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Abstract

Coordinate-based networks have emerged as a powerful
tool for 3D representation and scene reconstruction. These
networks are trained to map continuous input coordinates
to the value of a signal at each point. Still, current ar-
chitectures are black boxes: their spectral characteristics
cannot be easily analyzed, and their behavior at unsuper-
vised points is difficult to predict. Moreover, these networks
are typically trained to represent a signal at a single scale,
so naive downsampling or upsampling results in artifacts.
We introduce band-limited coordinate networks (BACON),
a network architecture with an analytical Fourier spectrum.
BACON has constrained behavior at unsupervised points,
can be designed based on the spectral characteristics of the
represented signal, and can represent signals at multiple
scales without per-scale supervision. We demonstrate BA-
CON for multiscale neural representation of images, radi-
ance fields, and 3D scenes using signed distance functions
and show that it outperforms conventional single-scale co-
ordinate networks in terms of interpretability and quality.

1. Introduction
Coordinate networks are an emerging class of neural net-

works that can be used to represent or optimize a broad for-
mat of signals including images, video, 3D models, audio
waveforms, and more [41, 44, 52, 64, 66]. As opposed to
storing discrete samples of signals in conventional array-
or grid-based formats, neural representations approximate
signals using a continuous function that is embedded in the
learned weights of a fully-connected neural network. Given
an input coordinate, these networks are trained to output
the value of a signal at that point. Since even complex or
high-dimensional signals can be flexibly optimized using a
coordinate network, they have become popular for applica-
tions including view synthesis [44], image processing [60],
3D reconstruction [52], and neural rendering [70].

Yet, current coordinate networks are black box models
that are designed to represent signals at a single scale. As a

F

x

F

a

b

c

Increasing Spectral Bandwidth

Figure 1. Overview of band-limited coordinate networks
(BACON). (a) The proposed architecture produces intermediate
outputs with an analytical spectral bandwidth that can be specified
at initialization. When supervised on a high-resolution signal, the
network learns a multi-resolution decomposition of the output, as
shown for fitting 3D shapes via a signed distance function (b) and
radiance fields (c). The network is characterized entirely by its
Fourier spectrum (see insets) so its behavior is constrained, even
at unsupervised locations.

result, the behavior of the network at unsupervised coordi-
nates is difficult to predict, with complex dependencies on
hyperparameters such as hidden layer size, network depth,
or input coordinate encoding. The black box nature of the
architecture similarly inhibits multiscale signal representa-
tion, since we cannot readily filter or anti-alias these mod-
els, and the frequency spectrum of a coordinate network is
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difficult to analyze. Thus naive downsampling or upsam-
pling by querying the network on a coarser or finer grid of
coordinates leads to aliasing or undesired high-frequency
artifacts. Ultimately, these characteristics stem from the
fact that coordinate networks are not amenable to Fourier
analysis and are not designed to be scale aware.

Still, being able to represent and optimize signals at mul-
tiple resolutions is an important requirement for many ap-
plications. For example in image processing, many tech-
niques rely on image pyramids [62] (e.g., optical flow esti-
mation, compression, filtering, etc.). Representing 3D ob-
jects or scenes at multiple levels of detail is useful for speed-
ing up rendering and reducing memory requirements (e.g.,
mipmapping).

In this work, we introduce band-limited coordinate net-
works (BACON). The key properties of this architecture are
that (1) the maximum frequency at each layer can be manip-
ulated analytically, and (2) the behavior of a trained network
is entirely characterized by its Fourier spectrum. BACON
is suited to multiscale signal representation because band-
limited output layers can be designed with an inductive bias
towards a particular resolution or scale.

In addition to introducing BACON, we demonstrate a va-
riety of applications including multiscale representation of
images, neural radiance fields, and 3D scenes. Our work
takes important steps towards making coordinate-based net-
works scale aware, and provides a new representation with
interpretable behavior. Specifically, we make the following
contributions:

• We introduce band-limited coordinate-based networks
for representing and optimizing signals.

• We develop methods for spectral analysis of the archi-
tecture, and propose a principled, band-limited initial-
ization scheme.

