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Abstract

Plasticity-stability dilemma is a main problem for incre-
mental learning, where plasticity is referring to the abil-
ity to learn new knowledge, and stability retains the knowl-
edge of previous tasks. Many methods tackle this problem
by storing previous samples, while in some applications,
training data from previous tasks cannot be legally stored.
In this work, we propose to employ mode connectivity in
loss landscapes to achieve better plasticity-stability trade-
off without any previous samples. We give an analysis of
why and how to connect two independently optimized op-
tima of networks, null-space projection for previous tasks
and simple SGD for the current task, can attain a mean-
ingful balance between preserving already learned knowl-
edge and granting sufficient flexibility for learning a new
task. This analysis of mode connectivity also provides us
a new perspective and technology to control the trade-off
between plasticity and stability. We evaluate the proposed
method on several benchmark datasets. The results indi-
cate our simple method can achieve notable improvement,
and perform well on both the past and current tasks. On
10-split-CIFAR-100 task, our method achieves 79.79% ac-
curacy, which is 6.02% higher. Our method also achieves
6.33% higher accuracy on TinyImageNet. Code is available
at https://github.com/lingl1024/Connector.

1. Introduction
In recent years, deep neural networks have been reported

promising performance on various tasks. In the dynamic
world, the deep model also needs to be updated as new data
becomes available. Hence, Incremental Learning (IL) [7,
31] has received much attention, which studies the problem
of continually learning from sequential tasks.

In this paper, we consider the data-free incremental
learning [36], where the training samples from previous
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tasks do not exist. Hence, the main criterion of data-free
IL [9, 33] is that no data from the previous tasks is stored
when continually refining the model as new data becomes
available. It is a direct cause of catastrophic forgetting prob-
lem [24], and the plasticity-stability dilemma [3, 28] is a
more general problem: (1) plasticity: the deep model should
learn the new knowledge of the current task, and (2) stabil-
ity: it should also preserve the knowledge of previous tasks.

Many algorithms have been proposed to strike a balance
between plasticity and stability. An intuitive solution is to
generate samples from previous tasks, e.g., ILCAN [40]
generates samples to preserve the old knowledge. The
regularization-based methods use the extra regularization
term in the loss function to consolidate previous knowledge,
such as EWC [21] using the Fisher information to calcu-
late each parameter’s importance. The architectural meth-
ods [24] learn the dynamic architecture of the deep network,
e.g., DER [41] freezes the previously learned representation
and dynamically expands the network for new task. The
algorithm-based methods learn parameter updating rules to
preserve the performance of previous tasks. For example,
GEM [27] constrains new task updates which do not inter-
fere with the previous knowledge. Adam-NSCL [37] up-
dates network parameters in the null space of all previous
tasks and achieves a promising performance on remember-
ing previous knowledge. Although Adam-NSCL can pre-
serve previous knowledge very well, the strong null-space
projection also hurts the performance of the current task.

On the other side, many researches have focused on the
connectivity in neural network loss landscapes [12,13]. The
previous works [14] found that two minima of indepen-
dently trained deep networks can be connected in weight
space, where the loss along the path remains low. Further,
the recent works [13] and [38] showed that there exists a lin-
ear path of high accuracy to connect two minima when the
networks share only a few epochs of the initialized SGD
trajectory. Mode Connectivity SGD (MC-SGD) [29] is de-
signed for incremental learning, which enforces the final
weight linearly connected to all tasks’ minima. Although
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MC-SGD achieves excellent performance, it needs to store
previous samples, which contradicts with our problem set-
ting. Hence, an interesting yet challenging question arises:
how to build a high-accuracy pathway between previous and
current models without previous samples?

In this paper, we provide a new insight to understand,
analyze and build a high-accuracy connector without any
previous training samples. To understand why we can lin-
early connect two minima of previous and current tasks, we
first give a simple analysis that provides an upper bound
of empirical loss for all tasks. Then, according to the up-
per bound, we view plasticity and stability as two indepen-
dent optimization problems of deep neural networks. The
two networks are trained to minimize the empirical loss and
move towards each other. Finally, we propose a simple lin-
ear connector to attain a better balance between these two
networks in the light of linear connectivity [13]. Central to
our method is that we uncover a simple way to achieve a
better plasticity-stability trade-off, i.e., a simple averaging
of two carefully designed networks, which leads to higher
accuracy neural network.

