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Abstract

Training a generalizable 3D part segmentation network
is quite challenging but of great importance in real-world
applications. To tackle this problem, some works design
task-specific solutions by translating human understanding
of the task to machine’s learning process, which faces
the risk of missing the optimal strategy since machines
do not necessarily understand in the exact human way.
Others try to use conventional task-agnostic approaches
designed for domain generalization problems with no task
prior knowledge considered. To solve the above issues,
we propose AutoGPart, a generic method enabling training
generalizable 3D part segmentation networks with the
task prior considered. AutoGPart builds a supervision
space with geometric prior knowledge encoded, and lets
the machine to search for the optimal supervisions from
the space for a specific segmentation task automatically.
Extensive experiments on three generalizable 3D part
segmentation tasks are conducted to demonstrate the
effectiveness and versatility of AutoGPart. We demonstrate
that the performance of segmentation networks using simple
backbones can be significantly improved when trained with
supervisions searched by our method.

1. Introduction

Humans parse objects into parts for a deeper
understanding of semantics, functionality, mobility as
well as the fabrication process. It is natural to consider
equipping machines with such part-level understanding.
Over the past few years, there has been an increasing
interest in 3D part segmentation tasks to support various
applications [14, 23, 32, 46] in vision, graphics, and
robotics. Thanks to the availability of large-scale 3D
part datasets [32, 48] and the development of 3D deep
learning techniques, these methods achieve impressive part
segmentation results when a test shape comes from the
same distribution as the training set. However, they usually

Figure 1. AutoGPart automatically finds real part cues for different
segmentation tasks and supports simple point cloud processing backbones
(e.g. PointNet++ [35]) to successfully parse shapes from novel categories.

suffer from a huge performance drop when it comes to
parsing 3D shapes from a novel distribution, e.g. from a
different semantic category.

In this work, we focus on generalizable 3D part
segmentation tasks. The goal is to learn the essence of
parts on some training sets and to be able to generalize
well to shapes from novel distributions. A main challenge
comes from the versatile cues defining parts. Shape parts
can be defined via many cues like geometric primitive
fitting [14, 23, 46], rigid motions [12, 13, 47], and semantic
prior [27, 29, 32]. The same shape can be segmented into
different parts based upon different cues for the seek of
various applications. Therefore for a specific application,
other than understanding input shapes, a network also needs
to figure out the exact cues defining parts from the training
data. This is where it becomes tricky. Some of these
cues are more salient than others, making them easier to be
captured. When these cues heavily correlate with the real
part cue in the training domain, they could easily become
shortcut features [7,8,15] biasing the network and hindering
the generalizability, as observed in [29].

To cope with the above challenges, existing
works usually focus on a specific type of parts and
incorporate part-type priors towards generalizable 3D part
segmentation. For example, a modularized design has been
adopted to explicitly extract motion flow and the rigid
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motion of local patches so that generalizable motion-based
part segmentation can be achieved in [47]. Similarly,
the networks are guided explicitly to extract primitive
parameters in order to segment primitive parts in [23, 46].
Finding such explicit part type priors requires a deep
understanding of the target task, which might not always
be available. Even after a huge amount of trail-and-errors
in expert designs, such approaches are still not guaranteed
to fully grasp the essence of parts. This is because human
understandings might not align well with the way that
machines prefer to follow [6, 18, 52].

Another line of works from the machine learning
community studies generic domain generalization
algorithms to help a network handle out-of-distribution
samples. However, without considering any geometric prior
which is important for part segmentation tasks, they fail
to improve crucial parts of the model but merely focus on
generic regularization strategies such as making gradients
from multiple domains consistent with each other [30].

In contrast, we present AutoGPart, a generalizable
3D part segmentation technique that could be applied
to any type of 3D parts. Our key observation is that
the generalizability of a 3D part segmentation network is
largely hindered by shortcut features [7]. These shortcut
features tend to be quite salient and closely correlated with
segmentation labels in some training domains. Through
finding proper intermediate supervisions that are more
closely related with real part cues and loosely correlated
with shortcut features, we can downweight the influence
of shortcut features by jointly training the network with
segmentation and the intermediate supervisions.

