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Abstract

Existing approaches for Structure from Motion (SfM) pro-
duce impressive 3-D reconstruction results especially when
using imagery captured with large parallax. However, to
create engaging video-content in movies and TV shows, the
amount by which a camera can be moved while filming a
particular shot is often limited. The resulting small-motion
parallax between video frames makes standard geometry-
based SfM approaches not as effective for movies and TV
shows. To address this challenge, we propose a simple yet
effective approach that uses single-frame depth-prior ob-
tained from a pretrained network to significantly improve
geometry-based SfM for our small-parallax setting. To this
end, we first use the depth-estimates of the detected key-
points to reconstruct the point cloud and camera-pose for
initial two-view reconstruction. We then perform depth-
regularized optimization to register new images and trian-
gulate the new points during incremental reconstruction.
To comprehensively evaluate our approach, we introduce
a new dataset (StudioSfM) consisting of 130 shots with
21K frames from 15 studio-produced videos that are man-
ually annotated by a professional CG studio. We demon-
strate that our approach: (a) significantly improves the
quality of 3-D reconstruction for our small-parallax set-
ting, (b) does not cause any degradation for data with
large-parallax, and (c) maintains the generalizability and
scalability of geometry-based sparse SfM. Our dataset can
be obtained at https://github.com/amazon-research/small-
baseline-camera-tracking.

1. Introduction

Estimating camera motion and 3-D scene geometry in
movies and TV shows is a standard task in video produc-
tion. Existing Structure from Motion (SfM) approaches for
3-D scene reconstruction produce high-quality results espe-
cially for images with large parallax [16, 6, 36, 34]. How-
ever, creating engaging viewing experience in movies and
TV shows often constrains the amount of camera movement
while filming a shot. This often leads to insufficient paral-
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Figure 1: Comparison of Parallax-Distribution: Parallax-
distribution of ETH3D [34] is plotted with StudioSfM — a new
dataset with 21K frames in 130 manually annotated shots from 15
TV episodes (see § 4.1 for details of data and computation of par-
allax). The long-tail distribution of StudioSfM shows that small-
motion parallax is significantly more common in studio-produced
content than in standard SfM datasets.

lax compared to standard SfM datasets captured specifically
for 3-D reconstruction (see Figure 1 for more details).

This insufficient parallax is one of the key challenges [9]
that limits the effectiveness of well-developed geometry-
based SfM approaches [10, 2, 33, 1, 43, 28] that recover
camera motion and geometry based on the principle of
motion-parallax. Shots with small motion-parallax are ill-
conditioned for 3-D reconstruction as algebraic methods
for two-view reconstruction are numerically unstable in
such situations [26]. Conventional SfM pipelines (e.g.,
COLMAP [33]) use various heuristics to handle small-
parallax data, e.g., by using inlier ratio to decide the two-
view motion type to prevent two-view reconstruction from
using panoramic image pairs, and filtering out points with
small triangulation angles. These heuristics however re-
quire careful tuning and can fail completely when using data
which has no image pairs with sufficient parallax.

In contrast, learning-based approaches [17, 47, 40, 42]
are able to handle data with small parallax more effectively
as they can learn to predict depth and pose from large-scale
labelled datasets. However, as these methods do not incor-
porate geometric-consistency constraints between images,
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Figure 2: Proposed Pipeline — Given a set of input images (Step 1), we detect 2-D keypoints and match them across frames, i.e.,
correspondence search (Step 2-a), as well as use a pretrained network to obtain their single-frame based dense depth-maps (Step 2-b). We
apply bi-linear interpolation to look-up the depths of the detected key-points from these dense depth-maps (Step 3). We use the detected
2-D keypoints along with their depth-priors to improve the initialization (Step 4) and incremental reconstruction steps (Step 5).

their pose and depth estimates are not as accurate [19]. Fur-
thermore, the generalizability of these approaches heavily
depends on the scale of labeled data used for their training,
which can be laborious and expensive to collect.