2. Preliminaries and Related Methods

2.1. Incremental Learning Methods

We review several categories of the existing deep incre-
mental learning methods for plasticity-stability trade-off.

Regularization-based methods: This line of ap-
proaches introduce an extra regularization term to bal-
ance the trade-off. According to where the regularization
term was explicitly applied to, these methods can be fur-
ther divided into structural and functional regularization
methods [31]. Structural regularization methods constrain
changes on model’s parameters. For example, EWC [21],
SI [44], MAS [2] and UCL [1] explicitly added a regular-
ization term to networks’ parameters. The functional reg-
ularization methods, also known as the distillation-based
methods, use the distillation loss between predictions from
the previous model and the current model as the regular-
ization term. The representative works include LwF [25],
EBLL [32], GD-WILD [23], etc.

Rehearsal methods: This line of works preserve ex-
isting information by replaying data from previous tasks.
Some algorithms store a subset of previous data, e.g.,
iCaRL [33] and GeppNet [15]. When the storage space is
limited, it is important to find a suitable subset of data that
can approximate the entire data distribution, e.g., SER [17]
focuses on exemplar selection techniques. Another way to
solve this limitation is using the generative modelling ap-
proaches [40] to generate a lot of samples of previous tasks.
For example, DGR [35] is a framework with a deep genera-
tive model and a task solving model.

Architectural methods: These methods modify the un-

derlying architecture to alleviate catastrophic forgetting,
e.g., HAT [34] proposes a task-based binary masks that
preserve previous tasks’ information. UCB [11] uses
uncertainty to identify what to remember and what to
change. The dynamic growth approaches [41] are also pro-
posed, e.g., DEN [42] dynamically expands network ca-
pacity when arrival of new task. Learn-to-Grow [24] pro-
poses modifying the architecture via explicit neural struc-
ture learning.

Algorithm-based methods: These methods carefully
design network parameter updating rule, which constrain
new task updates that do not interfere the previous tasks.
GEM [27] and A-GEM [4] are two representative works.
OWM [43] is orthogonal weight modification method to
overcome catastrophic forgetting. Adam-NSCL [37], which
uses the null space of all previous data to remember existing
knowledge, achieves an impressive performance on IL task.

Here, we give a brief review of Adam-NSCL. We have
a Wold model trained on the previous data Xold, and Xold

is not available when training the new task. To overcome
this problem, Adam-NSCL stores the uncentered feature co-
variance Xold = 1

nold
X>oldXold for guaranteeing stability,

where nold is the number of data points in Xold. Then, it
uses the SVD result of feature covariance Xold to find the
null space of Xold, denoted as Uold. We have XoldUold = 0
in this way. The projection matrix is obtained as Pold =
UoldU

>
old.

Now when new data Xnew is available, the Wold can be
updated to learn the new task as:

Wt+1 =Wt − αPold · gt, (1)

where W0 =Wold and gt is the gradient only calculated on
new data. With the null-space projection, we can update the
model that can remember the knowledge of Wold.

Adam-NSCL can preserve very well the previous knowl-
edge, while the the updates of new task are limited because
of the strong null-space projection. Our method can be
viewed as an extension of Adam-NSCL, which achieves a
better balance model for both previous and current tasks.

2.2. Linear Mode Connectivity

Optimizing a neural network involves finding a min-
imum in a high-dimensional non-convex objective land-
scape, where some forms of stochastic gradient descent
(SGD) are used as optimization methods for learning the
parameters of deep network. Since the deep neural net-
work are non-convex, there are many local minima. Given
a deep network F with an initial weight W0, the weight is
iteratively updated and the learnt weight at epoch k is de-
noted as Wk = Train(F ,W0). Two copies of the deep
networks are trained (e.g., using different data augmen-
tations or projections), producing two optimized weights
W 1

k = Train1(F ,W0) and W 2
k = Train2(F ,W0).