We design a parametric model to depict the
distribution of possible intermediate supervisions.
And we inject geometric priors in the model space
such that these supervisions are part-aware and
geometrically-discriminative. In addition, we present
an automatic way for optimizing the distribution of
these supervisions for a supervised part segmentation
network. A beam search-like strategy is then applied to
greedily generate some suitable supervisions from the
distribution. With the additional supervision, task-specific
part cues can be automatically discovered without experts’
trail-and-errors. Comprehensive experiments on three
generalizable 3D part segmentation tasks demonstrate
the effectiveness of AutoGPart, including 4.4% absolute
Segmentation Mean IoU improvement on mobility-based
part segmentation , 4.2% on primitive fitting and 0.7%
absolute Mean Recall [29] improvement on semantic-based
part segmentation.

To summarize, our contributions are threefold: 1) We
present a generic method to improve the generalizability
of 3D part segmentation networks via automatically
discovered intermediate supervisions and the method is

suitable for different part definitions. 2) We design
a parametric model to depict the distribution of useful
intermediate supervisions with geometric prior encoded. 3)
We propose an automatic search algorithm to find the proper
intermediate supervision given a specific part segmentation
task.

2. Related Work
Domain Generalization. As an important technique
to handle out-of-distribution scenarios, existing domain
generalization approaches can be categorized into four
streams: 1) learning domain invariant features from
multiple source domains aiming to minimize the difference
between source domains [22, 25, 33], meta-learning [20,
21], and other model-agnostic strategies [30]; 2) data
augmentation algorithms to simulate domain shift [55];
3) ensemble learning techniques that train domain-specific
models and uses their ensemble for inference [45, 55];
4) automated machine learning (AutoML) techniques that
aim to automatically search for data augmentation [4, 24]
or neural architecture [1, 2] which can achieve optimal
generalization performance. Different from previous
AutoML strategies, we propose to search for geometric
and part-aware features for intermediate supervisions.
Such features are invariant across shapes from different
distributions, indicating the superiority of our method to
improve the generalizability of the network.
3D Part Segmentation. Mobility-based part segmentation,
primitive fitting, and semantic-based part segmentation are
three important and representative 3D part segmentation
tasks, on which we conduct experiments to prove
the effectiveness and versatility of AutoGPart . 1)
Mobility-based part segmentation aims to parse articulated
input objects into rigidly moving parts. A number of
previous works have devoted into it based on traditional
techniques such as clustering and co-segmentation [41,
50], or deep 3D neural networks [13, 47]. 2) Primitive
fitting addresses the task of clustering input points and
fitting them with geometric primitives. Standard solutions
include RANSAC [37], region growing [31], supervised
learning [14, 23, 46] and unsupervised learning [5, 40].
Recently, [23] proposes an end-to-end neural network
that takes point clouds as input and predicts a varying
number of primitives. [46] further uses hybrid feature
representations to separate points of different primitives.
3) Semantic-based part segmentation detects and delineates
each distinct object of interest. Conventional approaches
rely on manual design on geometric constraints, including
K-means [38], graph cuts [9] and spectral clustering [26].
As for learning-based methods [34, 49], although they
achieve state-of-the-art performance on seen categories, it
is hard for them to parse shapes from unseen categories
due to category-variant information that is easy to take
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than real cues defining parts [29]. Different from
previous task-specific methods that employ sophisticated
frameworks and delicately designed supervisions, we
demonstrate that simple learning frameworks equipped with
the intermediate supervisions searched from AutoGPart can
achieve comparable or even better performance than
existing task-specific designs on the three tasks.
Auxiliary Supervision. Adding auxiliary supervisions
is a common strategy to reguralize the learning process
for performance improvement. Among them, weight
decay is a widely used technique [17, 28]. Besides,
multi-task learning [3, 11, 36, 51] trains a network to solve
multiple tasks by sharing parameters between different
tasks, where the interested branches acquire benefits from
other branches. Deeply Supervise [19] and Inception [39]
explore how to add auxiliary supervisions on hidden layers
to improve the quality of learned low-level features [53,54];
LabelEnc [10] proposes a new label encoding function
that maps ground-truth labels to the latent embedding
space to add intermediate supervisions. In this work, we
automatically select proper intermediate supervisions for
generalizable 3D part segmentation networks. It can be
viewed as an approach that utilizes auxiliary supervisions
to improve the network’s generalizability.

