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Abstract

As a common problem in the visual world, contex-
tual bias means the recognition may depend on the co-
occurrence context rather than the objects themselves,
which is even more severe in multi-label tasks due to mul-
tiple targets and the absence of location. Although some
studies have focused on tackling the problem, removing the
negative effect of context is still challenging because it is
difficult to obtain the representation of contextual bias. In
this paper, we propose a simple but effective framework em-
ploying causal inference to mitigate contextual bias. We
first present a Structural Causal Model (SCM) clarifying
the causal relation among object representations, context,
and predictions. Then, we develop a novel Causal Context
Debiasing (CCD) Module to pursue the direct effect of an
instance. Specifically, we adopt causal intervention to elim-
inate the effect of confounder and counterfactual reasoning
to obtain a Total Direct Effect (TDE) free from the contex-
tual bias. Note that our CCD framework is orthogonal to
existing statistical models and thus can be migrated to any
other backbones. Extensive experiments on several multi-
label classification datasets demonstrate the superiority of
our model over other state-of-the-art baselines.

1. Introduction

Context is a very common element in the visual world.
For a single instance in an image, its context consists
of other co-occurrence instances together with the back-
ground. In multi-target tasks like multi-label classifica-
tion and detection, context (or, instance relation) modeling
seems to have considerable potential to improve the perfor-
mance. For example, the cutlery in the soup is probably
a spoon rather than a fork or knife. In fact, from recur-
rent neural networks [40, 46], to graph convolutional net-
works [5,10,47], until the popular transformer-based frame-
works [19, 53], recent years have witnessed numerous at-
tempts to model the label relations in multi-instance images.

Despite the remarkable progress these models have
made, they may overlook a basic question: is modeling con-

text always beneficial in visual recognition? As is illustrated
in Fig. 1, we uncovered an ever-overlooked phenomenon
in multi-label classification: context may mislead the clas-
sifier, either giving the nonexistent object a high score in
the scene where it usually arises, or ignoring the object ap-
pearing in a rare background. The occurrence can be partly
blamed on the biased data or weak backbones; but too much
attention on the label relationships will ultimately aggravate
the bias. Although some works [30,47] have questioned the
necessity of label modeling, they do not address the prob-
lem of contextual bias and lack the fundamental theory.

Contextual bias is not a fresh topic in the academic
world. In fact, it is widely reported in many fields [11, 32].
Recent works [13] also give insight into the reason for
contextual bias in computer vision: neural networks are
statistics-based and ”lazy”. When the networks find the
context is enough to recognize most of the objects, they of-
ten do not focus on the representations of instances. When
the training data is limited (e.g. few-shot learning) or defi-
cient (e.g. long-tail distribution), the problem is more se-
vere and obvious. In fact, there have been some works
[36, 49, 52] attending to the bias in these situation, never-
theless, they do not work on balanced datasets like MS-
COCO [23] or other common tasks.

Paradoxically, context is not always bad. On one hand,
bias towards context would mislead the prediction in some
cases. On the other hand, it is somewhat reasonable. The
appearance of contextual bias means the network indeed
captured the inter-dependencies of classes: fork or knife is
indeed more rational to appear on the dining table as op-
posed to on the street or grasslands, and rough intervention
will damage the learning of the feature [18]. Actually, in the
tasks like scene graph generation [45] or human object in-
teractions [45] where the datasets are seriously biased, con-
text priori has proved to be beneficial to the results. How-
ever, it does not mean contextual bias can be neglected. A
more robust and sensible prediction should come from the
object itself rather than the context, and classification by
context is more likely the expediency. For tasks like multi-
label classification, whose datasets are balanced and large,
contextual bias will damage the final prediction.

Mitigating the contextual bias in common multi-label
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Figure 1. Examples that contextual information can do evil. We show two labels in MS-COCO: apple and knife. (a)Label dependencies
P (X|Y ) of the two categories, which are computed through dividing the number of co-occurrence by the number of apple/knife. (b)
Examples from the ResNet101 baseline. The left column depicts the objects in their common context, which is in large number and
correctly predicted. And the right depicts the opposite: the objects in the unusual context or the absence of objects in their common
context, which is in few number and incorrectly predicted.

tasks is challenging. In a relatively unbiased dataset, the
contextual bias is not very obvious, hence it is difficult to
obtain the representation of the context. Thanks to the the-
ory of causality, we can revisit the context in a causal view:
the image-specific contextual message is indeed a mediator
preventing results from being generated directly by the rep-
resentations of instances. Consequently, the final prediction
is a mixed effect of the object and the context. Besides, the
prior context knowledge (e.g., biased datasets or pretrain
model) acts as a confounder giving rise to spurious corre-
lation among labels. As is illustrated in the last column of
Fig.1(b), even though the scene of dining table is not the
direct cause of apple or knife, the biased prior knowledge
still fools the classifier to learn a correction between them.

