78

MRD 21.89 (6.10) 18.83 (5.25) 6.17 (1.72) 5.25 (1.46) 3.59

Table 2. Errors measured with Eq. (3) in pixels. Numbers in braces indicate ratios between results of the other methods and ours.

ed 5 5 < ed 10 ed > 10
range of error ed

0%

20%

40%

60%

80%

100%

er
ro

r p
er

ce
nt

ag
e

EPFL
DIJK
PROG
DIJK-CNN
PROG-CNN
Our method

ed 5 5 < ed 10 ed > 10
range of error ed

0%

20%

40%

60%

80%

100%
er

ro
r p

er
ce

nt
ag

e
ROAD

ed 5 5 < ed 10 ed > 10
range of error ed

0%

20%

40%

60%

80%

100%

er
ro

r p
er

ce
nt

ag
e

RIVER

ed 5 5 < ed 10 ed > 10
range of error ed

0%

20%

40%

60%

80%

100%

er
ro

r p
er

ce
nt

ag
e

MRD

Figure 7. Distribution of errors for centerline segmentation using four datasets.

U-Net U-Net Our method

Annotation type centerline mask centerline

Dice coefficient 0.1163 0.2953 0.6108

Table 3. Dice coefficients of U-Net and our method for EPFL

structures in our images. A centerline within this range is

considered close enough to the ground truth, since we do

not use width information of the tubular structures to train

our algorithm. Intuitively, higher percentage of large errors

indicate more short cuts. Using our method, most points on

the centerlines are within smaller error ranges. For exam-

ple, among the points on the centerlines segmented by our

method in EPFL, 95.78% have errors under 5 pixels, and

only 0.52% have errors larger than 10 pixels. In contrast,

DIJK, PROG, DIJK-CNN and PROG-CNN have 4% to 8%
errors larger than 10 pixels. For RIVER, 72.89% of the er-

rors of our method are under 5 pixels. The percentage of

errors over 10 pixels is 6.20% for our method, but 37.71%,

43.88%, 12.71% and 8.92% for DIJK, PROG, DIJK-CNN

and PROG-CNN, respectively. Also for MRD, our method

has 91.38% errors less than 5 pixels.

As masks for roads are available for EPFL, we computed

Dice coefficients for U-Net trained with only centerlines, U-

Net trained with masks, and our method. Results for the 9

test images are shown in Tab. 3. Although our method was

trained using only centerlines, it achieved the highest Dice

coefficient. An example is shown in Fig. 8.

Qualitative results Below we show more results exem-

plarily. In the figures, the start points and end points are

shown as magenta boxes and cyan circles, respectively.

The images in ROAD and RIVER are challenging since

there are a lot of tubular structures in the background. Al-

Figure 8. Segmentation results of U-Net for the image in Fig. 1a.

Left: Ground truth. Middle: U-Net trained with only center-

lines (Dice = 0.1511). Right: U-Net trained with masks (Dice

= 0.3521). Our result is shown in Fig. 6c (Dice = 0.6658).

(a) Input image (b) Results

Figure 9. Results for one image from ROAD. (a) The white arrows

show two difficult cases. (b) Results of DIJK, PROG, DIJK-CNN,

PROG-CNN and our method are shown in yellow, blue, green,

black, and red colors, respectively.

though these structures have slightly different appearance

than the actual roads or rivers, it is difficult to use tubularity

feature alone to capture the differences. For an image from

ROAD, two difficult cases are highlighted in Fig. 9 (white

arrows). In case 1, DIJK found a short cut (Type 1), because

it is much shorter than the correct path. PROG was able to

detect this short cut and avoid it. But in case 2, where the

tubularity measure in the background is also high, PROG

found a short cut (Type 2). In contrast, DIJK-CNN, PROG-

CNN and our approach handled both cases correctly and

found the correct centerline. Fig. 10 shows a more challeng-
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(a) Input (b) DIJK (c) PROG (d) DIJK-CNN (e) PROG-CNN (f) Our method (g) U-Net

Figure 10. Results for one image from RIVER. (a) Input image and tubularity map. (b) - (f) Results of DIJK, PROG, DIJK-CNN,

PROG-CNN, our method (upper row) and the corresponding F-maps (lower row). (g) Results using U-Net.

(a) Input image (b) F-map (c) Ground truth

Figure 11. F-map (mask) for a section of an image from MRD.

The ground truth contains only centerlines, not masks.

ing example from RIVER, and only our method success-

fully segmented the river. The F-maps show that while our

method correctly classified most image regions and mostly

remained in the foreground, all other approaches explored

large portions of background, and resulted in short cuts. We

also computed the path by applying DIJK to the mask ob-

tained using U-Net instead of the tubularity map. However,

with the small number of samples in our training set (only 9

rivers in the 6 training images), U-Net could not be trained

well enough to produce a good mask for foreground. Con-

sequently, the correct path was not found (Fig. 10g).

Images in MRD cover large areas with complex road net-

works. The roads may appear very differently even within

the same image, and they are often occluded by trees or

their shadows. Buildings along the roads frequently show

certain regular patterns, causing high tubularity outside the

roads. There are also tubular structures which are not roads,

such as rivers, or narrow spaces between buildings. Fig. 11

shows a section of an image of an urban area. There, our

method dealt well with the challenges above, yielding a

quite precise F-map (Fig. 11b). Without re-training, the

same model can be used for roads in other environments.

For example, the F-map of a full image of a suburban area

is shown in Fig. 12. Our methods even detected several

small roads which are missing in the ground truth. To ob-

tain the F-map for all roads in the image, the user only needs

to set one single start point for the entire image, i.e., no end

(a) Input image (b) F-map (c) Ground truth

Figure 12. F-map for a full image from MRD obtained using one

start point for the entire image. Some roads, which are missing in

the ground truth, were detected using our method (yellow arrows).

points or further start points are needed, even if the roads

are not connected with each other. F-maps are not sensitive

to the location of the start point, so similar F-maps can be

obtained using different start points.

6. Conclusion

We introduced Path-CNN, a new method for topology-

aware centerline segmentation for tubular structures. In

our method, a CNN is embedded as an integral component

into the progressive minimal path method. The CNN en-

hances hand-tuned image features to better control the min-

imal path computation, while the progressive minimal path

method provides strong geometric priors to improve the per-

formance of the CNN, and ensures the line-topology of the

segmented centerlines. Path-CNN employs path-based clas-

sification to avoid different types of short cuts, and con-

sequently centerlines can be better segmented, especially

for tubular structures with complex shapes in challenging

environments. In addition to centerline segmentation, a

binary mask (F-map) is also obtained. Our method only

needs sparse and simple annotations for training, and it has

lower hardware requirements than many other methods. Its

effectiveness is demonstrated using experiments with four

datasets of satellite images and comparison with five other

methods. Future work includes extension of our method for

medical images, especially 3D medical images.
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