3. Method

We present AutoGPart, a technique to improve the
cross-domain generalizability of a supervised 3D part
segmentation network by automatically finding useful
intermediate supervisions for the network. Then at training
time, supervisions found by AutoGPart are introduced in
addition to the segmentation supervision to alleviate the
influence of shortcut features [7] and capture real part cues
that are invariant across different shapes distributions. The
resulting network can better generalize to shapes from novel
distributions without any additional cost at inference time.
Figure 2 shows an example where AutoGPart is plugged
into an end-to-end network for primitive segmentation.

To automatically find such supervisions, we design a
parametric supervision feature space with geometric prior
knowledge encoded (a parametric intermediate supervision
model, Sec. 3.1). To adapt the model for a specific
segmentation network, we optimize its parameters via a
“propose, evaluate, update” strategy (Sec. 3.2). After that,
a greedy search strategy is utilized to select the optimal
supervisions from the optimized model (Sec. 3.3).

3.1. Parametric Modeling for the Supervision Space

Based on the observation that many previous
generalizable 3D part segmentation works guide part
feature learning via intermediate supervisions calculated
from per-point geometric features and ground-truth part

labels, we assume that being aware of some of such features
can help the network learn real part cues. We propose
to automatically search for proper part-aware supervision
features for each type of part and add intermediate
supervisions to encourage the segmentation network to
leverage those features. We then move on to introduce the
structural model for supervision features and further the
supervision space.

Structural model for supervision features. We define
the possible supervision features as the outcome of a
tree-structured operation flow (an operation tree) taking
geometric features and ground-truth part labels as input.
It is inspired by the calculation process of hand-crafted
part-aware geometric features (e.g. rotation matrix, cylinder
axis [23], etc.).

Good supervision features could bridge the gap
between input point cloud geometry and the output
segmentation labels while avoiding shortcuts. And
it is crucial to consider how to use ground-truth
labels in order to generate such part-aware and
geometrically-discriminative supervision features. To
compute a possible intermediate supervision, instead of
treating ground-truth labels as additional input feature
vectors, we pre-encode these labels by transferring
geometric features of each point to part-aware features. We
then use such part-aware features as input to an operation
tree directly.

An operation tree transforms input features by operators
for the output intermediate supervision feature. Such
operators include grouping operators (e.g. sum, SVD1,
etc.) that summarize a feature set into a point-level
feature, point-level unary operators (e.g. square, double,
etc.), and binary operators (e.g. add, minus, etc.) that
encourage feature communications to enlarge and diversify
the supervision space.We further introduce some fixed
operator-type combinations named operation cells such as
a unary operator followed by a grouping operator. They
are high-frequent operation combinations in the computing
process of hand-crafted geometric features [23, 47].

An operation tree is then constructed by connecting
operation cells.

