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Abstract

Matching-based methods, especially those based on
space-time memory, are significantly ahead of other solu-
tions in semi-supervised video object segmentation (VOS).
However, continuously growing and redundant template
features lead to an inefficient inference. To alleviate
this, we propose a novel Sequential Weighted Expectation-
Maximization (SWEM) network to greatly reduce the re-
dundancy of memory features. Different from the previ-
ous methods which only detect feature redundancy between
frames, SWEM merges both intra-frame and inter-frame
similar features by leveraging the sequential weighted EM
algorithm. Further, adaptive weights for frame features en-
dow SWEM with the flexibility to represent hard samples,
improving the discrimination of templates. Besides, the pro-
posed method maintains a fixed number of template features
in memory, which ensures the stable inference complexity of
the VOS system. Extensive experiments on commonly used
DAVIS and YouTube-VOS datasets verify the high efficiency
(36 FPS) and high performance (84.3% J&F on DAVIS
2017 validation dataset) of SWEM.

1. Introduction
Semi-supervised video object segmentation (VOS) has

seized great interest recent years [3, 6, 10, 16, 18, 21, 25, 28,
32,33,37,38,42,43,47,49,51] in the computer vision com-
munity. It aims to segment the objects of interest from the
background in a video, where only the mask annotation of
the first frame is provided during testing. A group of early
methods concentrate on on-line fine-tuning [2, 3, 19, 29, 30]
with the first annotated frame. However, these method tends
to suffer from model degradation caused by target appear-
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Figure 1. Instead of storing all past frames features as memory,
just like STM [32] and following methods [6, 16, 37, 38] do, our
SWEM sequentially updates a compact set of bases with a fixed
size, greatly reducing the inter-frame and intra-frame redundancy.

ance changes as video goes on. Besides, propagation-based
methods use masks computed in previous frames to esti-
mate masks in the current frame [7, 33, 45, 48], which is,
however, vulnerable to occlusions and rapid motion.

Recently, matching-based VOS methods [5, 6, 16, 17,
25, 28, 37, 38, 42, 43, 49, 52] have achieved striking perfor-
mance. Such matching-based methods first exploit previ-
ous frames to construct target templates, and then calculate
the pixel-level correlations between the new coming frame
embeddings and the target templates to perform the seg-
mentation. As seen in Figure 1, the Space-Time Memory
Network (STM) [32] and the following STM-like methods
[6, 16, 37, 38, 49] leverage memory networks to store tem-
plate features every T frames endlessly, which is prone to
missing key-frame information and running out of memory
for long-term videos. Besides, given that the inter-frame
redundancy of video features would harm the efficiency of
matching, another group of methods AFB URR [25] and
Swift [43] take advantage of the similarity of inter-frame
features to selectively update partial features. Nonethe-
less, they all fail to balance the performance and efficiency
through a hand-crafted similarity threshold.

Although past efforts have achieved promising results,
we argue that both inter-frame redundancy and intra-frame
one pose the main obstacles that prevent efficient template
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matching. Here comes to a question that can we achieve a
real-time VOS system by considering both the inter-frame
and intra-frame redundancy simultaneously? In this paper,
we will explore its feasibility.

Inspired by the Expectation-Maximization Attention
(EMA) [21], we intend to construct a set of low-rank bases
for memory features through Expectation-Maximization
(EM) [9] iterations. Here, the number of bases is far
less than that of image pixels. Thus, bases can be re-
garded as a more compact representation, which can greatly
reduce the intra-frame redundancy. Instead of applying
EM directly, we adopt Weighted Expectation-Maximization
(WEM) with the predicted mask as the fixed weights to ex-
plicitly construct foreground and background bases in each
frame. What’s more, we also propose a weighted EM with
adaptive weights, which give larger weights for hard sam-
ples during generating bases. Here, the hard samples refer
to those pixels that are not well expressed by bases, but are
important for object segmentation.

WEM can deal with the intra-frame redundancy effec-
tively; however, inter-frame one remains unsolved. Apply-
ing WEM on a single frame is efficient, but the computa-
tion complexity will be dramatically increased if directly
applying it to all growing memory features. To further re-
duce the inter-frame redundancy, we propose the Sequen-
tial Weighted Expectation-Maximization (SWEM), where
features of only one frame participate in the EM iterations
during the memory updating stage. The memory bases will
be updated with the new frame features through similari-
ties rather than a simple linear combination. Formally, this
updating process is equivalent to a weighted average of all
past frame features. As shown in Figure 1, compared with
STM [32] which saves all historical frame information as
the memory template of objects, our SWEM only updates a
more compact set of bases sequentially, thus greatly reduc-
ing the inter-frame and intra-frame redundancy.