• We demonstrate that our architecture outperforms con-
ventional single-scale coordinate networks for multi-
scale image fitting, neural rendering, and 3D scene rep-
resentation.

2. Related Work
Neural Scene Representation and Rendering. Emerg-
ing neural scene representations promise 3D-structure-
aware, continuous, memory-efficient representations for
parts [20,21], objects [3,6,13,22,42,52,78], or scenes [15,
26, 55, 64, 66]. These can be supervised with 3D data, such
as point clouds, and optimized as either signed distance
functions [3, 22, 26, 30, 42, 52, 55, 63, 66, 68, 79] or occu-
pancy networks [10, 41]. Using neural rendering [70, 71],
representation networks can also be trained using multiview
2D images [4, 19, 27, 33–35, 38, 44, 45, 48–50, 56, 60, 66,
67, 74, 77, 78, 83, 84]. Temporally aware extensions [47]

and multimodal variants with part-level semantic segmen-
tation [32] have also been proposed. Recent 2D GANs have
analyzed the bandwidth of convolutional layers for image
generation [28], and 3D-aware GANs use related ideas but
are trained with 2D image collections [7, 8, 14, 46, 51, 61].

Architectures for Scene Representation. Neural net-
work architectures for scene representation networks can
be roughly classified as feature-based, coordinate-based, or
hybrid. Feature-based approaches represent the scene using
differentiable feature primitives, such as points [16, 54, 57,
75, 81], surface patches [80], meshes [23, 59, 72, 85], multi-
plane [18, 43, 86] or multi-sphere [2, 5] images, or using
a voxel grid of features [36, 65]. A tradeoff with feature-
based representations is that they can be quickly evaluated,
but typically have a large memory footprint.

Coordinate-based representations (sometimes called im-
plicit representations or coordinate networks), use a multi-
layer perceptron (MLP) to map input coordinates to a sig-
nal value, for example, the signed distance or occupancy
of a 3D scene. These networks can represent signals glob-
ally [41, 52, 64, 69] or locally [6, 9, 26, 40, 58]. Some global
networks, such as Fourier Features [69] and SIREN [64],
have tunable parameters that bias the network to fitting low-
or high-frequency signals [79], though without explicit con-
trol over the bandwidth.

Hybrid architectures combine feature-based and coor-
dinate representations to achieve best of both worlds [24,
34, 37, 55]. These networks can represent complex, high-
dimensional signals continuously across the input domain
with a small memory footprint. The proposed method is
also a coordinate network, but rather than using an MLP ar-
chitecture, as with all coordinate networks discussed above,
our method builds on recently proposed multiplicative filter
networks (MFNs) [17]. We develop the theory of MFNs,
with new tools to describe and manipulate the Fourier spec-
tra of these networks, and a new initialization scheme that
mitigates vanishing activations in deep networks. These in-
sights enable band-limited coordinate networks, which we
demonstrate for multiscale signal representation.

Multiscale Representations. Several existing works
have explored multiscale architectures in the context of
scene representation networks. For example, proposed
methods use an octree [68,82] to accelerate neural rendering
of radiance fields or signed distance functions, or a hierar-
chy of features [11] to improve 3D shape completion. Mul-
tiscale representations can be optimized directly using spe-
cialized architectures [37,79] or progressive training strate-
gies [25, 37]. The closest work to ours in this category is
Mip-NeRF [4], which is a coordinate-based network with a
scale-dependent positional encoding. After training the net-
work with supervision at multiple scales, the resolution of
the network output can be controlled by adjusting the posi-
tional encoding. Our work differs in that the bandwidth of

16253



Network Outputs

Supervision

g2(x) gN −2(x)g0(x) g3(x) gN −3(x) gN −1(x)g1(x)

z0 z3

y3

zN −3

yN −3 yN −1

Input

Layers

Linear

Layers

Output

Layers
z2z1

y1

zN −2 zN −1 F

F

Figure 2. Overview of BACON architecture. We initialize the frequencies of the sine layers of a multiplicative filter network [17] within a
limited bandwidth [−Bi, Bi] (bottom row). Then, the bandwidth of each output layer is the sum of the input bandwidths up to that point
(top row), allowing the network bandwidth to be explicitly specified. At training time the network can be supervised with a signal at any
resolution, and the network learns to fit the signal in a band-limited fashion. Image from DIV2K dataset [1].

the network outputs are constrained by design rather than
through training. Thus, our approach learns a band-limited
multiscale decomposition of a signal, even without explicit
training at multiple scales.