Supervision feature space. The supervision feature space
consists of all valid operation trees. We set the maximum
height of an operation tree to three, thus the supervision
feature space is spanned by all possible tree structures
and sub-structures of cells in it (Figure 3). To measure
the generalization benefit of each supervision feature and
to optimize the space toward the optimal intermediate
supervisions for a segmentation network, a parametric
distribution model (MT (·|θ)) is constructed to depict the
operation tree space. The subscription T here indicates

1Singular Value Decompose.
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Figure 2. An example of applying AutoGPart on an end-to-end segmentation network for the primitive fitting task. AutoGPart builds a
learnable parametric supervision model MT (·|θ) that can be optimized in order to find proper intermediate supervisions for a generalizable
3D part segmentation network. A “propose, evaluate and update” strategy is adopted to learn θ. In each circle, an operation tree is sampled
from M, which is then used to calculate part-aware geometric features for each point. The generalization ability of the proposed supervision
is evaluated and the resulting score is further used to update θ in the updating stage. Light purple lines imply the supervision generation
process and green for the parameter updating process.

that it is constructed based on prior knowledge of the task
set T , θ denotes parameters introduced in the distribution
model. In practice, a marginal distribution is introduced for
the grouping operator of the root cell. Then, conditional
distributions are introduced for children operators and leaf
part-aware features conditioned on their parents.

Figure 3. Left side: Left side: Supervision feature space. Right Side:
An example for the operation tree whose output feature is the rotation
matrix calculated by the Orthogonal Procrustes algorithm. Operation cell
abstraction is not drawn on it.

3.2. Learning Task-Conditioned Supervision
Distribution

To optimize the distribution parameters θ for a
segmentation network, we adopt a “propose, evaluate and
update” strategy.
Supervision proposal. Since a supervision feature is
modeled by its generation process in our model, an
operation tree depicting the generation of a supervision
feature is sampled from the parametric model MT (·|θ)
to generate a supervision feature. After that, the input
part-aware geometric feature matrices are passed through
the sampled operation tree to generate the corresponding
supervision feature s. Then the ground-truth intermediate
supervision feature g⃗i

gt for each point i is calculated by
passing its input features through s.

Supervision evaluation. The cross-domain generalization
ability of the proposed supervision feature is estimated
under a simulated domain-shift setting. Firstly, the
training domain is split into different sub-domains. After
that, the OOD performance of the sampled supervision
feature is estimated by the average generalization error
calculated on all of those train-validation splits created by
learning one sub-domain out for validation. The network
is trained together with the proposed supervision s and
the segmentation task-related supervision to evaluate the
generalization benefit of s.
Supervision space optimization. The parameter θ is
updated by the probability density value of the generated
supervision (MT (s|θ)) and its estimated generalization
score. The updating strategy is derived from the
REINFORCE [44] algorithm. Simply updating parameters
of conditional distributions involved in the generation
process of s via REINFORCE equals to updating the joint
distribution by REINFORCE.

3.3. Greedy Supervision Selection

Though we can select a single supervision feature
from the supervision model after the optimization (e.g.
the feature with the highest probability), we wish to
select multiple features to use for better generalizability
enhancement.

To be more specific, we adopt a greedy search strategy
to select several supervisions (one to three, in our
practice) to use further for the segmentation network.
The greedy search aims to choose an optimal supervision
set step-by-step. It starts from a set containing single
supervisions sampled from the optimized supervision
space. The generalization ability of such supervision
features are then estimated. After that, supervisions with
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top performance are kept and further used to construct
a set containing two supervision pairs. Similarly, the
performance of supervision combinations are estimated
with a new set constructed by coupling top supervisions in
each following step. Finally, the supervision combination
achieved the best performance is then selected to use
further.

4. Experiments
We evaluate the effectiveness of the proposed

AutoGPart in searching for suitable intermediate
supervisions and improving the domain generalization
ability of a segmentation network on three 3D
part segmentation tasks: mobility-based part
segmentation [13, 47], primitive fitting [14, 23, 46]
and semantic-based part segmentation [29].