Our contributions can be summarized as follows:

• We propose a fast and robust matching-based method
for VOS, dubbed Sequential Weighted Expectation-
Maximization (SWEM) network, where a set of com-
pact bases are constructed and updated sequentially,
reducing both the inter- and intra-frame redundancy.

• We introduce an adaptive weights calculation approach
for weighted EM, which makes the base features pay
more attention to hard samples.

• Without bells and whistles, SWEM reaches a level
close to state-of-the-art performance, while maintain-
ing an inference speed of 36 FPS.

2. Related Work
Matching-based Methods for VOS. Recent years have
seen a surge of interest in video object segmentation under

the semi-supervised setting. A number of matching-based
methods [5, 6, 16, 17, 25, 28, 32, 37, 38, 43, 44, 47, 49] regard
the first or intermediate frames as a target template, which
is then used to match the pixel-level feature embedding in
the new frame. To obtain both long-term and short-term ob-
ject appearance information, FEELVOS [42] and CFBI [52]
match the current frame with both the first frame and the
previous frame to obtain both global and local temporal de-
pendencies. Besides, STM [32] and the following meth-
ods [6,16,37,38,49] store multiple memory templates from
all previous frames as templates, which is redundant and
time-consuming during matching. In contrast, we propose
a novel method named SWEM, which only stores a set of
low-rank and updated basis features for each target, making
the target representation more compact and efficient.
Learning Fast and Robust VOS. Leaning a fast and ro-
bust model is a common goal since both accuracy and speed
are important in practical applications [4, 23, 36, 44, 47, 53].
RANet [47] only uses the first frame as the target tem-
plate for an acceptable speed. As tracker-based methods,
SiamMask [44] and SAT [4] only process the region of
interest. TVOS [53] directly propagates target masks ac-
cording to feature similarity in the embedding space. In
general, to achieve fast VOS, the previous methods sacri-
ficed the integrity of the target representation, which sub-
stantially degrades segmentation performance. Swift [43]
uses a variation-aware trigger module to compute the inter-
frame difference to update frames with diverse dynamics.
Further, only partial features that are significantly different
from memory features will be updated.

In this work, we consider reducing inter- and intra-frame
redundancy simultaneously. The proposed weighted EM
greatly reduces the intra-frame redundancy by iteratively
constructing compact base features for the whole frame.
To diminish the inter-frame redundancy, we further extend
weighted EM in a sequential manner, which can adaptively
update the model without increasing the number of match-
ing templates, thus making our model fast and robust.

3. Preliminaries

3.1. Expectation-Maximization Algorithm

The expectation-maximization (EM) [9] is an iteration-
based algorithm, which can be used to estimate parameters
of latent variable modes by maximizing the likelihood. The
task is defined as estimating model parameters θ based on
observation data set X and corresponding latent variables
Z. Each EM iteration involves two steps, the Expectation
step (E step) and the Maximization step (M step). At the
r-th iteration, E step finds the posterior P (Z|X, θr−1) and
computes the expectation:

Q(θ, θr−1) =
∑

P (Z|X, θr−1) lnP (X,Z|θ). (1)
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M step estimates parameters by maximizing the above data
likelihood:

θr = argmaxθQ(θ, θr−1). (2)

The E step and the M step are alternately executed R times
to achieve the convergence criterion.

3.2. Expectation-Maximization Attention

Expectation-Maximization Attention (EMA) [21] is pro-
posed to formulate the attention mechanism [46] into an
expectation-maximization manner. Specifically, instead of
regarding all pixels as reconstruction bases, EMA itera-
tively estimates a much more compact set of bases for each
image. EMA consists of three steps, namely Responsibility
Estimation (RE), Likelihood Maximization (LM), and Data
Re-estimation (DR). Denote X = {xn}Nn=1 ∈ RN×C as
image feature, M = {µk}Kk=1 ∈ RK×C as the randomly
initialized base features, where N , C, and K indicate the
numbers of pixels, channels, and bases. RE estimates the
hidden variable Z = {znk}N,K

n=1,k=1 ∈ RN×K , where the re-
sponsibility znk represents the probability of the n-th pixel
belonging to the k-th base:

znk =
exp(xnµ

⊤
k /τ)∑K

j=1 exp(xnµ⊤
j /τ)

. (3)

Here, τ is a hyper-parameter which controls the shape of
distribution Z. Then, LM updates base featuresM by ap-
plying the weighted average on feature X. That is, the k-th
base is updated by:

µk =

∑N
n=1 znkxn∑N
n=1 znk

. (4)

Note that RE and LM are iteratively executed R times until
convergence. Finally, DR reconstructs a low-rank version
of X using X̃ = ZM. Since K is much less than N , basis
setM can be treated as a compact representation for image
feature X. Inspired by EMA, we consider replacing redun-
dant memory features with more compact base features.