3. Method

This section provides an overview of MFNs and the BA-
CON multiscale architecture, describes the Fourier spectra
of these networks, and proposes an initialization scheme for
deep networks.

3.1. Band-limited Coordinate Networks

Our approach builds on a recently introduced coordinate-
based architecture called Multiplicative Filter Networks
(MFNs) [17], which differ from conventional MLPs in that
they employ a Hadamard product between linear layers and
sine activation functions. While BACON uses an MFN back-
bone, we significantly extend the theoretical understanding
and practicality of these networks by (1) proposing architec-
tural changes to achieve multiscale, band-limited outputs,
(2) deriving formulas to quantify the expected frequencies
in the representation, and (3) deriving a principled initial-
ization scheme that prevents vanishing activations in deep
networks.

In a forward pass through the network, an input coor-
dinate x ∈ Rdin is first passed through several layers of
the form gi : Rdin 7→ Rdh , with gi(x) = sin(ωix + ϕi),
i = 0, . . . , NL − 1, and NL the number of layers in the net-
work. We refer to the intermediate activations as zi ∈ Rdh ,
and we allow intermediate outputs of the network yi ∈ Rdout

at the ith layer, defined as follows (see also Fig. 2).

z0 = g0(x)

zi = gi(x) ◦ (Wizi−1 + bi) , 0 ≤ i < NL

yi = Wout
i zi + bout

i ,

(1)

where ◦ indicates the Hadamard product. The parameters
of the network are θ = {ωi ∈ Rdh×din ,bi,ϕi ∈ Rdh ,Wi ∈
Rdh×dh ,Wout

i ∈ Rdout×dh , bout
i ∈ Rdout}.

A useful property of this formulation is that the network
output can be expressed equivalently as a sum of sines with
varying amplitude, frequency, and phase [17].

yi =

N
(i)
sine −1∑
j=0

ᾱj sin(ω̄jx+ ϕ̄j), (2)

where ᾱi, ω̄i, and ϕ̄i depend on the parameters of the MFN
(see supplemental §1.2), and the number of terms in the sum
for an NL layer network is given as (see supplemental §1.1)

N
(NL)
sine =

NL−1∑
i=0

2idi+1
h . (3)

This property stems from the repeated Hadamard product of
sines and the trigonometric identity that

sin(a) sin(b) =
1

2
(sin(a+ b− π/2) + sin(a− b+ π/2)) .

(4)
By applying this identity through the layers of the network,
the output can be reduced to a single sum of sines.

3.2. Frequency Spectrum

We exploit the property that MFNs can be expressed as
a sum of sines to create band-limited networks. This is
achieved by designing the architecture so that the frequency
of all represented sines never exceeds a desired threshold.

To this end, we freeze (i.e., do not optimize) the fre-
quencies, or entries of ωi, and set them to a bandwidth in
[−Bi, Bi] using random uniform initialization. Then, since
the Hadamard products of sines result in summed frequen-
cies (Eq. 4), the total bandwidth of an output at layer i of the
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network is less than or equal to
∑i

j=0 Bj and the maximum

bandwidth is B =
∑NL−1

i=0 Bi (see Fig. 2).
When representing signals across a finite input domain,

e.g., with input coordinates x ∈ [−0.5, 0.5]din , it is not nec-
essary to represent all frequencies continuously. Instead,
we can assume that the represented signal is periodic, so
we are only required to represent discrete frequency values
whose spacing is 1/T , where T is the periodicity or extent
of the signal in the primal domain. Moreover, using dis-
crete frequencies allows complete characterization of the
network spectrum by applying a fast Fourier transform to
a uniformly sampled network output (shown in Fig. 2 for
image fitting).