Recently proposed hybrid approaches [37, 38, 19] have
achieved more accurate results than learning-based ap-
proaches by employing learned depth priors as implicit
constraints for geometric consistency. However, these ap-
proaches do not use robust estimators thus making them
heavily dependent on the quality of used optical flow which
can adversely affect their robustness. Moreover, these ap-
proaches require heavy compute and memory resources.
This prevents them from scaling to larger problems.

Key Contributions: To address these challenges, we pro-
pose a novel hybrid approach that combines the strengths
of: (a) geometry-based SfM to achieve high-accuracy with-
out requiring additional labelled data, and (b) learning-
based SfM to effectively handle data with insufficient par-
allax. As illustrated in Figure 2, our approach builds on
the standard geometry-based SfM pipeline and particularly
improves its initialization and incremental reconstruction
steps by leveraging single-frame depth-priors obtained from
a pretrained deep network. Specifically:

e Instead of using epipolar geometry for initial two-view re-
construction, we directly utilize monocular depth obtained
from a pretrained model to accurately recover the initial
camera pose and point cloud.

e During the incremental reconstruction step, we propose
a depth-prior regularized objective function to be able to
accurately register and triangulate new images and points.

We demonstrate that our approach is robust to a variety
of pretrained networks used to obtain the depth-prior, and
maintains the generalizability and scalability of geometry-
based SfM pipeline by maximally relying on its well-
engineered implementations (e.g. COLMAP [33]).

To comprehensively evaluate our approach, we collect
a new dataset (StudioSfM) containing 130 shots with 21K
frames from 15 TV-episodes. The ground truth camera pose

and point clouds were created manually by professionals
using commercial CG software (see § 4.1 for details). We
use StudioSfM to demonstrate that our approach offers sig-
nificantly more accurate camera poses and scene geome-
try over existing state-of-the-art approaches under small-
parallax setting in studio-produced content, while does not
cause any degradation on standard SfM datasets [34] with
large parallax, and maintains the generalizability and scala-
bility of standard SfM pipelines.

2. Related Work

a. Geometry-Based SfM: Geometry-based StM [2, 33, 1,
, 28] approaches have undergone tremendous improve-
ments over the past few decades in terms of their ro-
bustness, accuracy, completeness and scalability. Most of
these approaches first detect and match local image fea-
tures [24, 13, 32, 7], followed by estimating the two-view
motion using epipolar geometry [14] and then reconstruct-
ing the 3-D scene either globally or incrementally using
bundle adjustment [39]. One of the most widely used open-
source geometry-based SfM pipeline is COLMAP [33]
which is often used as a preliminary step for state-of-the-
art dense reconstruction approaches [25, , 27]. Like
most geometry-based approaches however, it requires im-
ages with sufficiently large baselines. Our approach im-
proves COLMAP [33] to make it work robustly for small
parallax setting often found in movies and TV shows.
Previous geometry-based SfM approaches geared for
videos with small motion [46] simplify the rotation matrix
and parameterize bundle adjustment using inverse depth of
reference image. Work in [12] makes the same simplifica-
tion and parameterization as [46] but assumes that camera
intrinsics are unknown and optimizes them in bundle adjust-
ment. These works show improved results only for videos
with very small accidental motion and do not generalize to
data with relatively larger motion as is the case in movies
and TV shows. Unlike [46, 12] that use priors for camera
motion, our approach uses priors for scene geometry which
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is robust to both narrow as well as wide baseline data.

b. Learning-Based SfM: To jointly estimate motion and
depth in an end-to-end fashion, work in [40] stack mul-
tiple encoder-decoder networks for their iterative estima-
tion. To improve the robustness of pose estimation, work
in [42] construct pose-cost volume similar to depth-cost vol-
ume [45] used in stereo matching to predict camera pose it-
eratively. Unlike [40, 42] which rely on ground truth labels
for training, our approach utilizes off-the-shelf pre-trained
depth estimators without the need of labels from target data.