90



Recently, a lot of work [6, 8, 38] has been developed to
study the neural network optimization landscape. Many in-
triguing phenomena have been found. For example, one
of the interesting observations [10, 14] is that there exists
a connector between two optima. The loss minima are not
isolated.

Observation 1 (Connectivity) [10,14] There exists a con-
tinuous path between minima of neural network architec-
tures, where each point along this path has a low loss.

To find the continuous path, e.g., from W 1
k to W 2

k ,
Draxler [10] proposed a method based on Nudged Elastic
Band (NEB) [19] to find the smooth and low-loss nonlinear
path. Further, [13] showed that two minima can be con-
nected by a low-loss linear path in some cases.

Observation 2 (Linear Connectivity) [13, 38] There ex-
ists a linear connector fromW 1

k toW 2
k whenW0 is not ran-

domly initialization but is trained to a certain spawn epoch.

This condition is easy to satisfy. When the optimization
trajectory ofW0 is shared, the two optima can be connected
in a linear path. Inspired by this, MC-SGD [29] enforces the
final weight linearly connected to all tasks’ minima. How-
ever, MC-SGD stores a small set of previous samples to
learn the linear connector. It can not be used in our data-
free setting. In this paper, we don’t rely on experience re-
play to force connectivity. Instead, we move the previous
and current models closer to ensure connectivity.

3. Method
In this section, we first give the problem formulation of

incremental learning problem. Let sequential incremental
learning tasks be denoted as T1, T2, . . . , Tt, . . . , and each
task includes a set of disjoint classes. In the t-th task, we
are only given the t-th training dataset Dt = {(xi, yi)}Nt

i=1,
where Nt is the number of training samples, and the previ-
ous model W1:(t−1). We need to update the previous model
W1:(t−1) to a new model W1:t such that two inherent prop-
erties should be considered: 1) stability: the new model
should retain the knowledge of previous t − 1 tasks, and
2) plasticity: the ability to learn the new knowledge of the
t-th task.

We first give an analysis of how to find high-accuracy
pathway. Then, according to the upper bound and linear
connectivity, we design a simple linear connector.

3.1. How to Build High-accuracy Pathway for All
Tasks?

Suppose that there are K disjoint sequential incremental
learning tasks, e.g., two tasks on Figure 1 where the ellipse
on the left is the set of optimal weights for task 1 and the

1Ŵ ×

√
*W

2Ŵ

'ˆ
1W 'ˆ

2W

Figure 1. Illustration of how to find high-accuracy pathway, where
Ŵ1 and Ŵ2 are one of optimal weights for task 1 and task 2, re-
spectively. If they are moved closest to each other (e.g., towards
the overlapped region), we can find a good linear path.

right ellipse is the set of optimal models for task 2, can we
simply connect any two optimal models of two tasks? For
example, the linear connection of Ŵ1 and Ŵ2? It may fail
since the pathway from Ŵ1 to Ŵ2 may result in poor per-
formance. How to find high-accuracy pathway for all tasks
is not a trivial problem. Observed on Figure 1, if we can
move Ŵ1 and Ŵ2 towards the overlapping region, the high-
accuracy path between them will be easier to find. In fact,
by moving the optimal weights closest, the upper bound of
the empirical loss for all tasks will get smallest. Here comes
the theoretical explanation.

Let the optimal or convergent weight for task i be Ŵi,
which is only trained on the i-th task. The empirical loss for
task i is denoted as Li(W ). We aim to find a final weight
for all tasks W ∗ that minimizes the empirical loss for all
tasks, e.g., W ∗ = argminW

∑K
i=1 Li(W ).

First, we consider one task. For the first task, we can use
Taylor expansion to approximate the loss. Following the
way in [30], it can be formulated as:

L1(W
∗) ≈ L1(Ŵ1) + (W ∗ − Ŵ1)

>∇L1(Ŵ1)

+
1

2
(W ∗ − Ŵ1)

>∇2L1(Ŵ1)(W
∗ − Ŵ1)

≤L1(Ŵ1) +
1

2
λmax
1 ‖W ∗ − Ŵ1 ‖2, (2)

where ∇L1(Ŵ1) ≈ 0 since Ŵ1 is the optimal weight and
the gradient’s norm vanishes, and λmax

1 is the maximum
eigenvalue of ∇2L1(Ŵ1). In the same way, for other tasks,
we have:

L2(W
∗) ≤ L2(Ŵ2) +

1

2
λmax
2 ‖W ∗ − Ŵ2 ‖2,

...