3.3. Redundancy of the Space-time Memory

To get a more intuitive understanding of feature redun-
dancy in videos, we evaluate the inter-frame and intra-
frame cosine similarities of videos features on the DAVIS
2017 [35] validation set using the image encoder of
STM [32] as the feature extractor. For each pixel in the cur-
rent frame, we first calculate its maximum similarity with
all pixels in the previous frame. In this way, N such max-
imum similarities can be obtained. In Figure 2, we list the
histogram of the maximum similarities, where the horizon-
tal coordinate is the similarity range. Most of the simi-
larities are larger than 0.6, and nearly 87% of similarities
are larger than 0.9, indicating high inter-frame redundancy

t t+1Inter-frame Intra-frame

Range of Cosine Similarity

Inter-frame w/o EM
Inter-frame w/ EM

Intra-frame w/o EM
Intra-frame w/ EM

Figure 2. The illustration of inter-frame and intra-frame redun-
dancy of video features.

in video sequences. In contrast, computing the maximum
similarity for intra-frame redundancy measurement is not
appropriate since spatial continuity would make most max-
imum similarities exceed 0.9. Thus, we calculate all pair-
wise similarities and count the average pair number of each
frame under different similarities. The third line in Figure 2
shows the statistics. Most of the similarities between the
two pixels in an image are positive, and more than 70% of
them are larger than 0.3, which demonstrates the ubiquity
of intra-frame redundancy.

To verify that the EM algorithm can find a more compact
representation for image features and thus restrain the frame
redundancy, we calculate the inter-frame and intra-frame
similarity with a basis set rather than the entire image fea-
ture, where the basis set consists of 256 bases evaluated via
EM iterations. Specifically, instead of calculating similari-
ties between inter-frame bases, we calculate the maximum
similarity between each frame feature and the base feature
of the previous frame. As seen in Figure 2, more than 99%
of inter-frame similarities are larger than 0.7. That is, al-
though each frame has only 256 base features, which is
far less than pixel number, it still meets the need of inter-
frame matching. As for intra-frame similarities, although
the similarity distribution is basically the same as that of
the whole image feature, the number of large similarities
has decreased significantly, which demonstrates the intra-
frame redundancy is greatly reduced via EM iterations.

4. Proposed Approach
We first introduce the weighted EM, which leverages

the predicted mask as weights to explicitly construct fore-
ground and background bases separately in each frame.
Furthermore, the adaptive weights make the model pay
more attention to hard samples to improve the segmentation
performance. Then, the core part of this work, the SWEM
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Figure 3. The matching-based pipeline of SWEM. The backbone network receives the t-th frame to capture general image features as Key
K(t). The features are used to match with target-specific memories. Through the matching process, the re-aggregated value and similarity
map are obtained to be the target features for the final segmentation. Multi-level skip connections help refine the segmentation results for
low to high resolution. The predicted mask is then employed with the intermediate image features to update bases via our SWEM.

algorithm is detailed, which shows how to convert growing
frame features into fixed-size bases. Finally, we describe
the matching-based pipeline of the proposed SWEM.

4.1. Weighted Expectation-Maximization

Although we have proved that using EM to find a more
compact representation can reduce both inter and intra-
frame redundancy, we argue that naively employing EM
to learn a set of bases for memory features is not a rea-
sonable solution in the VOS system. The reason here is
that the memory bases would mix with both the foreground
and background, which is unfavorable for object segmen-
tation. Instead, it is desirable to build low-rank foreground
and background bases separately. To this end, we lever-
age Weighted Expectation-Maximization (WEM) [1,13,14,
27, 40], which is widely used for weighted data clustering.
When using WEM to produce bases for images, Eq. (4)
would be modified as:

µk =

∑N
n=1 znkwnxn∑N
n=1 znkwn

, (5)

where wn is the weight for xn. It is equivalent to “seeing
the n-th feature wn times” [14]. Note that WEM makes it
possible to construct separate foreground and background
bases for template matching, where the object foreground
mask and the background mask of each frame can be used
as the corresponding fixed weights to substitute wn. In this
way, any irregular target region can be represented by a set
of bases with a fixed size, which greatly reduces intra-frame
redundancy.