c. Hybrid SfM: Hybrid approaches attempt to optimize
camera pose and depth by using geometry-consistency con-
straints. Work in [37] represents depth as a linear combi-
nation of depth basis maps, and computes the camera mo-
tion and depth by aligning deep features using differentiable
gradient descent. Work in [38] uses dense optical flow to
build dense correspondences, and iterates between learning
based depth estimation and optimization based motion esti-
mation. Work in [19] optimizes the re-projection loss by al-
lowing depth to deform as splines for low-frequency align-
ment. Depth filters are used for high-frequency alignment
to recover the details. In our approach, we do not rely on
optical flow which enables our approach to work on both
videos as well as un-ordered image-sets.

d. Monocular Depth Estimation: Recent improvements
in deep networks and the availability of large-scale depth-
data have contributed to the remarkable progress in monoc-
ular depth-estimation [18]. Work in [1 ] learns a depth esti-
mation network in a self-supervised manner using monocu-
lar videos. Work in [3 1] focuses on mixing multiple datasets
for training using multiple objectives which are invariant to
depth scale and range. Work in [4] divides depth into bins
whose centers are estimated adaptively per-image, and are
linearly combined to predict the final depth value. We use
off-the-shelf pre-trained monocular depth estimators to gen-
erate depth-priors for sparse keypoints. Although monocu-
lar depth estimates are inconsistent across frames, we show
that using them as priors in SfM pipeline helps the recon-
struction process to converge to a better solution.

3. Approach
3.1. Review of Incremental STM

As our approach builds on incremental SfM, for com-
pleteness we first review the standard incremental SfM
pipeline [33] which can be roughly divided into three key
components: (i) correspondence search, (ii) initialization,
and (iii) incremental reconstruction. We provide details of
these component in the following.

a. Correspondence Search: For each image I in a given
set of N images Z, their 2-D keypoints p € R? and respec-
tive appearance-based descriptors are extracted and used to

match all image-pairs (I,,1) € Z using a similarity-metric
based on their keypoint-descriptors. A robust estimator
such as RANSAC [8] is used to perform robust geometric
verification of the matched image-pairs in order to estimate
the geometric transformation between them.
b. Initialization: Based on epipolar geometry of the cor-
responding 2-D keypoints in a matched image-pair (I, I),
two-view reconstruction is performed to estimate the ini-
tial camera pose (Ripit, tinir) € SE(3) and 3-D point cloud
P < R3. Recall that good initialization is critical in incre-
mental SfM pipelines as later steps may not be able to re-
cover from a poor initialization. To this end, heuristics such
as number of keypoint matches, triangulation angles and
geometric-transformation types are used to select a good
image-pair likely to result in high-quality initialization [33].
c. Incremental Reconstruction: New images from the
remaining image-set are incrementally incorporated into
the reconstruction process by iterating between the fol-
lowing three steps. i — Image Registration : this step reg-
isters a new image to the current 3-D scene by first
solving the Perspective-n-Point (PnP) problem [3] using
RANSAC [5] on 2-D to 3-D correspondences, and then
refining the pose of the new image by minimizing its re-
projection error. ii — Triangulation : scene points of the
new image are triangulated and added to the existing scene.
iii — Bundle Adjustment(BA) : this step jointly refines the
camera pose and 3-D point cloud by minimizing the total
re-projection error of the currently registered images.
Under small-parallax settings, initialization struggles to
produce good initial two-view reconstruction due to un-
stable epipolar geometry, while incremental reconstruction
tends to coverage to bad solutions due to large triangulation
variation. We now show how these two steps can benefit
from depth-prior obtained from a pretrained network. Note
that we do not modify BA as our improved previous steps
already provide a strong starting point where adding depth-
prior to BA does not result in any additional gains.