In this paper, we build a Structural Causal Model [29]
in Section 3 clarifying the causalities among elements men-
tioned above. With the assistance of causal inference, we
propose a novel debiasing paradigm: Causal Context Debi-
asing (CCD) Module, to conquer the effect of contextual
bias. We first implement the backdoor adjustment [28],
which is essentially a causal intervention turning off the
confounding switch and treating every contextual content
equally in the prediction. Then, by counterfactual infer-
ence, we elegantly eliminate the effect of contextual bias
and obtain the direct causal effect from the objects them-
selves, without hurting the feature representation learning.
It is worth noting that our method is model-agnostic, hence,
our approach can be used on a variety of backbones and
achieve performance improvements. Moreover, different
from many recent classification models which introduce
complicated architecture (e.g. GCN and transformer) or ad-
ditional external information (e.g., word embeddings), the
parameter increasement from our method is very limited.

The main contributions of our paper are summarized as:

• We establish a Structural Causal Model (SCM) to un-
cover the causal relevance among contextual priori,
object feature, contextual bias, and final prediction in
multi-target visual tasks. We find the image-specific
context is indeed a mediator and contextual priori is a
confounder, which sheds some light on how prediction
is influenced by the context.

• We propose a simple, effective and model-agnostic
framework for contextual debiasing based on causal
inference. By the combination of backdoor interven-
tion and counterfactual reasoning, we remove the ob-
stacle of the confounder as well as contextual bias, ob-
taining the direct effect caused by target instances.

• We conduct extensive experiments in multi-label clas-
sification to verify the effectiveness of our methods.
Results on three widely-used datasets MS-COCO [23],
PASCAL-VOC [12] and NUS-WIDE [6] show that
our approach can significantly improve both CNN
and transformer backbones, outperforming the state-
of-the-art on these datasets.

2. Related Work
Context Modeling in Mult-Label Classification. Mod-
eling the contextual information is a common strategy in
multi-target tasks. Since our experiments are mainly im-
plemented in the multi-label classification, we take the
model in this field for instance to unfold how the context
is modeled. Grouped by methods, they can be summarized
as attention-based, GCN-based and transformer-based, and
grouped by motivations, they strive to model class depen-
dencies and regions of interest.

Capturing class corrections has been a hot research topic
in multi-label recognition. Earlier works model the label
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dependencies by graph model [21] and CNN-RNN frame-
works [40, 46], and these methods tend to import external
information like word vectors. Then, here comes an explo-
sion of graph convolutional networks [3, 5, 10, 47]. Chen
et al. [5] learned the classifier by propagating the semantic
representations of categories through iterative GCN. Ye et
al. [47] developed a dynamic graph along with a static graph
to catch the dynamic dependencies among labels. However,
as is demonstrated above, label dependencies may be harm-
ful to the predictions, especially for the strong backbones
that are able to capture features of objects themselves.

Finding regions of interest is another hotspot in contex-
tual modeling. Attention mechanisms used to be the most
common approaches [17, 43, 55], until the appearance of
transformers in visual tasks. The transformer has the po-
tential for both modeling label corrections and finding local
regions, thus, a series of transformers for multi-label clas-
sification has been proposed [19, 53] recently. Lanchantin
et al. [19] exploited dependencies among labels and fea-
tures by virtue of label mask mechanisms in a transformer.
Zhao et al. [53] employed a transformer-based dual learning
framework to capture the structural relation and semantic
relation. Nevertheless, whether transformer-based models
or GCN-based models face the same problems: extensive
architecture modification and external information depen-
dence. For the former, complicated architecture makes it
hard to evaluate if the performance is indeed increased by
the growth of parameters. For the latter, robustness and flex-
ibility are limited when extra data is unavailable. By com-
parison, our method is much more cost-friendly and can be
easily implemented on different backbones.
Causalities in Computer Vision. Causal inference [28,29]
is aimed at pursuing the causal effect, which has been seen
in medical, political and psychological research for years.
Recently, causalities have also drawn growing attention in
computer vision [35, 36, 42, 49, 52]. Significantly, many of
them focus on various bias in different tasks (e.g. contextual
bias and long-tail bias). Yue et al. [49] blamed contextual
bias on the pretrain knowledge in the few-shot learning and
then eliminated the bias by causal intervention. Zhang et
al. [52] had even noticed the contextual bias in multi-label
classification whose results are used as weak supervision in
semantic segmentation, and improved the classification by
the results of down-stream segmentation.