For each task, we set a default segmentation network to
evaluate AutoGPart on, which is a point-cloud processing
backbone for representation learning followed by a
classification-based segmentation module to propose
segmentations. Two backbones are used in experiments,
namely PointNet++ [35] and DGCNN [43]. We denote
such two segmentation networks as “PointNet++” and
“DGCNN” directly for simplicity. For each task, we
demonstrate that a simple 3D point-cloud segmentation
network trained with intermediate supervisions searched by
AutoGPart and segmentation task-related supervisions is
able to perform better than task-specific models proposed
in previous works as well as networks trained by generic
domain generalization strategies.

4.1. Mobility-based Part Segmentation

Datasets. Three datasets are used in the task: training
dataset, auxiliary training dataset that is only used in the
supervision search stage to help simulate domain-shift, and
the out-of-domain (OOD) test dataset. The training dataset
is created from [48], containing 15,776 shapes from 16
categories. The auxiliary training dataset is created from
PartNet [32], containing 5,662 shapes from 4 categories
different from those used in the training dataset. The test
dataset used is the same as the one used in [47], which
is created from [13], containing 875 shapes covering 175
objects from 23 categories.

Experimental settings. We evaluate the effectiveness of
AutoGPart on both PointNet++ and DGCNN. Metric used
for this task is Segmentation Mean IoU (MIoU). To apply
AutoGPart on this task, we add a flow estimation module
ahead of the segmentation network. We compare our
method with both task-specific baselines [41, 47, 50], and
task-agnostic methods [20, 55]. Deep Part Induction [47] is
trained on the same training dataset using the same settings
as those used for our models. All learning-based models

Table 1. Experimental results on the mobility-based segmentation task.
For abbreviations used, In/Out-of-dist. refers to In/Out-of-distribution
performance; “PN++” denotes “PointNet++”; “JLC” means “JLinkage
clustering”; “SC” means “Spectral Clustering”. Subscriptions indicate the
used backbones.

Method In-dist. Out-of-dist.
PointNet++ 86.4 61.0

DGCNN [43] 88.3 68.1
MixStylePN++ [55] 86.6 63.4

MixStyleDGCNN [55] 83.1 69.5
Meta-learningPN++ [20] 71.3 63.4

Meta-learningDGCNN [20] 76.5 69.4
JLC [50] N/A 67.3
SC [41] N/A 69.4

Deep Part Induction [47] 84.8 64.4
AutoGPartPN++ 87.2 66.5

AutoGPartDGCNN 83.1 73.8

use only one forward flow estimation and segmentation
proposal pass with no iteration between them.

Experimental results. The performance of AutoGPart and
baseline models are summarized in Table 1. Based on
the table, we can make the following observations: 1)
AutoGPart can find useful intermediate supervisions that
can significantly improve the generalization ability of
both PointNet++ and DGCNN (e.g. 4.9% absolute MIoU
improvement on OOD-test set for PointNet++). This can
verify the effectiveness of adding intermediate supervisions
to boost the generalization ability of segmentation networks
and the ability of AutoGPart to find such supervisions. 2)
AutoGPart can outperform all task-specific models by a
large margin, including traditional methods (e.g. JLinkage
clustering) and learning based strategies such as Deep
Part Induction. This may echo the proposed assumption
that hand-crafted supervisions may not be optimal ones
for the task due to the misalignment between human
knowledge and machine understanding. 3) AutoGPart can
outperform all task-agnostic strategies when using the same
point-cloud processing backbone. A possible reason is that
geometric prior knowledge which is quite useful to solve
the task inherently is carefully considered in the design of
AutoGPart , while task-agnostic strategies are not aware of
such prior knowledge.

4.2. Primitive Fitting

Dataset. Dataset used in this task is the same as the one
used in [23]. However, instead of using the provided
data splitting method directly, we re-split the dataset into
4 subsets according to shapes such that it is more suitable
to test the cross-domain generalization ability of a model.
Three subsets out of them, containing 13,528 shapes in
total, are used for training, including the supervision search
stage and regular training stage for supervision evaluation.
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Figure 4. Segmentation results visualization for the primitive fitting task. “Ours” denotes the model “AutoGPartHPNet” and “Baseline”
denotes the model “HPNet” in Table 2.