3.2. Finding Keypoint-Depth

Given an image-set, we use standard COLMAP [33]
pipeline for 2-D keypoints detection and matching. More-
over, we use a pretrained monocular depth-estimator to pre-
dict the dense depth map D; for each image I;. The depth
of keypoint p; in I; is extracted from D; using bilinear in-
terpolation as D;[p;]. We incorporate this keypoint-depth
in the initialization step to get a more accurate estimate of
the initial camera pose and 3-D point cloud, and regular-
ize the optimization process of image registration and tri-
angulation to guide the incremental reconstruction towards
a better solution. Using the sparse keypoints-depth instead
of dense depth map is important to maintain computation
and memory efficiency for large scale reconstruction. We
empirically demonstrate that our method is agnostic to the
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choice of depth estimation model (see § 4.6).
3.3. Initialization

Instead of computing the essential matrix from 2-D to 2-
D correspondences between the initial image-pair (I, Ip),
and decomposing it into rotation and translation matri-
ces as done in COLMAP [33], we incorporate keypoint-
depth information to formulate the initialization step as a
Perspective-n-Point (PnP) problem. Specifically, we first
create an initial point cloud P, by projecting the 2-D key-
points in I, into 3-D as follows:

P,=D,[p. K, ' h(p.) V po€Ta (D

where D, [p,] is the depth of p,, K, € R®**3 is the in-
trinsic matrix of the camera that captured I, h(-) converts
euclidean coordinates to homogeneous coordinates, and 7,
is the set of 2-D keypoints in I,. This gives us an initial 3-D
point cloud created from keypoints in I,,.

The relative pose between I, and I, is then estimated
using geometric relationship between 2-D keypoints in I
and their corresponding 3-D points in the point cloud (2-
D to 3-D correspondences), which is exactly the goal of
the PnP problem. Instead of estimating the relative pose
using 2-D to 2-D correspondences with epipolar geometry
which is unstable under small baseline, using 2-D to 3-D
correspondences with PnP approach makes our initializa-
tion method much more robust to small baseline since PnP
naturally prefers small baseline data.

Note that unlike COLMAP [33] which selects the ini-
tial image-pair by considering both triangulation angle and
the number of matched keypoints, we select the image pair
which has the largest number of matched keypoints with
valid depth. We consider depth to be valid for all values
except 0 or infinity. Due to our large range of acceptable
depth, more matched keypoints are used to generate the ini-
tial point cloud with larger scene-coverage, making subse-
quent reconstruction steps more robust and accurate.

3.4. Depth-Regularized Optimization

The initialization step is followed by: (a) image registration,
which registers a new image to the existing scene and (b)
triangulation, which triangulates the new points. We define
a novel depth-regularized objective to improve these two
steps. The intuition of our approach is illustrated in Figure
3 and its details are explained below.

a. Image Registration: We follow the procedure used in
COLMAP [33] to select our next image I;, and estimate
its initial camera pose using PnP problem formulation with
RANSAC [5]. We further refine this initial camera pose by
minimizing the following objective function:

Rt .~ B = i E( . o~ B

i Uiy Vi Bz arg Rr,{l,lwr,lﬁ EPR(pz) +)\EDC (pm Vis ﬂz)
Pi€pi
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» /
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Figure 3: Depth Regularized Optimization — In addition to
the generally used re-projection error, we use depth-consistency
error as a regularizer for optimizing our loss functions for image
registration (Equation 2) as well as triangulation (Equation 5).

Here, ¢; is the set of inliers keypoints obtained from
RANSAC of initial pose estimation, while Epg is the re-
projection loss and Epc is the depth consistency loss. A is
the weight to balance the two losses. Epg is defined as:

Epr(p;) = [TH(R:P; + t;) — p; || 3)

where II represents the projection from 3-D points to image
plane. Similarly Epc is defined as:

Epc(pi, v, ) = Y, [[RPi+ti]. —
Pi€p(i)

viDi[p;] — Bil|

“)
where D;[p;] is the depth of keypoints p;, [x]. € R(x €
R?) is the third element of the 3-D point x. ~y; and j3; are
the scale and shift to align the depth-prior of I; with the
projected depth from 3-D points..

b. Triangulation: Once image I; is registered, the newly
observed scene points are added to the existing point cloud
via triangulation. We first use DLT [14] and RANSAC [5]
to estimate the initial 3-D position and refine it using the
following objective function:

e
Pj —argmin )
© PEN(PEY)