Most similar to our work, Tang et al. first introduced the
combination of de-confounded training and the Total Di-
rect Effect (TDE) [35,36]. However, our CCD is distinctive
in three aspects: 1)Intervention: the intervention is not an
auxiliary for the TDE, i.e., the two parts can be indepen-
dently applied in our method. 2)TDE: the implementation
of causal elements and bias representations are totally dif-
ferent, which are the core of the two models. 3)Training:
TDE in [35, 36] is adopted in inference, in that it cannot

converge in the training, but our Eq.7 is trainable.

3. Structural Causal Model
As is discussed in Section 1, context as a mediator can

confuse the classification and result in a suboptimal solu-
tion. To further elaborate on how classifications are mis-
led by the bias, we build a Structural Causal Model (SCM)
shown in Fig. 2 (a), which indicates the causalities among
context information (C,M ), object representations (X),
and predictions(Y ). The nodes in the directed acyclic graph
denote causal entities, and the edges denote causalities be-
tween two nodes: X → Y means effect Y is caused by X .
It is worth noting that the graph is applicative in many vi-
sual tasks. Next, we give a thorough introduction into the
rationale behind the SCM and the causal solution is detailed
in Section 4.
C → X. We denote C as the prior context knowl-
edge. There are many potential elements responsible for
the contextual bias, they may be from biased datasets and
pre-trained knowledge or from training process (e.g. mo-
mentum and batch normalization) or from both. Imagine
that there is a biased dataset where every fork arises on the
dining table, the model would be confounded to build spu-
rious corrections between the two classes, and the learning
strategy above will aggravate the existing bias. Here, we
generalize those elements as a confounder set C. The link
indicates the prior knowledge is highly involved in the ex-
traction of X .
(C,X) → M. We term M as the image-specific con-
text, which is directly fromX but essentially inherited from
C. For one thing, the context is a visual combination of vari-
ous other objects, for example, a streetscape can be depicted
as the label car with its context containing person and build-
ing, and it is the same when the lead is person or building.
For another, theoretically, the contextual bias as representa-
tions from the image can be formed by semantic manifolds
of different contextual templates [2]. In particular, how to
obtain context representations of present samples is crucial
for the counterfactual inference, and we will introduce the
implementation in more detail in the next section.
(X,M) → Y. The links denote that the final predic-
tion effect can be disentangled into two ways: the direct
effect X → Y and the mediate effect X → M → Y . The
causality in M → Y is easy to understand: the contextual
information has considerable impact on the prediction for
labels. The object itself and its context together affect the
recognition of it. In some cases when these instances are
imperceptible, context is likely to become the main effect
determining the predictions. However, what determines the
occurrence of an object is that the object is actually present
in the image, not that ”it should occur”, which motivates us
to mitigate the effect of context. Free from the negative ef-
fect of context, the predictions are more robust and reliable,
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(b) TDE inference in causal graph (b)Proposed causal graph 

(c)TDE inference for the specific image

input

Figure 2. (a)The proposed causal graph for the causalities in viusal
recognition. (b)The TDE inference to remove contextual bias in
the proposed causal graph. (c)An example for causal reasoning
given specific input. By capturing and removing contextual bias,
we filter out the hard negative and emphasize the hard positive.

and the ”lazy” models are consequently forced to learn the
feature of objects themselves.

4. The Proposed Solution
Contextual bias originates from many potential factors.

However, these confounders on the other hand are indis-
pensable for the training. Thanks to the causal theory, we
can realize the de-confounded training through backdoor
adjustment [27] without changing these useful components:

P(Y |do(X)) =
∑
c

P(Y |X,C = c)P(C = c), (1)

where do(X) is the causal intervention cutting off the edge
C → X as illustrated in Fig. 2(b). Through the do-operator,
we can fairly evaluate the effect of the context, e.g., cut off
the correction that fork relies on dining table.