We also analyze the distribution of sine frequencies in
the network. Briefly, sines in the network can be associated
with one of the NL terms in the summation of Eq. 3. Then,
considering the probability of sines originating from each
term results in a compound random variable that gives the
overall distribution of frequencies. We provide an extended
derivation in the supplemental, showing that the distribution
is approximately zero-mean Gaussian with variance

Var(ωi) ·
NL−1∑
m=0

m · 2
NL−1−mdNL−m

h
NL−1∑
i=0

2idi+1
h

. (5)

The Gaussian distribution of frequencies results in a greater
parameterization of low frequencies in the network; this
may be a useful inductive bias since low-frequency Fourier
coefficients typically have a greater amplitude than high-
frequency coefficients in natural signals [73].

To facilitate representing signals at multiple resolutions,
we introduce linear layers at intermediate stages throughout
the network to extract band-limited outputs (see Fig. 2). By
supervising the outputs of these layers, we can train BACON
to fit a signal at multiple scales simultaneously. Interest-
ingly, because the outputs are band-limited, BACON can be
trained in a semi-supervised fashion where the bandwidth
of the supervisory signal need not match the desired band-
width of the output of the network, demonstrated in Fig. 2
for image fitting.

3.3. Initialization Scheme

Finally, we derive a principled initialization scheme that
ensures the distribution of activation functions at the output
of each layer is distributed uniformly at the beginning of
training. While the proposed scheme and that of SIREN [64]
both involve sine non-linearities, our initialization explicitly
accounts for Hadamard products in the architecture and the
distribution of inputs to sine layers gi. We compare our ini-
tialization scheme to the initialization proposed by Fathony
et al. [17] in Fig. 3. Our proposed scheme resolves a prob-
lem with vanishingly small activations for deep networks
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Figure 3. Comparison of distribution of activations at initializa-
tion. The initialization scheme proposed for MFNs [17] results in
vanishingly small activations for deep networks (shown for layers
0, 1, 4, and 8). The proposed initialization scheme maintains a
standard normal distribution after each linear layer (all distribu-
tions shown for a network with dh = 1024), and activations at
intermediate outputs closely match our analytical derivations (red
lines, see supplemental for details).

and results in standard normal distributed activations after
each linear layer.

In the supplemental, we provide an extended derivation,
which we summarize as follows. Assume the input to the
network is uniformly distributed x ∼ U(−0.5, 0.5), with
ωi ∼ U(−Bi, Bi) and ϕi ∼ U(−π, π), where we describe
the distribution of each element of the matrix or vector.
Then, ωix+ ϕi is distributed as{

1/Bi log (Bi/min(|2x|, Bi)) , −B/2 ≤ x ≤ B/2

0 else

and gi(x) = sin(ωix + ϕi) is approximately arcsine dis-
tributed with variance 0.5 (see supplemental, red plots in
Fig. 3). Now, let Wi ∼ U [−

√
6/dh,

√
6/dh]. Then we

have that W1g0(x) + b1 converges to the standard normal
distribution with increasing dh (see supplemental). Finally,
the Hadamard product g1(x) ◦ (W1z0 + b1) is the product
of arcsine distributed and standard normal random variables
which again has a variance of 0.5. Applying the next linear
layer results in another standard normal distribution, which
is also the case after all subsequent linear layers (see red
plots of Fig. 3).

4. Experiments
We demonstrate BACON on three separate tasks: image

fitting, view synthesis using neural radiance fields, and 3D
shape fitting using signed distance functions.
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Figure 4. Image fitting results. We train networks using Fourier Features [69], SIREN [64], and integrated positional encoding (PE) [4] to fit
an image at 256×256 (1×) resolution. We show network outputs at 1/4 and 4× resolution. Fourier Features and SIREN fit to a single scale
and show aliasing when subsampled. Integrated PE is explicitly supervised at 1/4 and 1× resolution and learns reasonable anti-aliasing;
however, all methods except BACON show high-frequency artifacts at 4× resolution (insets). BACON is supervised at a single scale and
approximates low-pass filtered and high-resolution reference images (left column and Fourier spectra insets).

Figure 5. BACON periodic extrapolation behavior1.

4.1. Image Fitting

We use an image fitting task to evaluate the performance
of BACON and to demonstrate its band-limited behavior.
BACON is compared to three other baselines: a network
with Gaussian Fourier Features positional encoding [69],
SIREN [64], and the integrated positional encoding of Mip-
NeRF [4], which is scale-dependent.