LK(W ∗) ≤ LK(ŴK) +
1

2
λmax
K ‖W ∗ − ŴK ‖2 . (3)

By summing them up, we have:

K∑
i=1

Li(W
∗) ≤

K∑
i=1

Li(Ŵi) +
1

2
λmax

K∑
i=1

‖W ∗ − Ŵi ‖2,

(4)
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where λmax = max(λmax
1 , λmax

2 , ..., λmax
K ). Since Ŵi is

the optimal weight for task i (i = 1, · · · ,K), Li(Ŵi) is
the minimum. Thus the first term

∑K
i=1 Li(Ŵi) is also

the minimum. Hence, the empirical loss for all tasks, i.e.,∑K
i=1 Li(W

∗), can be bounded via minimizing the second
term

∑K
i=1 ‖ W ∗ − Ŵi ‖2. It is easy to verify that the

optimal weight W ∗opt for the second term is:

W ∗opt =
1

K

K∑
i=1

Ŵi. (5)

We can see that W ∗opt is the centroid or geometric center
of {Ŵ1, Ŵ2, · · · , ŴK}. Putting W ∗opt into 1

2λ
max

∑K
i=1 ‖

W ∗−Ŵi ‖2, we have 1
2λ

max
K∑
i=1

‖ 1
K

∑K
j=1 Ŵj−Ŵi ‖2≤

λmax 1
2K2

∑K
i=1

∑K
j=1 ‖ Ŵi − Ŵj ‖2.

Combining the above inequation with Eq.(4), we have

K∑
i=1

Li(W
∗
opt) ≤

K∑
i=1

Li(Ŵi)+

λmax 1

2K2

K∑
i=1

K∑
j=1

‖ Ŵi − Ŵj ‖2 . (6)

The upper bound in Eq. (6) can give us an interesting
perspective of the incremental learning: the empirical loss
of all tasks can be bounded by minimizing the sum of em-
pirical loss of each individual task and the sum of squared
Euclidean distances between each pair of optimal weights.

As indicated by the upper bound of Eq. (6), if we have 1)
the previous model Ŵold and current model Ŵnew achieve
optimal solutions for previous K − 1 tasks and current K-
th task, respectively and 2) these two models are moved
closest to each other, then we can simply use the lin-
ear connection of the two models: W ∗opt = 1

K Ŵnew +
1
K

∑K−1
i=1 Ŵold = 1

K Ŵnew + K−1
K Ŵold (see Eq. (5)). So

that the upper bound of empirical loss for all tasks would be
lowest.

3.2. Linear Connector for Plasticity-Stability
Trade-off

According to the upper bound in Eq. (6), we train two in-
dependent neural networks, which separately consider plas-
ticity and stability, and the two models are moved towards
each other. Finally, we design a simple linear connector ac-
cording to linear connectivity and Eq. (5).

3.2.1 Remembering Knowledge of Previous Tasks

As discussed in Section 3.1, the deep network considering
stability should preserve the knowledge of past tasks and
move towards the optimal set of the current task.

Algorithm 1: Linear connector for plasticity-
stability trade-off

Input: A set of sequential learning tasks T1, T2, · · · ,
and their training datasets D1,D2, · · · ; A
neural network W and learning rate α