The essence of using WEM for compact representation
learning is to perform clustering on all pixels in the image,
and make different bases to represent each pixel. Because
the number of bases is far less than that of pixels, the con-
structed segmentation target template would be incomplete
to some extent and even be faced with the target lost situa-
tion. The expression degree of each pixel is different during
basis set construction. Some pixels have little contribution

for bases, but are very important for object segmentation,
which are so-called hard samples. To ensure that the hard
samples could be assigned larger weights during basis set
construction, we propose to adaptively adjust the weights
of pixels rather than directly employing the fixed weights
calculated via foreground and background masks.

We estimate a confidence score for each pixel by a
foreground-background binary classification. Specifically,
after the E-step of WEM iteration, each pixel is classified
by the foreground or background bases, the classification
probability of the n-th pixel can be calculated as:

P fg(xn) =

∑K
k=1K(xn,µ

fg
k )∑K

k=1[K(xn,µ
fg
k ) +K(xn,µ

bg
k )]

,

P bg(xn) = 1− P fg(xn),

(6)

where µfg
k and µbg

k are foreground and background bases
separately. K(·) is a kernel function for calculating the
similarity of two input features. Specifically, K(a,b) =

exp( ab⊤/τ
∥a∥·∥b∥ ). Eq. (6) can be treated as a coarse segmenta-

tion result, since it provides the result of whether each pixel
corresponds to the foreground or the background. Besides,
the final segmentation (i.e., the output of the network de-
coder) can be obtained, which is considered more accurate
than the coarse one since it is additionally constrained by
ground-truth annotations. If coarse segmentation of a pixel
is consistent with the final one, this pixel can be regarded as
an easy sample. Otherwise, it would be regarded as a hard
sample. We believe that the inconsistency of hard samples
is because these pixels are neglected during the base con-
struction process, which makes them struggle to achieve the
same result as the final segmentation. Supposing that mfg

and mbg are soft masks of final segmentation, the adaptive
weights are estimated by:

wfg
n = mfg

n P bg(xn), wbg
n = mbg

n P fg(xn). (7)

The more inconsistent the coarse and final segmentation are,
the higher weights would be given for base construction.
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4.2. Sequential Weighted EM

To reduce inter-frame redundancy, previous methods
[25, 43] set a similarity threshold to ignore or merge sim-
ilar features between frames. However, the segmentation
performance and computational complexity are sensitive to
this hand-crafted threshold. What’s worse, it is hard to find
an appropriate threshold to make a trade-off between per-
formance and complexity. In this paper, we extend WEM
in a sequential manner, yielding a Sequential Weighted EM
(SWEM) algorithm to reduce both intra- and inter-frame re-
dundancy without any threshold hyperparameter.

At the time step t, the ideal solution is to apply WEM to
all previous t − 1 frames for basis set construction. How-
ever, the growing scale of computing is unacceptable, which
is not feasible for long-term segmentation. Therefore, we
introduce a sequential weighted average of frame features
when computing base assignment, where the weights are
estimated with time-dependent responsibility Z(t).

Concretely, we extend the WEM sequentially and refor-
mulate Eq. (5) as:

µ
(t)
k =

∑t
i=1

∑N
n=1 z

(t)
nkw

(t)
n x

(t)
n∑t

i=1

∑N
n=1 z

(t)
nkw

(t)
n

. (8)

Note that we implement Eq. (8) in a recursive manner,
i.e., the numerator α and denominator β are computed by
α

(t)
k = α

(t−1)
k +

∑N
n=1 z

(t)
nkw

(t)
n x

(t)
n and β

(t)
k = β

(t−1)
k +∑N

n=1 z
(t)
nkw

(t)
n , then µ

(t)
k = α

(t)
k /β

(t)
k .

This sequential way of computing base assignment
achieves more smooth and adaptable model updating. In-
stead of storing all frame bases, maintaining only one set of
adaptable bases is undoubtedly more friendly to hardware
and can also help realize a real-time VOS system. Algo-
rithm1 shows the detailed pipeline of our SWEM at time
step t.