Now we can clarify our final destination: obtaining the
classification from the objects themselves, i.e., the direct
effect X → Y . Compared with intervention, the counter-
factual is about hindsight: if the object did not occur in the
image, what predictions would we make? As is conveyed in
Fig. 2 (b), we first let the context become the main effect,
and then, through a simple minus, we naturally remove the
influence of contextual bias. In causal inference, this pro-
cess is named Total Direct Effect (TDE) [26, 38, 39]:

TDE(Y ) = P(Y |do(X = x))− P(Y |do(X = x0)), (2)

where x0 means the link X → Y is turned off, hence the
classification is totally determined by context. Note that the
link X → M is preserved because context M is affected
by both C and X , if X is invisible for the M , it would be
impossible to obtain the context. As is shown in Fig. 2 (c),
removing the contextual bias by causal inference not only
clears away the contextual hard-negative objects (spoon),
but also highlights the hard-positive objects (scissor).

4.1. Causal Intervention
The key for performing backdoor adjustment is the im-

plementation of P (Y |X,C = c) and P (C = c) in Eq. (1).
However, C is unobservable during the training. Although
an approximation will be given in Section 4, the sampling
of C is still laborious. Now, we might as well look at Eq.
(1) in another perspective:

P(Y |do(X = x)) =
∑
c

P(Y,X = x|C = c)P(C = c)

P(X = x|C = c)
. (3)

This is a form of Inverse Probability Weighting [27] (IPW),
where 1/P(X = x|C = c) is the weight for each (X =
x|C = c). The equation gives us some inspiration on how
to attain the desired effect: despite the infinite of C, there
is correspondingly one x given one c in Eq. (3). In other
words, the values of (y, x) and c are one-to-one mapped.
Consequently, we can skip the P (c) when conditioning on
X and sample the origin confounded logits to approximate
the intervened effect as below:

P(Y |do(X = x)) ≈ 1

N

N∑
n=1

P(Y,X = xn)

P(X = xn|C = c)
. (4)

where the C = c in the numerator is omitted following the
common form in IPW, and we should remember X relies
on C. TheN means that our method divides the representa-
tion X into n parts, due to our belief that multiple sampling
leads to more fine-grained and precise approximation.

Finally, Eq. (4) can be naturally modeled as an energy-
based model [20], and the numerator is the common logits
w · x. Meanwhile, the denominator, i.e., inverse probability
weight, becomes the propensity score [1] under the energy-
based model, where the effect is divided into the controlled
group (‖w‖2 · ‖x‖2) and uncontrolled group (α · ‖x‖2).
Therefore, we compute the final logits by assembling them
as follows:

P(Y |do(X = x)) =
τ

N

N∑
n=1

wnxn
(‖wn‖2 + α) ‖xn‖2

, (5)

which is a combination of multi-head and normalization
trick, and τ is a scaling factor the same with other nor-
malization classifiers (e.g. cosine classifier [14]). Surpris-
ingly, it sheds some light on why the models equipped with
multi-head (e.g., transformer) or normalization classifiers
are more robust to defective and noisy datasets.

4.2. Total Direct Effect

After the causal intervention, the model is prepared for
the direct effect. However, before conducting the counter-
factual inference, we need to obtain context features given
current samples. As is discussed in Section 3, the context
of the certain object can be viewed as another form of ”ob-
ject”, e.g., the context of most fork can be summarized as
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Figure 3. Overview of our proposed model. The model is composed of two modules: the intervention (interventional classifier) and the
counterfactual (elimination of context bias), where we compute context bias from prior context confounder and probability for the context.

the dining or kitchen scene with other tablewares. Conse-
quently, just like foreground objects, we define the context
of each class as representations in low-dimensional mani-
folds [31]. Specifically, we assume C as a confounder set
{ci}Ki=1, whereK is the number of categories in dataset and
ci is the prototype for the context of class i in feature space.

Object features can be linearly or non-linearly repre-
sented by the manifolds [2, 37], and so are the context fea-
tures. Therefore, we model the image-specific context fea-
tures M of current samples as follows:

M = f(x,C) =

K∑
i=1

P(ci|x)ci, (6)

where P (ci|x) is the probability of classification that fea-
ture x belongs to the context of class i. Imagining there is a
model that is able to classify the context, our implementa-
tion is originated from the viewpoint that the classifier can
be viewed as the distilled knowledge [16].