We initialize all networks with 4 hidden layers, 256 hid-
den features, and we train on the 256×256 resolution im-
age for 5000 iterations using PyTorch [53] and Adam [31].
The batch size is equal to the number of image pixels. For
Fourier Features and integrated positional encoding, we use
encoding scales of 6 and 10, respectively, to balance be-
tween image quality and high-frequency overfitting. For
SIREN, we initialize the frequency parameter to ω0 = 30.

Fourier Features and SIREN are trained to minimize the
loss Limg = ∥y − yGT∥22, where y is the network output
and yGT are the image pixel values. For BACON, we sum
this loss over all network outputs, with explicit supervision
at all scales on the full-resolution image. The integrated po-
sitional encoding network is supervised explicitly on anti-
aliased image pixels at 1/4, 1/2, and full resolution, follow-
ing Barron et al. [4]. Finally, we initialize BACON to have

1Image: https://www.sketchuptextureclub.com/

a maximum bandwidth B of 0.5 cycles/pixel, which is the
Nyquist limit for the image. The frequencies ωi are initial-
ized so that the outputs y1, y2, and y4 are constrained to
quarter, half, or full bandwidth. That is, B0 = B1 = B/8,
and B2 = B3 = B4 = B/4 such that

∑
i Bi = B.

Results of image fitting on a test scene from the Kodak
dataset [12] are shown in Fig. 4. Since Fourier Features
and SIREN only represent the signal at the trained resolu-
tion, sampling the network at 1/4 resolution results in alias-
ing. We show the interpolation performance of these net-
works by evaluating a 4× upsampled grid of 1024×1024
pixels. When upsampled, BACON does not synthesize spu-
rious high frequencies and has a band-limited output. All
other methods have non-zero high-frequency spectra and
exhibit artifacts in the reconstruction. We show additional
image fitting experiments in the supplemental, including
evaluation of deep 8- and 16-layer BACONs and MFNs.
Periodic Extrapolation. Since BACON uses discrete fre-
quencies at each sine layer gi(x), the representation is pe-
riodic. We demonstrate this by fitting a seamless texture
using coordinates x ∈ [−0.5, 0.5] (red square of Fig. 5) and
querying the network output for x ∈ [−2, 2].
Scale Interpolation. Although BACON outputs at dis-
crete scales, we can interpolate between multiscale out-
puts, similar to the trilinear filtering used to render from
mipmaps [76]. See supplemental for additional details and
results.

4.2. Neural Radiance Fields

Neural radiance fields (NeRF) [44] have become a pop-
ular method for view synthesis and neural rendering. The
method operates on a dataset of multiview images with
known camera positions, where each image pixel is asso-
ciated with a ray r(t) = o+ td that extends from the cam-
era center of projection o in the direction d passing through
the pixel. A pixel color C(r) is predicted using the volume

16256



Mip-NeRFGround Truth BACONNeRF
1x

1/2

1/4

1/8

Figure 6. Neural rendering results. We compare NeRF [44], Mip-NeRF [4], and BACON supervised on a multiscale synthetic dataset [4].
BACON captures higher frequency details better than NeRF while requiring fewer parameters to render at 1/2, 1/4, and 1/8 resolution.

PSNR ↑ # Params.
1× 1/2 1/4 1/8 Avg. 1× 1/2 1/4 1/8

NeRF 26.734 28.941 29.297 26.464 27.859 511K
Mip-NeRF 29.874 31.307 32.093 32.832 31.526 511K
BACON 27.430 28.066 28.520 28.475 28.123 531K 398K 266K 133K

Table 1. Performance of NeRF, Mip-NeRF, and BACON averaged
across the multiscale Blender dataset. BACON achieves better av-
erage performance than NeRF while requiring fewer parameters to
render the lower resolution images.

rendering equation to integrate predicted intermediate val-
ues of color c and opacity σ along the ray [4]. In practice,
a neural network is queried to evaluate samples of c and σ
along each ray r(t), and the volume rendering integral is
evaluated using quadrature as [39, 43]

C(r, t) =
∑
j

Tj(1− exp(−σj(tj+1 − tj))) cj ,

with Tj − exp

(
−
∑
i′<i

σi′(ti′+1 − ti′)

)
,

(6)

where Tj represents the transmittance or visibility of a point
on the ray, and the values wj = Tj(1−exp(−σj(ti+1−tj)))
can be interpreted as alpha compositing weights applied to
the predicted colors cj . After training, novel views can be
rendered by simply evaluating the corresponding rays.