The left one subset, containing 3,669 shapes, is used for the
out-of-domain test. For all compared baselines, we test their
performance on the re-split dataset for a fair comparison.

Experimental settings. We evaluate the effectiveness
of AutoGPart on both PointNet++ and DGCNN. Metric
used for this task is MIoU. We compare our method
with both task-specific baselines [23, 46] and task-agnostic
methods [20, 30, 55].

Among them, HPNet [46] adopts a clustering-based
two-stage segmentation network for feature learning and
segmentation proposal. Based on the observation that
the high performance achieved by HPNet is largely
powered by its clustering-based segmentation module
and the synergies between the added supervisions and
the clustering module, we conduct the following two
experiments to fairly compare AutoGPart with HPNet,
since the classification-based segmentation module used
in default settings of AutoGPart is not that representative
compared with Mean-Shift clustering used in HPNet: 1)
Plug AutoGPart in HPNet’s first learning stage to evaluate
the effectiveness of AutoGPart in finding useful features
that can regularize this learning stage. 2) Replace the
clustering-based segmentation proposal module used in
HPNet with a classification-based module to compare the
effectiveness of supervisions introduced in HPNet and
those searched by AutoGPart under a same segmentation
network. Resulted models are denoted as “AutoGPartHPNet”
and “HPNet*” respectively in Table 2.

Experimental results. The performance of AutoGPart and
other baseline models are summarized in Table 2. We
can make the following observations from Table 2: 1)
AutoGPart can find useful intermediate supervisions to
improve the generalization ability of a simple segmentation
network for the primitive fitting task using either

PointNet++ or DGCNN as the backbone, similar with
that observed for mobility-based part segmentation task.
2) For models using classification-based segmentation
modules, AutoGPart can boost a simple segmentation
network’s performance better than all task-specific models
such as SPFN. A possible reason is that the added
supervisions, though believed useful by human to help
the network learn a correct solution inherently, may not
align well with the way preferred by machines to solve
the task. Thus, those hand-crafted supervisions may not be
effective enough to train a generalizable network. Besides,
networks may even use shortcut features to optimize
those supervisions. For models using clustering-based
segmentation modules, AutoGPartHPNet can achieve better
generalization performance than HPNet by adding some
intermediate supervisions in its first learning stage. It is
probably because that the added supervisions searched by
AutoGPart can help the network use more real cues to
learn per-point features in this stage. 3) AutoGPart can
help better improve the generalization ability of 3D
part segmentation networks compared with task-agnostic
methods.

The absolute improvement that AutoGPart adds on
HPNet is not as significant as PointNet++ or DGCNN,
for which we want to emphasize two points as follows:
1) The high performance achieved by HPNet is largely
benefit from the clustering-based segmentation module
(i.e. 69.6% MIoU on OOD-test set achieved by HPNet*
v.s. 79.5% achieved by HPNet). However, such a
segmentation proposal process is quite time-consuming,
where about 40 hours are needed to segment all test
shapes, while a classification-based one only needs no
more than 40 seconds. 2) For classification-based
segmentation networks, intermediate supervisions searched
by AutoGPart are clearly better than that used in HPNet

11629



Table 2. Experimental results on the primitive fitting task. For
abbreviations used, In/Out-of-dist. refers to In/Out-of-distribution
performance; “PN++” denotes “PointNet++”. Subscriptions indicate
the used backbones; “GS” means “Gradient Surgery”. “HPNet” and
“AutoGPartHPNet” use clustering-based segmentation modules. Others use
classification-based modules.