Now, the last remaining difficulty is the implementation
of the contextual confounder set C. Visual contexts are
reported to emerge in higher layers of CNN during train-
ing [51,54], which is indeed a feature map from backbones.
In tasks that rely highly on the contexts, the feature map can
even approximate representations of contexts. However, the
approach is somewhat unreasonable in common multi-label
tasks where the context is just one of the causes for results.

Consequently, we implement C as the mean features
from the model in early training, i.e., training after the first
several epochs. Our idea is inspired from two aspects. The-
oretically, as is proposed by Zeiler et al. [50], lower lay-
ers of CNN encoding similar textures converge within a
few epochs, while upper layers carrying semantic messages
need much more time. In other words, the models in early
stage are enabled to capture contextual information but have
no idea about advanced semantics; hence, the classification

in this period mainly depends on the contexts. Experimen-
tally, we will show in Fig. 4 that ”hard negative” from the
model sees the abnormal trend in the first several epochs.
As is demonstrated in Section 1, context bias may confuse
the model when facing hard negative samples, thereby, we
assume the feature representations during this period are
strongly affected by the context.

Given the modeling of C andM , we are prepared for the
representations of context bias. Considering the context for
different inputs may be different, there are several options to
constitute the ultimate context features, and we model them
as xm = fs(x,M). The implementation of fs includes
identical mapping, multi-layer perceptron (MLP) and self-
attention and we will explore the options in ablation study.
Finally, we define the total direct effect inference as:

TDE(Y ) =
τ

N

N∑
n=1

wn

‖wn‖2 + α

(
xn
‖xn‖2

− xmn
‖xmn ‖2

)
. (7)

Different from previous works, Eq.7 can train and test in
the same form. Through the simple minus, we can remove
context biases in image representations and force the model
to concentrate on the objects.

5. Experiments
We choose the multi-label classification as the main task

in our experiment, which is free from bounding box or lin-
guistic information and can intuitively evaluate the supe-
riority of our proposed model. We conduct extensive ex-
periments on several common datasets: MS-COCO [23],
Pascal-VOC [12], and NUS-WIDE [6]. Following classic
works [5,10,47], we employ mean average precision (mAP)
as the main evaluation metric, and many other metrics as
supplements, including the overall precision (OP), overall
recall (OR), overall F1-measure (OF1), per-category preci-
sion (CP), per-category recall (CR), and per-category F1-
measure (CF1).
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Table 1. Comparison of the mAP between our method and the state-of-the-arts on the MS-COCO. Two types of backbones are presented:
CNN-based (upper) and transformer-based (lower). 22k means that the backbone is pre-trained on the ImageNet-22k.

Methods Backbones Resolution mAP All Top3
CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

ResNet-101 [15] ResNet101 448 × 448 81.5 80.4 72.9 76.3 83.6 76.7 80.0 87.1 63.6 73.5 89.4 66.0 76.0
CADM [4] ResNet101 448 × 448 82.3 82.5 72.2 77.0 84.0 75.6 79.6 87.1 63.6 73.5 89.4 66.0 76.0

ML-GCN [5] ResNet101 448 × 448 83.0 85.1 72.0 78.0 85.8 75.4 80.3 87.2 64.6 74.2 89.1 66.7 76.3
MS-CMA [48] ResNet101 448 × 448 83.8 82.9 74.4 78.4 84.4 77.9 81.0 88.2 65.0 74.9 90.2 67.4 77.1
KSSNet [24] ResNet101 448 × 448 83.7 84.6 73.2 77.2 87.8 76.2 81.5 - - - - - -
SSGRL [3] ResNet101 576 × 576 83.8 89.9 68.5 76.8 91.3 70.8 79.7 91.9 62.5 72.7 93.8 64.1 76.2

C-Trans [19] ResNet101 576 × 576 85.1 86.3 74.3 79.9 87.7 76.5 81.7 90.1 65.7 76.0 92.1 71.4 77.6
ADD-GCN [47] ResNet101 576 × 576 85.2 84.7 75.9 80.1 84.9 79.4 82.0 88.8 66.2 75.8 90.3 68.5 77.9

CCD-R101(Ours) ResNet101 448 × 448 84.0 87.2 70.9 77.3 88.8 74.6 81.1 89.7 63.9 72.9 92.0 66.5 77.2
CCD-R101(Ours) ResNet101 576 × 576 85.3 88.3 73.1 80.2 88.8 76.3 82.1 91.0 65.2 76.0 92.3 67.3 77.9