Epr(P;j) + AEpc(Pj, i, Bi) (5)

where P}V is the new set of 3-D points observed in I;,
N(P?%) is the set of 2-D keypoints corresponding to P2V,
and Epgr and Epc are the reprojection and depth consistency
errors as defined above. 7; and f3; are computed from im-
age registration and are kept fixed here. Note that the 3-D
point estimated from triangulation based only on reprojec-
tion loss has large variance when the triangulation angle is
small [21]. Our objective function addresses this challenge
by regularizing the position of the 3-D point using the depth
consistency error while keeping the reprojection error low.
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4. Experiments
4.1. Datasets

We first go over the datasets we used in our experiments.

a. StudioSfM: To undertake a comprehensive compara-
tive evaluation of our approach on studio-produced video-
content, we collected a new dataset called StudioSfM which
contains 130 shots with 21K frames from 15 TV-episodes.
For each full-length TV episode, we first ran shot seg-
mentation [35] to split it into a set of constituent shots
and then sparsely sampled these shots in a uniform man-
ner. For each sampled shot, we let professional visual-
effects artists generate the ground-truth camera poses and
3-D point clouds through commercial CG software by man-
ually tracking high-quality features, identifying co-planner
constraints, and adjusting focal length. We removed the
shots which were too challenging to be annotated due to
factors such as heavy motion-blur and fully static camera.
To underscore the prevalence of small-baseline in studio-
produced video-content, we compare parallax-distribution
between StudioSfM dataset with a standard large-scale StTM
dataset of ETH3D [34] (shown in Figure 1). We computed
parallax as the ratio between the maximum translation of
camera motion and the median distance of 3-D point cloud
to all cameras. Figure 1 shows that most videos of Stu-
dioSfM have small parallax because the shots in movies and
TV shows tend to have less camera motion to create an en-
gaging viewing experience. In contrast, ETH3D has a much
larger parallax since it is captured specifically for the pur-
poses of 3-D reconstruction using standard approaches.

b. ETH3D: To demonstrate that our approach does not re-
sult in any accuracy loss for data with large parallax, we
present experiments on ETH3D [34] which is a standard
SfM dataset and contains two categories: (a) high-res multi-
view with 13 scenes (b) low-res many-view with 5 scenes.
The precise camera poses and dense point cloud from a laser
scan are provided in the dataset.

4.2. Implementation Details

Our approach builds on the codebase of COLMAP [33]. We
use DPT-large [30] as our default depth estimator for pro-
ducing depth-priors. The influence of using different depth
models on our method is analyzed in § 4.6. We resize in-
put image height to 384 while maintaining the original as-
pect ratio. The dense depth map is resized to the original-
image size using nearest neighbor interpolation. The weight
A for depth regularized optimization is always kept fixed at
6. Mask-RCNN [15] is used to create binary masks of hu-
mans which are used as input for all compared approaches.

4.3. Baselines

Unlike comparisons provided by previous approaches [19,
] which only use original COLMAP [33] on videos with

small camera-motion, we fine-tune its hyper-parameters
for small-parallax setting to make it much less likely
to fail on small-parallax data in order to have a more
fair comparison. We call this version of COLMAP [33]
as COLMAP++, and compare our approach against the
original COLMAP[33], COLMAP++, DeepV2D [38],
RCVD [19] and DfUSMC [12].

4.4. Evaluation Metrics

To evaluate camera pose, we compute three commonly used
metrics: absolute trajectory error (ATE), relative pose error
for translation (T-RPE) and rotation (R-RPE). We refer to
the work of [29] for detailed explanation of these metrics.
To evaluate 3-D point cloud, we project point cloud to each
frame using estimated camera-pose and measure the accu-

racy of relative depth § = max(ly}—;, ;’—’) and absolute depth

0 = |y; — y;| under different thresholds where y; and y;* are
the estimated and ground truth depth respectively.