Method In-dist. Out-of-dist.
PointNet++ 81.5 71.6

DGCNN 93.6 68.0
GSPN++ [30] 90.7 70.3

GSDGCNN [30] 92.6 71.6
Meta LearningPN++ [20] 65.0 68.5

Meta-learningDGCNN [20] 67.1 69.3
MixStylePN++ [55] 92.1 70.9

MixStyleDGCNN [55] 93.7 71.4
SPFN [23] 94.4 72.3

HPNet* [46] 93.9 69.6
HPNet [46] N/A 79.5

AutoGPartPN++ 86.3 76.5
AutoGPartDGCNN 94.2 73.4
AutoGPartHPNet N/A 80.4

by comparing the performance of AutoGPartDGCNN with
HPNet* (i.e. 73.4% v.s. 69.6% MIoU on OOD-test set).
The significant effectiveness of AutoGPart in improving the
generalization ability of an end-to-end trained model is of
larger practical value.

4.3. Semantic-based Part Segmentation

Dataset. We use the same dataset provided by [29] as well
as the train-test data splitting strategy stated in the paper.

Experimental Settings. The evaluation metric used in
this task is the Mean Recall value, the same as the one
used in [29]. Values reported in Table 3 are the average
Mean Recall scores over all test categories. We compare
AutoGPart with four task-specific methods [16, 29, 42, 49],
and two task-agnostic approaches [20, 55].

Experimental results. The performance of AutoGPart and
other baseline models are summarized in Table 3. Different
from the above two tasks, where the criterion about
segmenting a shape is obvious such as rigid motions,
it is not that clear what part cues are useful for this
task, meaning not enough prior knowledge to guide
a learning-based network’s design. Thus, the role of
ground-truth geometric features is not that important in
the previous task-specific designs [29, 42, 49]. However,
their resulting models tend to perform not that well
when parsing shapes from novel categories, as shown
in Table 3, probably due to the influence of shortcut
features. However, our method can help improve the
generalization ability of a simple segmentation network
to a level comparable to the two-stage learning-based
method [29] as well as traditional segmentation methods

Table 3. Experimental results on the semantic-based part
segmentation task. For abbreviations used, In/Out-of-dist. refers to
In/Out-of-distribution performance. The backbone used in AutoGPart is
PointNet++.

Method In-dist. Out-of-dist.
MixStyle [55] 34.4 30.7

Meta-learning [20] 35.1 29.7
PartNet-InstSeg [32] 33.9 26.7

SGPN [42] 25.0 20.2
GSPN [49] 23.5 28.7

Learning to Group [29] 35.2 32.0
WCSeg [16] 29.8 33.2
AutoGPart 35.7 33.9

such as WCSeg [16]. It demonstrates the usefulness of
ground-truth part-aware features in providing real cues for a
generalizable segmentation network; And also indicates the
superiority of AutoGPart to find such useful features for a
task where human prior knowledge is not that available or
hard to be translated to guide a network’s learning process.

4.4. Qualitative Evaluation

We visualize the segmentation results of
“AutoGPartHPNet” and “HPNet” in Table 2 on the Primitive
Fitting task for a intuitive comparison and understanding
w.r.t. the network’s generalization ability on OOD
shapes. Figure 4 shows that AutoGPartHPNet can achieve
better segmentation performance on shapes from a novel
distribution, i.e., having a relatively large primitive-type
distribution gap from that of training shapes. A possible
reason is that the added intermediate supervisions in the
first stage of HPNet can help the model learn per-point
features relying more on real part cues, thus less sensitive to
the primitive type of each part as well as the primitive-type
distribution of the shape.

Besides, we draw an intermediate supervision feature
searched from our designed supervision space in Figure 6
for an intuitive understanding towards the property of our
searched feature. It can be seen that the searched feature
is not only discriminative across different parts, but also
changes continuously within one part. Such property may
make it be more friendly for the network learning real part
cues avoiding shortcut features that only exist in shapes
from training distributions.

5. Ablation Study

In our method, we construct an intermediate supervision
space and search for useful supervisions from it to increase
the generalizability of a segmentation network. In this
section, we ablate our method by replacing some crucial
designs with other possible alternatives to analyze the effect
of those parts.
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Table 4. Ablation study w.r.t. reward function design and
supervision space design. For abbreviations used, “Arch.” refers to
“Architecture”; “PN++” denotes “PointNet++”; In/Out-of-dist. refers to
In/Out-of-distribution performance.