VIT [9] VIT-L16(22k) 224 × 224 80.9 84.6 67.2 74.1 87.5 71.1 78.5 87.6 60.9 70.0 91.1 64.3 75.4
Swin-transformer [25] Swin-B(22k) 384 × 384 88.4 83.0 82.4 82.2 83.1 84.9 84.0 89.8 70.0 77.2 90.6 71.4 79.9
Swin-transformer [25] Swin-L(22k) 384 × 384 89.5 87.5 81.7 83.6 86.8 84.4 85.6 92.1 70.2 78.1 92.4 71.7 80.8

CCD-VIT(Ours) VIT-L16(22k) 224 × 224 85.2 85.1 76.0 79.3 84.7 78.8 81.7 89.8 66.5 74.7 90.5 68.6 78.1
CCD-Swin(Ours) Swin-B(22k) 384 × 384 89.1 84.7 82.7 83.2 84.1 85.5 84.8 90.8 70.0 77.6 91.2 71.8 80.4
CCD-Swin(Ours) Swin-L(22k) 384 × 384 90.3 85.9 84.0 84.6 85.1 86.4 85.7 91.9 70.9 78.8 92.0 72.4 81.0

Table 2. Comparison between our method and the state-of-the-arts on the Pascal VOC2007. Both mAP and AP of each class are presented.
All of the inputs are resized into 448 × 448 except ADD-GCN and SSGRL.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
RCP [41] 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

ML-GCN [5] 99.5 98.5 98.6 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0
ASL [30] 99.9 98.4 98.9 98.7 86.8 98.2 98.7 98.5 83.1 98.3 89.5 98.8 99.2 98.6 99.3 89.5 99.4 86.8 99.6 95.2 95.8

SSGRL(576) [3] 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0
ADD-GCN(576) [47] 99.8 99.0 98.4 99.0 86.7 98.1 98.5 98.3 85.8 98.3 88.9 98.8 99.0 97.4 99.2 88.3 98.7 90.7 99.5 97.0 96.0

CCD-R101(Ours) 99.9 98.2 98.4 98.9 84.9 97.7 97.8 99.0 86.4 98.8 90.2 99.2 98.9 97.8 98.8 87.3 99.4 88.8 99.7 96.6 95.8

5.1. Implementations Details

We adopt ResNet101 [15] pre-trained on ImageNet 1k
[7] as the backbone. For data preprocessing, we apply the
standard data augmentation [3,5,30] with the resolution re-
sized into 448 × 448. For xm, we adopt the simplest im-
plementation xm = M with no parameter increasement,
and use the model trained for 5 epochs as the confounder
set. The model is trained by minimizing a focal loss [22]
due to the imbalance between positive and negative sam-
ples. Followinging [30,47], we apply the model pre-trained
on COCO for Pascal VOC to accelerate the converge. We
use Adam as optimizer with a weight decay of 2e − 4 and
(β1, β2) = (0.9, 0.9999), and the learning rate is 2e − 4
with a 1-cycle policy. All our codes were implemented in
Pytorch and ran on 4 V100s, with batch size of 128 on each
GPU and training for 40 epochs in total.

5.2. Comparisons with the State-of-the-Art

MS-COCO. MS-COCO [23] is first built for detection, seg-
mentation, and caption, and then becomes the most popular
benchmark for multi-label image recognition. It contains
82,081 images for training and 40,137 for validation, which

covers 80 categories and 2.9 for each image on average.
Given the result of COCO is highly related to image res-
olution and backbone, we design different backbones and
different input resolutions in experiments to confirm the ef-
fectiveness of our model.

For CNN backbone, we use ResNet101 pre-trained on
ImageNet 1k, and the inputs are resized into 448 × 448 and
576 × 576 respectively for fair comparisons with previous
works. For transformer backbone, we adopt vision trans-
former [8] and swin-transformer [25] pre-trained on Ima-
geNet 22k, and they both use the backbones trained for 2
epochs as confounder set. All quantitative results are con-
veyed in Table 1. The upper block shows the performances
of ResNet101 backbone, in which our methods outperform
all other state-of-the-arts. Considering Graph-Based meth-
ods(e.g. ML-GCN [5] and KSSNet [3]) and Transformer-
Based methods (e.g. C-Tran [19]) have much more com-
plicated and time-consuming pipelines, the superiority of
our models is more convincing. The lower block shows the
results on transformer backbone, which has a more elabo-
rate architecture. Based on such high performance, com-
mon methods like asymmetric loss [30] lose efficiency, but
our approach still brings about some progress.
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Table 3. Comparison between our method and the state-of-the-arts on the Pascal VOC2012. Both mAP and AP of each class are presented.
All of the inputs are resized into 448 × 448 except ADD-GCN and SSGRL. Results are evaluated by official evaluation server.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
VGG+SVM [34] 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0