Train the first task to get W1:1 = Train(D1)
# compute the null space
Use the model W1:1 and D1 to obtain feature

covariance X1:1 and the null-space projection
matrix P1:1

for task Tt ∈ {T2, T3, · · · } do
# init the two networks
Let
←−
W 0

1:(t−1) =W1:(t−1),
−→
W 0

t =W1:(t−1) and
s = 0

while not converged do
Sample a mini-batch {X,Y } from Dt

s = s+ 1
Compute the gradient←−g and −→g
# preserve previous knowledge←−
W s

1:(t−1) =
←−
W s−1

1:(t−1) − α · P1:(t−1) · ←−g
# learn new knowledge−→
W s

t =
−→
W s−1

t − α · −→g
# linear connector
W1:t =

t−1
t

←−
W s

1:(t−1) +
1
t

−→
W s

t

# compute the null space
Use the model W1:t, Dt and X1:t−1 to obtain
feature covariance X1:t and the null-space
projection matrix P1:t

Output: W1:t

Specially, we use Adam-NSCL to achieve the above
goals. The previous model W1:(t−1) is used as the initial-
ization of the deep network

←−
W 1:(t−1). At iteration s, we

randomly sample a mini-batch {X,Y } from Dt, and cross-
entropy loss function is used to learn the model. The objec-
tive function can be formulated as

min←−
W 1:(t−1)

LCE(
←−
W 1:(t−1)). (7)

We calculate the gradient as ←−g . To preserve the previous
knowledge, the gradient is multiplied by the null-space pro-
jection matrix. The feature covariance of all t − 1 tasks
is X1:(t−1) and the projection matrix of all previous data
is P1:(t−1) = UU>, where U is the set of eigenvectors of
X1:(t−1) and their eigenvalues are zero. (Please refer to Al-
gorithm 2 in [37] for more details of obtaining the feature
covariance and projection matrix). Then, the weight is up-
dated as

←−
W s

1:(t−1) =
←−
W s−1

1:(t−1) − α · P1:(t−1) · ←−g , (8)

where
←−
W 0

1:(t−1) = W1:(t−1) and α is the stepsize. This up-
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dating strategy can ensure that it preserves the knowledge of
past tasks, and also the model is moved towards the optimal
set of the current task [37] .

3.2.2 Learning New Knowledge of Current Task

Here we update another deep network which considers plas-
ticity. As discussed in Section 3.1, the new model

−→
W t

should 1) be the optimal model of current task (the first
term in the right of Eq. (6)), and 2) be closer to the previous
model (the second term in the right of Eq. (6)).

Specially, given the t-th training datasetDt, the objective
function can be formulated as

min−→
W t

LCE(
−→
W t) + LD(

−→
W t), (9)

where LCE(
−→
W t) is the cross-entropy loss function aiming

to learn the optimal weight of current task, and LD(
−→
W t)

aims to move the new model closer to the previous tasks.
In general, the previous model

←−
W 1:(t−1) is not the opti-

mal solution for the current task. Hence, simply using
LD(
−→
W t) = ||

−→
W t −

←−
W 1:(t−1)||2 would hurt the perfor-

mance of LCE(
−→
W t). Instead, we use the feature distillation

loss [45], which is formulated as

LD(
−→
W t) =

1

|Dt|
∑

{X,Y }∼Dt

‖ Fnew(X)− Fold(X) ‖2,

(10)
where Fnew/Fold are the feature extractors of

−→
W t/W1:(t−1),

respectively. Please note that
−→
W t consists of the fea-

ture extractor Fnew followed by the classifier Cnew. And
Fnew(X)/Fold(X) are the features of X extracted by
Fnew/Fold, respectively. In this way, we can move the cur-
rent model towards the previous tasks.

Given the previous model W1:(t−1) as the initialization,
we can simply use SGD or Adam [20] to learn the knowl-
edge of current task and the gradient is −→g . At iteration s,
the neural network is updated as

−→
W s

t =
−→
W s−1

t − α · −→g , (11)

where
−→
W 0

t =W1:(t−1).

3.2.3 Plasticity-Stability Trade-off

Now we have two neural networks:
←−
W 1:(t−1) and

−→
W t. The

←−
W 1:(t−1) preserves the previous knowledge, and the

−→
W t is

the optimal weight of the current task. Formally, the linear
connector between

←−
W 1:(t−1) and

−→
W t is formulated as

(1− β)
←−
W 1:(t−1) + β

−→
W t, (12)

for β ∈ [0, 1]. According to Eq.( 5), we set β = 1
t , which

means that we average the weights of all t tasks and get the
final network as

W1:t =
t− 1

t

←−
W 1:(t−1) +

1

t

−→
W t. (13)

The averaging model W1:t can achieve notable improve-
ment. Stochastic weight averaging [18] also used the av-
eraging model, and they showed that such averaging model
can converge to the wider solution with better generaliza-
tion. Our method is summarized in Algorithm 1.