We evaluate BACON for this task and compare to NeRF
and Mip-NeRF baselines trained on a multiscale Blender
dataset [4] with images at full (512×512), 1/2, 1/4, and 1/8
resolution. For the baselines, we use the implementations of
Barron et al.2 [4]. All networks are trained according to the
procedure of Mip-NeRF; we use the Adam optimizer with
a batch size of 4096 rays and 1e6 training iterations. The
learning rate is annealed logarithmically from 1e-3 to 5e-6
for BACON and 5e-4 to 5e-6 for the baselines. All networks
are composed of 8 hidden layers with 256 hidden features.

For BACON, we adapt the training procedure and ar-
chitecture as follows. Rays within the multiscale Blender
dataset fall within an 8 by 8 unit volume (r(t) ∈ [−4, 4]3),
and we find that setting the maximum bandwidth B to 64

2https://github.com/google/mipnerf

cycles per unit interval allows fitting high frequency im-
age details. To simplify the training procedure, we evaluate
all methods without the viewing direction input originally
used for NeRF. This also enables visualization of the BA-
CON Fourier spectrum (see Fig. 1). Thus the input to all
networks is a 3D coordinate corresponding to the position
along the ray r(t). BACON produces four outputs, one for
each scale of the dataset: yi, i ∈ [2, 4, 6, 8]. The Bi con-
strain each output to 1/8, 1/4, 1/2, and full resolution, with∑2

i=0 Bi = B/8,
∑4

i=0 Bi = B/4, and so on. We also
adapt the hierarchical sampling procedure of NeRF [44],
wherein the alpha compositing weights wj from an initial
forward pass are used to resample the ray in regions of
non-zero opacity. To improve efficiency, we use the lowest-
resolution output of the network for this initial forward pass
and apply the following loss function on pixels rendered us-
ing the resampled rays with 256 samples.

LBACON =
∑
i,j,k

∥(Ck(ri, tj)−CGT,k(ri)∥22, (7)

where i, j, and k index rays, ray positions, and dataset
scales, respectively. For quantitative evaluation, we use per-
scale supervision so the BACON outputs are directly com-
parable to the multiscale ground truth images. Finally, we
adopt the regularization strategy of Hedman et al. [24] to
penalize non-zero off-surface opacity (see supplemental for
results without per-scale supervision and an ablation study).

Qualitative and quantitative evaluations of BACON for
neural rendering, are shown in Fig. 6 and Table 1. BACON
achieves better performance than NeRF trained on the mul-
tiscale dataset at 1/8 and 1× resolution. We report PSNR
at each scale, averaged over all scenes in the multiscale
Blender dataset in Table 1. In Fig. 6, we observe that BA-
CON recovers higher frequency details compared to NeRF
on the Materials and Drums scenes. Mip-NeRF incorpo-
rates an additional mechanism which changes the positional
encoding along each ray to account for the expansion of the
viewing frustum, and achieves the best performance. Still,
we find that BACON produces high-quality results with a
fraction of the parameters at low resolution.
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Figure 7. Shape fitting results. Results on the Thai Statue from the Stanford 3D Scanning Repository are shown for levels-of-detail 1–4
of Neural Geometric Level of Detail (NGLOD) [68], Fourier Features [69], SIREN [64], and BACON. All methods perform similarly at
their highest detail output (see Table 2), but BACON learns a smooth multiscale decomposition of the shape. Insets show the spectra of the
extracted signed-distance functions, revealing the band-limited output of BACON. Additional results included in the supplemental.