It is also worth noting that the updating of bases is lazy in
SWEM. Since z(t)nk represents the similarity degree between
x
(t)
n and µ

(t)
k , and if a base feature has more similar features

with the current frame, it will be updated more quickly. This
lazy updating strategy can help SWEM be more robust to
noises and prevent drifts. In another way, w(t)

n also enables
the hard samples to be updated faster.

4.3. Matching-based Pipeline

The overview of the proposed SWEM network is illus-
trated in Figure 3. The whole pipeline mainly consists of
three stages, including 1) feature encoding, 2) segmenta-
tion, and 3) memorization.
Encoding. Similar to previous matching-based methods
with Space-Time Memory [6, 16, 23, 25, 32, 37, 38, 43, 49],
frames are encoded into Key-Value pairs (K ∈ RN×C and
V ∈ RN×C′

) for memory query and read. We adopt the en-
coder structure of STCN [6] to extract image features. The

Algorithm 1: The SWEM at the time step t

Input:
features of frame t:
X(t) ∈ RN×C ,

mask of frame t:
mfg,(t) ∈ [0, 1]N and mbg,(t) ∈ [0, 1]N

bases at time step t− 1:
Mfg,(t−1) ∈ RK×C andMbg,(t−1) ∈ RK×C ,

accumulated numerators and denominators:
αfg,(t−1), αbg,(t−1) and βfg,(t−1),βbg,(t−1)

Output:
basesMfg,(t) andMbg,(t)

/* Superscript symbols fg and bg are
omitted for simplicity. */

1 M(t) ←M(t−1)

2 w(t) ← m(t)

3 for r = 1 to R do
// SW-E step, estimate

responsibilities:

4 z
(t)
nk ←

K(x(t)
n ,µ

(t)
k )∑K

j=1 K(x
(t)
n ,µ

(t)
j )

// SW-M step, update bases:

5 α
(t)
k ← α

(t−1)
k +

∑N
n=1 z

(t)
nkw

(t)
n x

(t)
n

6 β
(t)
k ← β

(t−1)
k +

∑N
n=1 z

(t)
nkw

(t)
n

7 µ
(t)
k ← α

(t)
k /β

(t)
k

// SW-W step, calculate weights:

8 P fg(x
(t)
n )←∑K

k=1 K(x(t)
n ,µ

fg,(t)
k )∑K

k=1[K(x
(t)
n ,µ

fg,(t)
k )+K(x

(t)
n ,µ

bg,(t)
k )]

9 P bg(x
(t)
n )← 1− P fg(x

(t)
n )

10 w
fg,(t)
n ← m

fg,(t)
n P bg(x

(t)
n )

11 w
bg,(t)
n ← m

bg,(t)
n P fg(x

(t)
n )

12 end
13 n = 1, 2, ..., N ; k = 1, 2..,K

key features are also reused for memorization. Specific net-
work details are described in Section 5.1.
Segmentation. The segmentation stage includes feature
matching and mask decoding. At time step t, the Key fea-
tures K(t) are used as query to read memory features from
κ(t−1) and ν(t−1), where κ and ν are base features corre-
sponding to the key and value features and they are concate-
nations of foreground and background bases ([κfg;κbg] ∈
R2K×C and [νfg;νbg] ∈ R2K×C′

). A non-local [46]
formed matching process is applied as follows:

V̂(t)
n =

2K∑
k=1

K(K(t)
n ,κ

(t−1)
k )∑2K

j=1K(K
(t)
n ,κ

(t−1)
j )

ν
(t−1)
k . (9)

V̂(t) is a low-rank reconstruction using memory bases,
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which is helpful to segmentation tasks. Different from the
previous STM-like methods, our memory bases are explic-
itly separated into foreground and background. Therefore,
the correlations K(K(t)

n ,κ
fg,(t−1)
k ) and K(K(t)

n ,κ
bg,(t−1)
k )

can also be used as important segmentation clues. However,
the rank of base features is not fixed for different videos
since unsorted correlations are not suitable as the inputs for
CNNs. To tackle this problem, we design a permutation-
invariant operation, which can produce segmentation clues
from correlations. Define Kfg,(t)

n ∈ RK and Kbg,(t)
n ∈ RK

as the correlations of K
(t)
n with all foreground and back-

ground bases, respectively. The permutation-invariant fea-
ture S(t) can be calculated by:

S
(t)
nl =

∑
j∈topl(Kfg,(t)

n )
Kfg,(t)

nj∑
j∈topl(Kfg,(t)

n )
Kfg,(t)

nj +
∑

j∈topl(Kbg,(t)
n )

Kbg,(t)
nj

,

(10)
where l = 1, 2, ..., L. Note that L ≤ K is a hyperparameter
to control the number of segmentation clues channel and the
computation complexity. Besides, topl(·) means the top-l
correlation values.