HCP [44] 99.1 92.8 97.4 94.4 79.9 93.6 89.8 98.2 78.2 94.9 79.8 97.8 97.0 93.8 96.4 74.3 94.7 71.9 96.7 88.6 90.5
RCP [41] 99.3 92.2 97.5 94.9 82.3 94.1 92.4 98.5 83.8 93.5 83.1 98.1 97.3 96.0 98.8 77.7 95.1 79.4 97.7 92.4 92.2

SSGRL(576) [3] 99.7 96.1 97.7 96.5 86.9 95.8 95.0 98.9 88.3 97.6 87.4 99.1 99.2 97.3 99.0 84.8 98.3 85.8 99.2 94.1 94.8
ADD-GCN(576) [47] 99.8 97.1 98.6 96.8 89.4 97.1 96.5 99.3 89.0 97.7 87.5 99.2 99.1 97.7 99.1 86.3 98.8 87.0 99.3 95.4 95.5

CCD-R101(Ours) 99.8 98.2 98.3 98.0 88.6 97.4 96.9 99.1 90.8 98.9 90.2 99.2 99.6 98.4 99.0 87.7 98.4 88.8 99.7 96.4 96.1

Table 4. Comparison between our method and the state-of-the-arts
on the NUS-WIDE. Both mAP, CF1 and OF1 are presented. All
results have the resolution of 448 × 448.

Methods mAP CF1 OF1
S-CLs [24] 60.1 58.7 73.7

MS-CMA [48] 61.4 60.5 73.8
SRN [55] 62.0 58.5 73.4
ICME [5] 62.8 60.7 74.1
ASL [30] 63.9 62.7 74.6

CCD-R101(Ours) 65.1 61.3 75.0

PASCAL-VOC. PASCAL-VOC 2007 and 2012 [12] are
also widely used in multi-label classification, and the model
for them obeys default settings. Following the previous
[5,10,47], we train the model on the train-val set and test it
on the test set. VOC 2007 contains 5,011 images in train-
val set and 4,952 images in test set with 20 categories. The
results, posed in table 2, report the Average Precise (AP)
of each class and the mAP. We can see our CCD has com-
parable performances with previous methods, even with the
weaker backbone and resoltion. VOC 2012 has 11,540 im-
ages in the train-val set and 10,991 test images. Different
from VOC 2007, all results must be evaluated on an offi-
cial evaluation server, giving a fairer comparison than local
tests. As is illustrated in table 3, our method outperforms
other state-of-the-art methods with a larger margin.
NUS-WIDE. NUS-WIDE [6] is another common multi-
label classification dataset consisting of real-world web im-
ages. It has 269,648 Flickr images with 81 classes. We fol-
low the default settings and the steps of evaluation in [30].
The comparison between ours and the previous best model
is provided in table 4. Once again, our model obtains a new
state-of-the-art result, indicating that our model still works
well on a more challenging dataset with lower resolutions
and more noise.

5.3. Ablation Study

Effects of the two modules in CCD. There are two main
modules in CCD: the intervention part and the counterfac-
tual part. To further study the effects of two components,
we conduct controlled experiments on different backbones,
each engaging one of the parts on the CNN-based or the
transformer-based baseline, and the results are listed in ta-
ble 5. It can be seen that both parts have an obvious ad-

Table 5. Ablation studies on two modules of our method. Experi-
ments are based on two backbones: ResNet101 and Vit-L16.

Methods mAP CF1 OF1
ResNet-101 81.5 76.3 80.0

Intervention-R101 82.5 76.2 79.7
Counterfactual-R101 82.8 76.9 80.6

CCD-R101 84.0 77.3 81.1
VIT 80.9 74.1 78.5

Intervention-VIT 84.6 78.6 81.2
Counterfactual-VIT 84.2 78.5 80.7

CCD-VIT 85.2 79.3 81.7

Table 6. Ablation studies on the implementation of fs(x,M).
W denotes the learnable projection matrices and ⊗ denotes the
element-wise multiplication. All experiments are implemented on
MS-COCO following the default setting.