FF SIREN NGLOD-4 NGLOD-5 BACON 1×
# Params. 527K 528K 1.35M 10.1M 531K
Chamfer↓ 2.166e-6 2.780e-6 8.358e-6 2.422e-6 2.198e-6
IOU ↑ 9.841e-1 9.751e-1 9.479e-1 9.811e-1 9.833e-1

Table 2. Shape fitting performance of Fourier Features [69],
SIREN [64], Neural Geometric Level of Detail (NGLOD) [68], and
BACON averaged across 5 test scenes (detailed in main text). All
methods achieve roughly comparable performance, including BA-
CON despite simultaneously representing multiple scales. Multiple
levels of detail are shown for NGLOD, which requires more param-
eters to populate the explicit feature grids.

Additionally, we can use BACON to learn semi-
supervised multiscale decompositions of the neural radi-
ance fields. In this case, we train each output scale at the full
resolution, and BACON automatically learns band-limited
representations at the intermediate output layers. We show
an example of this for the Lego scene in Fig. 1. Additional
results for BACON in the explicitly supervised and semi-
supervised cases are shown in the supplemental.

4.3. 3D Shape Representation

Neural representation networks have shown promise for
representing and manipulating 3D shapes. BACON is well-
suited for this task, and we evaluate its performance on a
range of shapes from the Stanford 3D scanning repository3.

We compare BACON to Fourier Features [69],
SIREN [64], and Neural Geometric Level of Detail
(NGLOD) [68], a representation which optimizes explicit
features stored on a sparse voxel octree. We do not com-
pare to Mip-NeRF since it requires per-scale supervision.
All networks are trained to directly fit a signed distance
function (SDF) estimated from a ground truth mesh.

For BACON, Fourier Features, and SIREN, we use net-

3http://graphics.stanford.edu/data/3Dscanrep/

works with 8 hidden layers and 256 hidden features. For
Fourier Features (Gaussian encoding), we set the encoding
scale to 8 and for SIREN, we set ω0 = 30. We train on lo-
cations sampled from the zero level set and add Laplacian
noise; this results in an exponential decay in the number of
samples off the zero level, as proposed by Davies et al. [13].
We find that the width of the Laplacian distribution has a
large impact on performance. Setting the variance σ2

L too
small results in poor off-surface fitting, but setting the vari-
ance too high reduces the number of samples on the zero
level set, degrading the appearance of the surface. Thus, we
introduce a coarse and fine sampling procedure wherein we
produce “fine” samples using a small variance of σ2

L = 2e-6
and “coarse” samples with σ2

L = 2e-2. Samples are drawn
in the domain [−0.5, 0.5]3, and we initialize the frequen-
cies of BACON similar to the NeRF experiments (additional
details in supplemental). We train using a loss function

LSDF = λSDF∥yc − yc
GT∥22 + ∥yf − yf

GT∥22, (8)
where y is the network output, yGT represents the ground
truth SDF values, the f and c superscripts indicate fine and
coarse samples, and we set λSDF to 0.01 for all experiments.
For BACON we compute this loss at all output scales.

We train Fourier Features, SIREN, and BACON on each
dataset for 200,000 iterations with a batch size of 5,000
coarse and 5,000 fine SDF samples. Models are optimized
using Adam [31], and we logarithmically anneal the learn-
ing rate of each method from 1e-2 (BACON), 1e-3 (Fourier
Features), and 1e-4 (SIREN) to a final value of 1e-4 during
the course of training. For NGLOD, we use the default train-
ing settings in the authors’ code4, which samples 500,000
points at each training epoch, uses a batch size of 512, and
trains for 250 epochs. We train NGLOD models with a max-
imum of 4 or 5 levels of detail. Additional levels of detail
result in improved performance, but require more memory.

4https://github.com/nv-tlabs/nglod
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Figure 8. Adaptive-frequency multiscale SDF evaluation for fast
mesh extraction. We propose a multi-scale evaluation which sub-
divides non-empty cells, i.e., when the SDF is smaller than the
cell radius. We further accelerate the evaluation by using fewer
layers (red) for regions that do not require high-frequency details.
We evaluate the full network (blue) only when query locations are
sufficiently close (|SDF| < τ ) to the surface.

Dense Grid (5123) Adaptive-Frequency Adaptive + Multiscale (Proposed)

Time (s) 17.91 5.50 0.222

Table 3. SDF evaluation time. The proposed Adaptive + Multi-
scale method achieves a roughly 80× speedup over naive evalua-
tion of the SDF on a dense grid (averaged over 5 test scenes).