The decoder takes segmentation clues [V̂(t);S(t)] as
input to produce the final mask m̃(t). Additional skip-
connections are also adopted to make use of low-level ap-
pearance features.
Memorization. After the segmentation, key features K(t)

are reused for the memorization stage. We adopt an-
other ResNet-18 to re-encode the image-mask pair to ob-
tain value features V(t). The key bases are updated by
κ(t) = SWEM(K(t), m̃(t),κ(t−1)) which is described in
Algorithm 1. To maintain the alignment between key and
value, the updated value bases is calcudated by ν

(t)
k =

(β
(t−1)
k ν

(t−1)
k +

∑N
n=1 z

(t)
nkw

(t)
n v

(t)
n )/β

(t)
k , where β, Z and

w are all produced during the construction of key bases κ.

5. Implementation Details

5.1. Network Structure

We adopt ResNet-50 [15] as the backbone to extract
frame features and ResNet-18 for value feature extraction.
All batch normalization layers are frozen. The stage 4 (res4)
features are used for memorization and matching processes.
These feature maps have a stride of 16 compared with the
row image. The temperature hyper-parameter τ is set to
0.05. The number of base features in a group is set as
K = 128, and the number of iterations R is set as 4 in
the SWEM algorithm. We select top-64 (L = 64) correla-
tion scores calculated by Eq. (10). For simplicity and fair
comparison with STM [32], we use the same two-level de-
coder, which consists of two refining layers, and each layer
contains two residual blocks.

K FPS DAVIS 2016 val DAVIS 2017 val
J & F ↑ JM ↑ J & F ↑ JM ↑

32 37.3 88.4 87.6 80.2 77.7
64 36.8 88.9 88.0 80.9 78.4
128 36.4 89.5 88.6 81.9 79.3
256 35.5 89.5 88.5 82.0 79.4

Table 1. Ablation study on the number of bases K (with R=4).

5.2. Two-stage Training

Pre-training on static image datasets. Following the pre-
vious methods [25, 28, 32, 37, 47], we first perform the pre-
training procedure on static image datasets [8,12,22,26,39].
The input frames are cropped into 384 × 384 for training.
Three frames are generated based on a single image at each
step, where the random affine transformations of shearing,
rotation, scaling, and cropping are applied. The Adam op-
timizer [20] with the learning rate 1e-5 is adopted for all
training processes. Besides, we use the cross-entropy loss
for the final segmentation.
Training on video datasets. After pre-training on images,
we fine-tune the proposed SWEM on video datasets DAVIS
2017 [35] and the YouTube-VOS 2018 [50]. The training
process is similar to image pre-training, where the main
difference is that we sample the three frames from a video
clip randomly instead of one single image. For multi-object
frames, we randomly select less than 3 objects. We perform
all experiments on a single NVIDIA Tesla V100 GPU with
a batch size of 4.

6. Experiments

6.1. Ablation Study

We first analyze the impact of the number of bases K
and that of SWEM iterations R, which are key factors af-
fecting the efficiency of the model. Then we investigate
the effect of adaptive weights in SWEM on model perfor-
mance. We directly train all models on video datasets with-
out pre-training on images. Models are evaluated on DAVIS
2016 [34] and DAVIS 2017 validation datasets.
The number of bases K. Table 1 shows the quantitative
results and inference speed under different K values. The
performance saturates at K = 128. When decreasing the
number of bases, the performance degraded a lot, while
this does not save too much computation, as seen in the
inference speed. Therefore, we choose a relatively large
K = 128 as the default setting.
The number of SWEM iterations R. The number of
SWEM iterations affects the efficiency and convergence of
bases construction. Table 3 shows results with R = 1 ∼ 7.
The inference speed is sensitive to the number of iterations.
Every increase in R decreases the inference speed by 1 ∼ 2
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Method Pub. I FPS DAVIS 2016 val DAVIS 2017 val
J & F ↑ JM ↑ FM ↑ J & F ↑ JM ↑ FM ↑

STM [32] ICCV 2019 ✓ 6 86.5 84.8 88.1 71.6 69.2 74.0
AFB-URR [25] NeuralPS 2020 ✓ 4 - - - 74.6 73.0 76.1