Ablation Arch. In-dist. Out-of-dist.
/

PN++

87.2 66.5
−Cross Validation 85.6 64.6

−Gap 90.6 64.9
Less operants 87.5 63.1

Less unary operators 86.8 64.1
Less binary operators 83.0 65.1

Less tree height 82.1 63.5
/

DGCNN

83.1 73.8
−Cross Validation 84.5 73.1

−Gap 89.4 70.4
Less operants 92.1 70.6

Less unary operators 89.3 69.5
Less binary operators 89.7 71.6

Less tree height 89.4 71.8

Reward function design. In AutoGPart , we adopt the
average generalization gap over all train-validation splits as
the reward value to estimate the effectiveness of the selected
supervision on improving the model’s generalization ability.
The intuition is that the cross-validating the generalization
gap of the searched supervision feature could probably give
its generalizability a better estimation. In Table 4, we
validate the superiority of the designed reward function
by replacing it with 1) generalization gap on a single
split (denoted as “−Cross validation” ), and 2) average
performance on validation sets over all splits (denoted as
“−Gap” ).

Supervision space design. In our method, we use a
large supervision feature space to increase the diversity
of features in it and also to enable the model a high
freedom to select its preferred features by itself at the
same time. To demonstrate its benefit, we downsize
the supervision space by downsizing the input part-aware
geometric feature set, the unary operator set and the binary
operator set respectively and then evaluate the effectiveness
of the searched supervisions. Experimental results prove the
superiority of using a large supervision space (see Table 4).

Supervision selection strategy. In our method, we use a
greedy search-like strategy to select supervision features
for future use based on the intuition that such a strategy
can help us find a good supervision feature combination
from the optimized space. To demonstrate the effectiveness
of the greedy supervision selection strategy used in our
method, we try to ablate it and consider the following
two alternatives: 1) Select top K(1 ≤ K ≤ 3) features
from the supervision feature set ordered by the probability
density value. Results are summarized in Table 5. 2)
Choose features from the optimized distributions randomly.
Ten random features are sampled and their results are
summarized in Figure 5.

Figure 5. Ablation study w.r.t. supervision selection strategy.
Ten supervision features are randomly selected from the optimized
distributions and evaluated. Left for PointNet++ and right for DGCNN.

Figure 6. Visualization for one searched intermediate supervision feature
from our designed feature space. Upper: Segmentations; Lower: Searched
feature (converted to RGB values). The left most shape is the one from the
training dataset, while the other three are from the test dataset.

Table 5. Ablation study w.r.t. the supervision selection strategy.
For abbreviations used, “Arch.” refers to “Architecture”; “PN++”
denotes “PointNet++”; In/Out-of-dist. refers to In/Out-of-distribution
performance.

Ablation Arch. In-dist. Out-of-dist.
/

PN++

87.2 66.5
Top1 87.1 65.6
Top2 81.5 64.5
Top3 85.8 62.8

/

DGCNN

83.1 73.8
Top1 92.1 70.1
Top2 89.8 67.8
Top3 90.7 71.6

6. Discussion and Conclusion

In this paper, we propose to automatically search for
proper intermediate supervisions for generalizable 3D part
segmentation networks.

Although experimental results can prove the
effectiveness and versatility of AutoGPart to some
extend, there are still many directions worth exploring
by the community in the future: 1) Search intermediate
supervisions and the backbone’s structure at the same time.
Synergies between backbone architecture and intermediate
supervisions may be found since different backbones may
prefer different features. 2) How to add intermediate
supervisions. Directly predicting a ground-truth feature
may not be suitable for each feature. Moreover, synergies
between supervisions features and how to supervise the
network to learn such features may be discovered.
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