Linear interpolation: According to Observation 2, to
make the two networks linearly connected, we firstly use
W1:(t−1) as the initialization to update two models. Then,
the two networks are trained in similar manners to arrive
the optima. The linear connector provides us a simple
method to control the balance between the forgetting and
intransigence by changing the value of β : W1:t = (1 −
β)
←−
W 1:(t−1) + β

−→
W t. If β = 0, our method becomes Adam-

NSCL, which mainly focuses on remembering knowledge
of previous tasks. When β = 1, it achieves excellent per-
formance on the new task. Figure 2 shows the performances
of the linear combinations with different β.

4. Experimental Results

In this section, we evaluate our model on various incre-
mental learning tasks and compared it with several state-
of-the-art baselines. Besides, we have conducted ablation
study to see the performances of previous and current tasks
with various β in Eq. (12). And we also evaluate our model
using the evaluation measures of stability and plasticity.

4.1. Datasets

CIFAR-100 [22] is a dataset including 100 classes of
images with size of 32 × 32 and each class contains 500
images for training and 100 images for testing. TinyIm-
ageNet [39] contains 120,000 images of 200 classes. The
images are downsized to 64 × 64 and each class contains
500 training images, 50 validation images and 50 test im-
ages. In this paper, the validation set of TinyImageNet is
used for testing since the labels of test set are unavailable.

We split the dataset into K disjoint subsets of classes
such that the training samples of each task are from a dis-
joint subset of C/K classes, where C is the total number of
classes and K is the total number of tasks. When K = 10,
we get 10-split-CIFAR-100, and the labels for 10 tasks are
{{0 − 9}, {10 − 19}, .., {90 − 99}}, respectively. When
K = 20 and K = 25, we get 20-split-CIFAR-100 and 25-
split-TinyImageNet respectively in the same way. In task
Tt, we only have access toDt and no previous data is stored.
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4.2. Implementation Detail

To make a fair comparison, we follow the experimental
settings of Adam-NSCL [37]. Specifically, we use ResNet-
18 as our backbone network and each task has its own
single-layer linear classifier. When training in new task, we
only update backbone network and classifier of new task,
while classifiers of previous tasks remain unchanged. We
use Adam optimizer, and the initial learning rate is set to
10−4 for the first task T1 and 5 × 10−5 for both

←−
W 0

1:(t−1)

and
−→
W 0

t in other tasks. The total number of epochs is 80 and
the learning rate is reduced by half at epoch 30 and epoch
60. The batch size for 20-split-CIFAR-100 is set to 32 and
16 for another two datasets. For parameters that can not be
updated by gradient descent method, e.g., running mean
of batch normalization layer, we also average them as Eq.
(13).

4.3. Evaluation Protocol

We use Average Accuracy (ACC) to measure how the
model performs on all tasks. Here we denote the number
of tasks as K. After finishing training from task T1 to task
Tm, the accuracy of model on test set of task t is denoted as
Am,t. ACC can be calculated as

ACC =
1

K

K∑
t=1

AK,t, (14)

whereK is the total number of tasks. The larger ACC is, the
better the model performs. Since it’s the average accuracy
of all tasks, we must take the balance between tasks into
account.

We use Backward Transfer (BWT) [27] to measure how
much the model forgets in the continual-learning process.
BWT is defined as

BWT =
1

K − 1

K−1∑
t=1

AK,t −At,t. (15)

It indicates the average accuracy drop of all previous tasks.
The larger BWT is, the less model forgets. In this paper, we
aim to achieve a more balanced model. Hence, ACC and
BWT should be considered together. Given ACC and BWT
two measures, we should firstly see the ACC: the larger
value of ACC is better. When the two methods have the
same ACC values, we can use the BWT to observe how
two methods perform on stability and plasticity: the smaller
BWT means the method is good at learning new knowledge
but it forgets more, larger BWT means it forgets less but
learns less new task.