CFBI [52] ECCV 2020 5 86.1 85.3 86.9 74.9 72.1 77.7

RANet [47] ICCV 2019 ✓ 30 85.5 85.5 85.4 65.7 63.2 68.2
GC [23] ECCV 2020 ✓ 25 86.6 87.6 85.7 71.4 69.3 73.5

TVOS [53] CVPR 2020 37 - - - 72.3 69.9 74.7
SAT [4] CVPR 2020 39 83.1 82.6 83.6 72.3 68.6 76.0

SWEM 36 88.1 87.3 89.0 77.2 74.5 79.8

STM [32](+YV) ICCV 2019 ✓ 11* 89.3 88.7 89.9 81.7 79.2 84.3
CFBI [52](+YV) ECCV 2020 ✓ 5 89.4 88.3 90.5 81.9 79.1 84.6

EGMN [28](+YV) ECCV 2020 ✓ 5 - - - 82.8 80.2 85.2
KMN [37](+YV) ECCV 2020 ✓ 8 90.5 89.5 91.5 82.8 80.0 85.6

SSTVOS [10] (+YV) CVPR 2021 ∼ 7 - - - 82.5 79.9 85.1
RMNet [16] (+YV) CVPR 2021 ✓ 12 88.8 88.9 88.7 83.5 81.0 86.0
LCM [16] (+YV) CVPR 2021 ✓ 9 90.7 89.9 91.4 83.5 80.5 86.5

JOINT [31] (+YV) ICCV 2021 4 - - - 83.5 80.8 86.2
DMN [24] (+YV) ICCV 2021 ✓ 7 - - - 84.0 81.0 87.0

HMMN [38] (+YV) ICCV 2021 ✓ 10 90.8 89.6 92.0 84.7 81.9 87.5
AOT [51] (+YV) NeuralPS 2021 ✓ 19 91.0 89.7 92.3 83.0 80.3 85.7

Swift [43] (+YV) CVPR 2021 ✓ 25 90.4 90.5 90.3 81.1 78.3 83.9
STCN [6] (+YV) NeuralPS 2021 ✓ 26* - - - 85.4 82.2 88.6

SWEM(+YV) ✓ 36 91.3 89.9 92.6 84.3 81.2 87.4

Table 2. Comparisons with previous approaches on DAVIS 2016 and DAVIS 2017 validation sets. ‘+YV’ denotes training with additional
videos from YouTube-VOS. ‘I’ indicates the pre-training on image datasets. Note that our SWEM achieves results close to state-of-the-art
performance at a speed of 36 FPS on a V100 GPU without IO time. Here, ’*’ represents the re-evaluation on our hardware for reference.

FPS. R = 4 achieves the best trade-off between perfor-
mance and efficiency.
Adaptive weights in SWEM. Without using adaptive
weights (Eq. 7), our performance drops greatly (81.9% →
77.6%) while the improvement of inference speed is subtle
(36.4 FPS→ 38.4 FPS). Figure 4 shows the distribution of
maximum matching similarities between features of the cur-
rent frame and previous bases. Although SWEM with adap-
tive weights has fewer high similarities, it has more similar-

R FPS DAVIS 2016 val DAVIS 2017 val
J & F ↑ JM ↑ J & F ↑ JM ↑

1 41.5 87.7 87.3 77.9 75.1
2 39.4 88.7 88.0 79.5 76.9
3 38.3 88.8 87.9 80.8 78.1
4 36.4 89.5 88.6 81.9 79.3
5 34.5 89.1 88.2 81.2 78.4
6 33.0 89.0 88.3 79.8 77.0
7 31.8 88.6 87.8 79.8 77.1

Table 3. Ablation study on the number of SWEM iterations R
(with K=128).

ities above 0.6 than the one with fixed weights (93.4% v.s.
90.5%), guaranteeing fewer missing matches during infer-
ence. We also show the qualitative comparison between two
kinds of weights in Figure 5. Compared with SWEM with
adaptive weights, that with fixed weights is more prone to
missing matches, resulting in drift issues.