4.5. Results
4.5.1 StudioSfM

a. Camera Pose Evaluation: We first evaluate the qual-
ity of the estimated camera pose on StudioSfM dataset.
The predicted camera poses are aligned with the ground
truth camera pose using similarity transformation before
computing the metrics. Figure 4 shows the plot of recall
against three error metrics and Table | shows the area-
under-curve (AUC) for each curve. Our approach sig-
nificantly outperforms other approaches across all three
metrics. COLMAP++ performs much better than origi-
nal COLMAP [33] showing the importance of tuning it to
work with small parallax datasets. DfUSMC [ 2] does not
work well on StudioSfM which indicates that their assump-
tions about camera-motion do not generalize to our data.
DeepV2D [38] also shows low performance on StudioSfM
likely due to their lack of outliers handling mechanisms.
To further clarify the benefit of our approach for small-
parallax settings, we sort videos in StudioSfM data accord-
ing to their parallax in descending order, and use the top
30% of data as the large-parallax set and bottom 30% as the
small-parallax set. We compare our estimated camera pose
with COLMAP++ using these two sets. Figure 5 shows the
significantly better performance of our approach on small-

Method ATE AUC T-RPE AUC R-RPE AUC

0.2 (cm) [ 2.0 (cm) | 0.1 (cm) | 0.5 (cm) | 0.02(°) | 0.1 (°)
RCVD [19] 42 28.0 5.0 175 14 23.1
DfUSMC[12] | 22.1 45.8 238 43.0 14.5 257
DeepV2D [38]| 152 | 43.8 5.6 19.2 46 15.8

COLMAP [33]| 20.0 49.6 23.1 45.8 25.8 46.7
COLMAP++ 24.7 59.1 34.3 60.1 39.7 66.0
Ours 31.8+7.1165.3+6.2 41.6 +7.369.8 +9.7 | 48.7 +9.0|74.8 +8.8

Table 1: Camera pose evaluation on StudioSfM using AUC —.
Recall-curve AUCs for our three considered metrics are shown.
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Figure 4: Evaluation of camera pose on StudioSfM — The figure shows the recall-curves of multiple comparative methods for ATE
(absolute trajectory error), T-RPE (relative pose error for translation) and R-RPE (relative pose error for rotation).
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Figure 5: Camera pose estimation using StudioSfM under: ()
large-parallax set and (b) small-parallax set. Our approach offers
significant improvement over COLMAP++ on small-parallax data.

parallax set, highlighting the importance of using depth-
priors in geometry-based SfM for small-parallax settings.

b. Point Cloud Evaluation: To evaluate the quality of es-
timated point clouds, we first project point clouds into each
frame using the estimated camera-pose and then compare
depths of the projected points with ground truth depths. Be-
sides computing the accuracy using relative depth error as
done in DeepV2D [38], we also compare the accuracy us-
ing absolute depth error as our ground truth point clouds are
annotated using real-world scale. Table 2 shows that our
approach outperforms all other approaches on both relative
and absolute depth error. Directly applying DPT-large [30]
does not produce accurate depths even though they can vi-
sually look good. In contrast, our method of using of the
output of DPT-large [30] as depth-priors in geometry-based
SfM substantially improves the quality of estimated depth.

Method Relative depth accuracy (%) | Absolute depth accuracy (%)
6 < 1.25]6 < 1.25%]§ < 1.25%3|6 < 5em[# < 10cm[§ < 25cm
DPT-large™ [30]] 33.5 53.6 64.9 3.8 7.4 14.5
RCVD [19] 43.7 66.5 79.4 52 9.1 18.7
DfUSMC [12] 27.6 39.6 46.4 2.4 4.5 8.9
DeepV2D [38] 63.4 80.1 87.5 8.9 15.5 28.8
COLMAP [33] 50.8 55.1 56.9 20.7 273 383
COLMAP++ 72.9 81.4 85.0 22.8 32.6 50.6
Ours 80.0 86.0 89.3 27.1 39.0 57.3

Table 2: Evaluation of depth estimation on StudioSfM — Recall
is measured here using relative depth and absolute depth. Results
for DPT-large [30] are presented here as a reference.