4.4. Results

In this set of experiments, we compare our method with
several state-of-the-art baselines. We compare our method

with EWC [21], MAS [2] , MUC-MAS [26], SI [44],
LwF [25], InstAParam [5], GD-WILD [23], GEM [27], A-
GEM [4], MEGA [16], OWM [43] and Adam-NSCL [37].
All methods use ResNet-18 as backbone network for a fair
comparison.

Methods ACC(%) BWT(%)
EWC 70.77 -2.83
MAS 66.93 -4.03

MUC-MAS 63.73 -3.38
SI 60.57 -5.17

LwF 70.70 -6.27
InstAParam 47.84 -11.92
GD-WILD 71.27 -18.24

GEM 49.48 2.77
A-GEM 49.57 -1.13
MEGA 54.17 -2.19
OWM 68.89 -1.88

Adam-NSCL 73.77 -1.6
Ours 79.79 -0.92

Table 1. Results on 10-split-CIFAR-100. Please note that a larger
value of ACC is better.

Methods ACC(%) BWT(%)
EWC 71.66 -3.72
MAS 63.84 -6.29

MUC-MAS 67.22 -5.72
SI 59.76 -8.62

LwF 74.38 -9.11
InstAParam 51.04 -4.92
GD-WILD 77.16 -14.85

GEM 68.89 -1.2
A-GEM 61.91 -6.88
MEGA 64.98 -5.13
OWM 68.47 -3.37

Adam-NSCL 75.95 -3.66
Ours 80.80 -5.00

Table 2. Results on 20-split-CIFAR-100. A larger value of ACC is
better and a moderate value of BWT is better for balanced model.

Table 1, Table 2 and Table 3 show the comparison re-
sults. The results show that our method achieves significant
improvement w.r.t. ACC on three datasets. The results of
BWT and ACC indicate that our method can achieve better
plasticity-stability trade-off. Detailed analysis is as follows.

10-split-CIFAR-100 The results are shown in Table 1.
We can see that our model achieves the best ACC 79.79%,
which is 6.02% superior to the second best model Adam-
NSCL. The BWT value of our model is -0.92%, which is the
second best one compared to baselines. It indicates that our
model can obtain a meaningful balance between previous
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Figure 2. Accuracy of W1:2(left), W1:3(middle) and W1:4(right) with different β on 10-split-CIFAR-100
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Figure 3. Accuracy of W1:2(left), W1:3(middle) and W1:4(right) with different β on 20-split-CIFAR-100

Methods ACC(%) BWT(%)
EWC 52.33 -6.17
MAS 47.96 -7.04

MUC-MAS 41.18 -4.03
SI 45.27 -4.45

LwF 56.57 -11.19
InstAParam 34.64 -10.05
GD-WILD 42.74 -34.58

A-GEM 53.32 -7.68
MEGA 57.12 -5.90
OWM 49.98 -3.64

Adam-NSCL 58.28 -6.05
Our 64.61 -6.00

Table 3. Results on 25-split-TinyImageNet.

tasks and new task.
20-split-CIFAR-100 As shown in Table 2, our model

still achieves the best ACC 80.80%, which is 3.64% bet-
ter than the second best model GD-WILD. Note that GD-
WILD stores previous data and its BWT value is 9.85%
worse than ours. Again, our model achieves a relative bal-
anced BWT value -5.00%.

25-split-TinyImageNet The results of Table 3 show that
our method achieves the best ACC 64.61%, and the ACC
of second best model Adam-NSCL is 58.28%. The BWT
and ACC indicate that the our method not only can achieve

better performance, but also obtain a more balanced model.
Note that Adam-NSCL achieves an excellent performance,
even so, our method performs better than Adam-NSCL.

In summary, two observations can be made from the
results: 1) our method yields the best performance on all
datasets. 2) Our method achieves a better trade-off between
stability and plasticity. Please note that the performance
(ACC) of a IL model can be divided into two parts: stability
(BWT) and plasticity. Hence, knowing ACC and BWT, we
can probably know the performance of plasticity. We will
further discuss it in the next subsection.