6.2. Comparison with SOTA

Datasets and evaluation metrics. We report the results
on the DAVIS 2016, DAVIS 2017, and YouTube-VOS 2018
datasets using region similarity J , contour accuracy F , and
their mean as metrics.
DAVIS 2016 and DAVIS 2017. Table 2 presents the quan-

Range of Cosine Similarity

+=93.4%

+=90.5%

Figure 4. The distribution of maximum matching similarities be-
tween current frame features and previous bases.
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Figure 5. The qualitative comparison between adaptive-weights
and fixed-weights. SWEM with fixed weights (first line for each
sample) is struggled to distinguish similar objects while the one
with adaptive weights (second line) is competent for this problem.
Weights are visualized at the third line for each sample, where the
brighter the pixel, the harder it is. As for the person in the middle,
the corresponding background bases pay more attention to objects
(the remaining person) which are similar to the target.

titative comparisons with recent state-of-the-art video seg-
mentation methods on the DAVIS 2016 and 2017 validation
sets. Our method achieves the best J & F on both datasets
among methods without pre-training on image datasets or
additional video datasets. In detail, our method outperforms
SAT [4], which runs at a similar speed (39 FPS) with ours,
with a large margin on DAVIS2017 (+4.9% J & F score).
Under the setting of using additional training data from
YouTube-VOS (+YV), our SWEM surpasses all other top-
performing methods. Note that STCN [6] uses a growing
memory bank during inference, which harms the long-term
segmentation while SWEM keeps the fixed number of bases
and has stable computation complexity. SSTVOS [10],
AOT [51] and JOINT [31] adopt transformer [41] back-
bones which are more powerful than ResNet-50. Hierarchi-
cal matching used in HMMN [38] also affects the segmen-
tation efficiency deeply. We re-evaluated STM and STCN
on our hardware and software environment for reference.
Our SWEM is capable of achieving an inference speed of
36 FPS on the V100 GPU and 27 FPS on the 1080ti GPU.
YouTube-VOS 2018. We make a comparison between our
SWEM with previous methods on the YouTube-VOS 2018
via the official evaluation server in Table 4. Note that
although SWEM leverages the original ResNet-50 back-
bone and the identical decoder as STM [32], it achieves
the 82.8% overall score which is very close to the state-
of-the-art results. Besides, we provide more qualitative and
quantitative comparisons in the Supplementary Material.

Method G seen unseen
JM ↑ FM ↑ JM ↑ FM ↑

STM [32] 79.4 79.7 84.2 72.8 80.9
AFB-URR [25] 79.6 78.8 83.1 74.1 82.6

EGMN [28] 80.2 80.7 85.1 74.0 80.9
KMN [37] 81.4 81.4 85.6 75.3 83.3
CFBI [52] 81.4 81.1 85.8 75.3 83.4

RMNet [16] 81.5 82.1 85.7 75.7 82.4
SSTVOS [10] 81.7 81.2 85.9 76.0 83.9

LCM [16] 82.0 82.2 86.7 75.7 83.4
DMN [24] 82.5 82.5 86.9 76.2 84.2

HMMN [38] 82.6 82.1 87.0 76.8 84.6
JOINT [31] 83.1 81.5 85.9 78.7 86.5
AOT [51] 83.7 82.5 87.5 77.9 86.7

SAT* [4] 63.6 67.1 70.2 55.3 61.7
TVOS* [53] 67.8 67.1 69.4 63.0 71.6
FRTM* [36] 72.1 72.3 76.2 65.9 74.1

GC* [23] 73.2 72.6 75.6 68.9 75.7
Swift* [11] 77.8 77.8 81.8 72.3 79.5
STCN* [6] 83.0 81.9 86.5 77.9 85.7

SWEM* 82.8 82.4 86.9 77.1 85.0

Table 4. Comparison with state-of-the-art methods on the
YouTube-VOS 2018 validation dataset. We report all of the mean
Jaccard (J ), the boundary (F) scores for seen and unseen cate-
gories, and the overall scores G. Besides, we use ‘*’ to indicate
those methods with an inference speed > 20 FPS. Note SSTVOS,
JOINT and AOT are transformer-based methods.

7. Conclusion

In this paper, we proposed a fast yet robust model
for semi-supervised video object segmentation dubbed Se-
quential Weighted Expectation-Maximum (SWEM) net-
work, which is capable of constructing compact target tem-
plates with low redundancy for pixel-wise matching. The
weighted EM algorithm is used to construct bases for fore-
ground and background features separately and reduce the
intra-frame redundancy. We also proposed to compute
adaptive weights instead of fixed weights when generating
bases, which forces bases to pay more attention to hard sam-
ples, so as to reduce the missing match. We extended the
weighted EM to sequential weighted EM to process sequen-
tial data and completely reduce the inter-frame redundancy.
Overall, our method achieves a performance close to the
state-of-the-art on VOS at 36 FPS.
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