ATE AUC T-RPE AUC R-RPE AUC
0.2 (cm)\2.0 (cm)|0.1 (cm)\O.S (cm) |0.02 (O)\O.l ©)
high-res multi-view
COLMAP [33]| 95.7 99.4 96.7 98.7 27.2 | 70.6
Ours 99.5 99.9 97.1 99.1 27.7 | 69.8
low-res many-view
COLMAP [33]| 18.6 74.3 65.8 92.5 0.5 7.5
Ours 42.1 88.8 86.4 96.9 0.4 14.8

Method

Table 3: Camera pose evaluation on the two categories of
ETH3D using AUC - We report AUC of each metric. Our ap-
proach achieves results comparable with COLMAP on high-res
multi-view category for all metrics, and outperforms COLMAP
on low-res many-view category for most metrics.

452 ETH3D

To demonstrate the effectiveness of our approach on stan-
dard SfM datasets, we assess it on two categories of
ETH3D [34] where motion-parallax is significantly larger
than StudioSfM. Our approach is compared with original
COLMAP [33] which is already tuned for large-parallax.
The camera pose comparison is presented in Table 3. On
high-res multi-view category both COLMAP [33] and our
method achieve impressive performance while our method
is still able to slightly outperform COLMAP [33]. Our clear
gains over COLMAP [33] on low-res many-view category
show that our approach is more robust to low resolution im-
ages than COLMAP [33]. The comparison of estimated
depth using high-res multi-view category is shown in Ta-
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Method Relative depth accuracy (%) |Absolute depth accuracy (%)
§ < 1.05[§ < 1.05°]6 < 1.053]# < lem |6 < 2cm[ @ < Sem

COLMAP [33]| 96.9 98.1 98.5 58.7 72.9 86.0

Ours 96.8 98.0 98.4 61.2 75.7 88.1

Table 4: Evaluation of depth estimation on ETH3D high-res
multi-view category — Accuracy is measured here using both rel-
ative depth and absolute depth.

ble 4 in which we achieve better absolute depth accuracy
than COLMAP [33]. Our overall better performance on
ETH3D demonstrates that our approach does not show any
degradation on large-parallax data while offering significant
gains for small-parallax settings.

4.6. Ablation Study

a. Method Variants: We compare several variants of our
approach with COLMAP++ on StudioSfM dataset. Figure
6 compares the recall curves for ATE and R-RPE between
COLMAP++, our approach with only improved initializa-
tion (initialization only), our approach with only depth-
regularized optimization (optimization only) and our full
approach (ours full). We can see that our proposed initial-
ization using depth-prior of keypoints achieves substantial
improvement over COLMAP++ showing the criticality of
initialization for SfM pipeline to converge to a good solu-
tion. With both improved initialization and depth regular-
ized optimization, our full approach performs the best.

b. Depth Estimators: To assess the robustness of our ap-
proach to the choice of depth-estimator, we evaluate camera
pose estimation using several off-the-shelf pretrained depth
estimation models based on various network architectures
and trained with different datasets. Specifically, we com-
pare five monocular depth estimation models, including Mi-
DaS small [3 1] which is designed for mobile devices, DPT-
hybrid [30] and DPT-large [30] which are based on Trans-
formers [41], AdaBins [4] which is the latest approach for
monocular depth estimation and MC [22] which focuses on
human depth estimation. Figure 7 shows that our approach
significantly outperforms COLMAP++ using depth priors
provided by any of the five different pretrained depth es-
timation models. The small performance variation among
those depth estimators demonstrates that our approach does
not rely on a particular depth estimator and is robust to di-
verse network architectures and training datasets.

c. Depth Noise: In addition to evaluating the use of various
depth estimators we also test the robustness of our approach
under different amounts of synthetic noise. For each key-
point depth d, we add random Gaussian noise with 0 mean
and « - d standard deviation with different values of o. As
shown in Table 5, the performance degradation of our ap-
proach is only within 5% under the largest added noise level
of 0.4 which demonstrates that our pipeline can tolerant siz-
able amounts of errors in the estimated depth-priors.

0.9

0.8 1

0.7 4

0.6 1

Recall (%)

0.3 4

0.2 1

0.1+

0.0

0.5 1

0.4

— ours full
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—— optimization only
—— COLMAP++

ecall (%)

— ours full

—— initialization only
—— optimization only
—— COLMAP++
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R-RPE (deg)

0.00 0.05

Figure 6: Ablation study on StudioSfM - Recall of translation
error and relative rotation error are plotted for different variants of
our method: "ours full" - our full approach, "initalization only"
- our approach with only improved initialization, "optimization

only" - our approach with only depth-regularized optimization.