fs(x,M) mAP Extra Weights(M)
M 84.0 1

W ·M 83.9 17
W · concat(x,M) 84.4 33
tanh(W · x)⊗M 84.3 17

vantage over baselines of different backbones. Specifically,
the intervention part makes stable contribution to the result
on various backbones, while the counterfactual part works
better on weaker backbones or defective data that are easier
to bring about the context bias.
The choice of confounder set. As is mentioned above, we
have chosen the model training for the first several epochs as
the confounder set, and now we provide some experimental
validation. To get rid of the distractions, we close the in-
tervention part and all data augmentation, set models in dif-
ferent training period as the confounder set and record the
final mAP. The blue line in Fig. 4 conveys the mAP keeps
on growing in the first several epochs, reaches the highest in
the 5th epoch, and then continues to drop. The results prove
that models in early training (1-10 epochs in this case) as
confounder sets can indeed improve the performance.

Intuitively, the more the model depends on the context
to recognize the instances, the more false positives it will
generate. Hence, we check the amount of ”hard negative”
in the training loop, where the ”hard negative” is defined
as ”the score of a negative sample is larger than the mean
score of positive samples in this class”. As is illustrated by
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Figure 4. Ablation study on the choice of confounder set. The two
curves are generated from the same model training for different
epochs. The orange one depicts the percentage of hard negative,
and the blue one is the mAP from counterfactual-R101 which uses
the model in according epoch as a confounder set.

the orange line in Fig. 4, the percentage of hard negative
drops rapidly when the training first starts due to the ran-
dom initialization of classifier. Then, the decline meets a
sudden slowdown, and at this stage, the model employed
as a confounder set achieves the best performance. After a
short pause, the percentage begins to drop again, and if us-
ing the model in this period, the performance will continue
to drop as well. By the contrast between the two curves, we
shed some light on why we choose the incompletely trained
model as the confounder set.
The implementation details of fs(x,M). When we obtain
the image-specific context feature M , whether our method
should compute the final effect by x −M is open to ques-
tion. Context is not always bad, and different samples may
need different degrees of context information. Therefore,
it seems better to add more networks to learn how much
we need from the context. The ablation studies are shown
in Table 6, where we try some more complicated struc-
tures. Note that the increased 1 M is from the context clas-
sifier. The results indicate that although a simple minus
is good enough, extra structures do bring about some im-
provement. Whether it merits exchanging extra computa-
tion against potential enhancement of performance depends
on self-selection.

5.4. Qualitative Results

To further illustrate the advantage and disadvantage of
our method, we visualize the activation maps via Grad-
CAM [33]. As is shown in Fig. 5, for objects appearing
in an unusual scene, the baseline fails to locate the target
exactly. And for a nonexistent object, the baseline which
activates more on the contextual regions, tends to make mis-
takes in a familiar context. Contrastively, our model focuses
on the direct effect, i.e., the instances themselves. Hence,
given the ambiguous context, our model is qualified to find
the most discriminative regions.

Input Baseline Causal-R01

positive label: dog

prediction: 

baseline: 0.122

ours: 0.74

positive label: car

prediction: 

baseline: 0.114

ours: 0.758

negative label: fork

prediction: 

baseline: 0.612

ours: 0.088

positive label: bowl

prediction: 

baseline: 0.762 

ours: 0.182

Figure 5. Visualization for the feature map of baseline and our
Causal-R101 using the CAM [33].

In the last row, we also state the weakness of our method.
When the instance is too obscure to be found, the model has
no choice but to seek evidence from the context. In such
case, our method fails to make correct prediction. Potential
solutions include stronger backbones and more fine-grained
locations of objects (e.g., visual attention). Moreover, as
is mentioned in Section 1, context plays an important role
in some visual tasks, therefore, more works are desired to
discriminate when the context is harmful to the recognition,
and more experiments are expected for generalizing our ap-
proach to wider domains of visual learning and recognition.

6. Conclusion
In this paper, we present a simple, adaptive and pow-

erful causal context debiasing recognition framework. We
first uncover the damage caused by context bias and pro-
pose a structural causal model depicting the causalities in
multi-label tasks. Then, by the combination of the causal
intervention and the counterfactual training, we elegantly
remove the effect of contextual bias through a simple minus
without any increasement of learning parameters. Exten-
sive experiments on four widely used multi-label classifica-
tion datasets convey that our method has apparent advantage
over the state-of-the-art on different datasets and different
backbones with better performance and less computation.
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