4.5. Ablation Study

In this set of experiments, we conduct ablation study on
three benchmark datasets to see the effects of β. As indi-
cated by Eq. (12), we use β to control the ratio of two
independent neural networks.

For demonstration purposes, we only show three sequen-
tial learning tasks. The results of other tasks are similar. To
be specific, when t = 2, T1 is the previous task and T2 is
the current task. The test accuracies of W1:2 using different
values of β on tasks T1 and T2 are shown in the left of Fig-
ure 2, Figure 3 and Figure 4. The results of T1 indicate the
ability to preserve old knowledge, and the accuracies of T2
indicate the ability to learn new task.

When t = 3, test accuracies of tasks T1, T2 and T3 are
shown in the middle of Figure 2, Figure 3 and Figure 4.
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Figure 4. Accuracy of W1:2(left), W1:3(middle) and W1:4(right) with different β on 25-split-TinyImageNet

When t = 4, test accucaries of T1, T2, T3 and T4 are
shown in the right of Figure 2, Figure 3 and Figure 4.

As shown in Figure 2, Figure 3 and Figure 4, we can see
that: 1) when β = 0, W1:t =

←−
W 1:(t−1) can well preserve

the previous knowledge. 2) When β = 1, W1:t =
−→
W t per-

forms well on the new task. 3) The linear paths between
←−
W 1:(t−1) and

−→
W t are almost smooth, and there are no obvi-

ous jumps along the paths. For example, the accuracy of T2
increases as the value of β gets larger as shown in the left of
Figure 2. 4) For 10-split-CIFAR-100 and 20-split-CIFAR-
100, the model strikes a balance well on all tasks when β
is close to 1

t . For 25-split-TinyImageNet, though the fused
model doesn’t perform best on some tasks, β = 1

t is still
the most compromising solution.

4.6. Plasticity-Stability Trade-off Analysis

To better understand our method, we compare it with
Adam-NSCL to analyse the plasticity-stability trade-off.

We use BWT as the evaluation measure of stability. Fur-
ther, we also use Intransigence Measure(IM) [3] to measure
plasticity, which indicates how much the model has learnt
from new task. The intransigence for the k-th task can be
calculated as

Ik = A∗k −Ak,k, (16)

where A∗k is the accuracy on the test set of k-th task with
dataset ∪ki=1Di. The smaller the Ik is, the better the model
is.

Table 4, Table 5 and Table 6 show the results of BWT
and IM. First, the BWT values of our model are bigger than
that of Adam-NSCL except for 20-split-CIFAR-100, which
means that Adam-NSCL has stronger ability to remember
the previous knowledge for 20-split-CIFAR-100. Second,
the IM values of our model are much better than Adam-
NSCL. Our method considers both the stability and plastic-
ity, and the overall effect makes the ACC higher.

5. Conclusion
In this paper, we proposed a simple linear connector for

incremental learning, which is a better plasticity-stability

Methods ACC BWT(%) I10(%)
Adam-NSCL 73.77 -1.6 14.50
Ours 79.79 -0.92 8.10

Table 4. BWT and IM on 10-split-CIFAR-100

Methods ACC BWT(%) I20(%)
Adam-NSCL 75.95 -3.66 12.60
Ours 80.80 -5.00 7.00

Table 5. BWT and IM on 20-split-CIFAR-100

Methods ACC BWT(%) I25(%)
Adam-NSCL 58.28 -6.05 10.50
Ours 64.61 -6.00 5.75

Table 6. BWT and IM on 25-split-TinyImageNet

trade-off solution. To explain why we can use a simple
linear connector to combine two models, we had given an
analysis and showed it can minimize the upper bound of
empirical loss for all tasks. Hence, we proposed two inde-
pendent neural networks. The first network aims to preserve
the previous knowledge and the second network is to learn
new knowledge. We used the null-space projection to learn
the first network and the SGD for the second network. Fi-
nally, we simply averaged the two network and achieved a
significant improvement. In our future work, we aim to find
a better way to combine the two networks and give a better
theoretical explanation for non-linear/linear connector.
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