Recall (%)

—— DPT-large
—— DPT-hybrid
—— MiDa$ small
—— AdaBins
— MC
COLMAP++

Recall (%)

—— DPT-large
—— DPT-hybrid
—— MiDaS small
—— AdaBins
— MC
COLMAP++
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Figure 7: Ablation study of depth-estimators for StudioSfM -
The recalls for ATE and R-RPE are plotted for our approach with
different pretrained monocular depth estimators.

ATE AUC T-RPE AUC R-RPE AUC

“ |02 (cm) [ 2.0 (cm) | 0.1 (cm) [ 0.5 (cm) | 0.02 () [ 0.1 ()
0.0 [ 318 653 416 698 | 487 | 748
01| 311 63.9 39.4 676 | 471 | 73.0
02| 303 62.8 39.2 675 | 470 | 735
04| 285 62.7 38.5 670 | 446 | 719

Table 5: Depth noise analysis for camera pose estimation — .
Gaussian noise with 0 mean and «-d variance is added to each key-
point with depth d. The performance degradation of our approach
is only within 5% for « of 0.4 demonstrating the robustness of our
approach to errors in estimated depth-priors.

4.7. Qualitative Evaluation

a. StudioSfM: We compare our approach with other meth-
ods qualitatively using five examples from StudioSfM in
Figure 8. To compare with RCVD [19], we use their es-
timated depth image to visualize the depth of the point
cloud. Examples 1-4 show a common error observed
for COLMAP++ where, unlike our approach, the relative
depths between points are incorrect (e.g., the building out-
side of window in example 2 is estimated closer than the ta-
ble in the room). Similarly, the camera motion estimated by
RCVD [19] tends to have large errors as shown in example
2-5. Both COLMAP++ and our approach achieve accurate
reconstruction for example 5 since the motion-parallax is
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Figure 8: Qualitative results on StudioSfM dataset — Keypoint-
depths are visualized in color from red (near) to blue (far) and the
camera motion is visualized as a trajectory of red cones. First
column shows image and ground truth camera motion, while other
columns show the results from different approaches.

sufficient, however, RCVD [19] still produces poor results
for this example even though the motion parallax is large.

b. LVU Dataset: We now present qualitative results of
our approach and COLMAP++ on a subset of the LVU
dataset [44] consisting of video clips from movies. We
selected 53 shots with relatively few dynamic objects and
small motion blur from the test-set of category "scene". As
there is no ground truth provided, we can only evaluate the
results by visualizing the camera poses and point clouds.
Out of the selected 53 shots, we did not find any shot where
results from COLMAP++ were clearly better than ours.
Figure 9 shows results of 5 examples demonstrating the
higher-quality results produced by our approach. The last
row shows an example where our approach produces sim-
ilar errors as COLMAP++. This is because the estimated
depth images [30] of initial image-pair for this example are
too erroneous for our approach to effectively guide the sub-
sequent reconstruction process to a better solution.

Input & depth-map

||
T 9|dwexa

T
C 9|dwexa

T
€ @)dwexa

T
¢ a|dwexa

T
G a|dwexa

Figure 9: Qualitative results on LVU dataset [44] — Depths
are visualized using red (near) to blue (far). 1* column shows the
input image and its depth, while 2" and 3™ columns show the
results of COLMAP++ and our approach.

5. Conclusions

We presented a simple yet effective STM approach that uses
monocular depth obtained from a pretrained network to im-
prove the incremental SfM pipeline [33]. Experiments us-
ing existing and a newly collected dataset show that our ap-
proach significantly improves the reconstruction quality for
small parallax data while being robust to a variety of pre-
trained depth networks. Our approach easily integrates with
COLMAP [33], and going forward we plan to use it as an
initial step for dense reconstruction and novel view synthe-
sis for studio-produced content.
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