We fit each method to four scenes from the Stanford 3D
Scanning Repository (Armadillo, Dragon, Lucy, and Thai
Statue), as well as a simple sphere baseline (all objects are
shown in the supplemental). The models are extracted at
5123 resolution using marching cubes and evaluated using
Chamfer distance and intersection over union (IOU), and
we report these numbers averaged over the 5 scenes in Ta-
ble 2. The highest resolution outputs of all methods achieve
comparable performance, though note that NGLOD-5 re-
quires over an order of magnitude more parameters than the
other representations, and BACON achieves this despite rep-
resenting all scales simultaneously.

We see similar qualitative trends in Fig. 7, with Fourier
Features, SIREN, NGLOD-4, and BACON all producing de-
tailed reconstructions of the Thai Statue scene. BACON pro-
duces a smooth reconstruction at multiple scales because
of its band-limited output layers. This can be compared to
the low-resolution outputs of NGLOD, which show fewer
finer details, but also have coarse, angular artifacts from the
ReLU non-linearity used in the network. This follows from
the NGLOD frequency spectrum (see Fig. 7), which is non-
zero for high frequencies, including at the coarsest scale.

Accelerated Marching Cubes. We observe that the
band-limited, multi-output nature of our network allows ef-
ficient allocation of resources when evaluating SDFs on a
dense grid for mesh extraction. The key idea is to use the
lower-layer output of BACON when a cell is far away from
the surface (Fig. 8). That is, we early-stop the computation
within the network when |SDF| < τ , where we set τ to
0.7× the finest voxel size. This adaptive computation sig-
nificantly reduces the mesh extraction time (Table 3).

Moreover, we propose a multiscale approach for further

acceleration. As SDF values indicate the distance to the
closest surface, we can consider a cell to be empty when
|SDF| > αR, for circumsphere radius R and some α > 1
that improves robustness to imperfect SDFs (we use α = 2).
Starting from the coarsest resolution grid, we subdivide a
cell only when |SDF| < αR to prune empty space. Multi-
scale extraction approaches have been proposed for extract-
ing occupancy fields from coordinate networks [41], but us-
ing an SDF facilitates pruning since each sample reveals a
region of empty space.

We combine the two strategies by applying the adaptive-
frequency evaluation on each level of the multiscale grids,
leading to roughly 80× faster SDF evaluation than the naive
approach as shown in Table 3 (see supplemental results, all
timings evaluated on an NVIDIA RTX A6000 GPU).

5. Conclusion
In this work, we take steps towards making coordinate

networks interpretable and scale aware. Our approach en-
ables analyzing and controlling the spectral bandwidth of
the network at intermediate layers, allowing multiscale sig-
nal representation, even without explicit supervision. Since
we can characterize the bandwidth of the network using
Fourier analysis, its behavior is provably constrained, even
at unsupervised locations. Moreover, BACON’s intermedi-
ate outputs help to improve inference times via adaptive
frequency evaluation. We show that BACON outperforms
other single-scale coordinate networks for multiscale image
fitting, neural rendering, and 3D scene representation.

Limitations. We also highlight a few limitations of BA-
CON and promising future directions. While we demon-
strated fitting two- and three-dimensional signals, fitting
signals in higher dimensions may require more parameters
to achieve dense spectral coverage due to the curse of di-
mensionality. Still, it may be possible to optimize the ini-
tialization of frequencies in a way that maximizes spec-
tral coverage and mitigates this challenge. Also, our cur-
rent work is limited to single scene overfitting. However,
many generative models work by increasing the frequency
of the output using successive upsampling layers [29],
which is similar in spirit to our method. Recent work on
band-limited models for image synthesis has shown great
promise [28], so applying BACON for generative modeling
is an exciting area for future research.

Societal Impact. We condemn the misuse of scene repre-
sentation networks, including BACON, for malicious deep-
fakes or spreading misinformation, and we emphasize the
importance of research to thwart such efforts (see, e.g.,
Tewari et al. [70] for a discussion of related strategies).
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Voxels: Learning persistent 3D feature embeddings. In Proc.
CVPR, 2019. 2

[66] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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