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Abstract

Quantization is an effective way to reduce the memory
and computational costs of deep neural networks in which
the full-precision weights and activations are represented
using low-bit values. The bit-width for each layer in most
of existing quantization methods is static, i.e., the same for
all samples in the given dataset. However, natural im-
ages are of huge diversity with abundant content and us-
ing such a universal quantization configuration for all sam-
ples is not an optimal strategy. In this paper, we present
to conduct the low-bit quantization for each image individ-
ually, and develop a dynamic quantization scheme for ex-
ploring their optimal bit-widths. To this end, a lightweight
bit-controller is established and trained jointly with the
given neural network to be quantized. During inference,
the quantization configuration for an arbitrary image will
be determined by the bit-widths generated by the controller,
e.g., an image with simple texture will be allocated with
lower bits and computational complexity and vice versa.
Experimental results conducted on benchmarks demon-
strate the effectiveness of the proposed dynamic quanti-
zation method for achieving state-of-art performance in
terms of accuracy and computational complexity. The code
will be available at https://github.com/huawei-
noah / Efficient - Computing and https : / /
gitee.com/mindspore/models/tree/master/
research/cv/DynamicQuant.

1. Introduction
Deep convolutional neural networks (CNNs) have

achieved remarkable results in a wide range of intelligent
applications including image processing [14, 27], video
understanding [5], natural language processing [15] and
speech recognition [49]. However, these models have ex-
cessive demands on storage and computational resources to
achieve satisfactory performance, which prohibits their de-
ployment on mobile and embedded devices. Thus, how to
effectively compress and accelerate the CNNs is urgently
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Figure 1. Results of applying DQNet for ResNet50 on the Ima-
geNet dataset. The proposed DQNet can be easily embedded with
mainstream quantization frameworks for better performance, such
as DoReFa [51] and PACT [8].1

required for real-world applications.
Admittedly, there have been extensive explorations on

model compression and acceleration methods such as prun-
ing [16, 18, 30, 39], tensor decomposition [24, 38] and
knowledge distillation [20, 26], which aims to shrink the
original network architectures while remaining their per-
formance. Quantization is another effective approach for
reducing the complexity by representing weights and acti-
vations in the network using low-bit integer values, which
is convenient for applications since it does not change the
network architecture and is easily to deploy. For example,
Zhou et al. [51] proposed to constrain weights and activa-
tions to low-bit values and approximated the sign function
with ”hard tanh” function [2] in the backward process to
avoid the zero-gradient problem. The subsequent methods
in [8, 12, 48, 50] utilized flexible scale factors and training
strategy to optimize the quantized models for better perfor-
mance.

1The Bit-FLOPs is calculated as the product of the weight bit-width, the
activation bit-width and the FLOPs (the multiplication and add operations).
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Although the aforementioned approach have made
tremendous efforts for enhancing the performance of the
low-bit quantized network, the diversity of each instance in
the given dataset is usually ignored. In fact, how to effec-
tively handle hard and easy examples is a widespread prob-
lem in computer vision, especially in visual recognition task
as discussed in [35, 37]. To this end, Wu et al. [44] propose
to select a small proportion of layers from the pre-trained
network during inference and reduce the overall compu-
tational complexity. Cheng et al. [7] point out that a sin-
gle network architecture is not representative enough for all
samples in the given dataset and exploit an instance-level
network variation algorithm. These methods are mainly de-
veloped based on the fact that the required resources for
processing different samples using deep neural networks are
often various. For example, a well trained network is very
easy to identify an image containing only one dog, but it
is hard to recognize an obscured bicycle in the street view.
Thus, we are motivated to explore an instance-aware dy-
namic approach that can provide better trade-off of perfor-
mance and computational complexity.

In this paper, we propose a novel network quantization
scheme, which dynamically allocates bit-widths in quan-
tized neural networks conditioned on each input samples
as shown in Fig 2. Specifically, a great number of hidden
sub-networks with various bit-width configurations will be
derived from the given network architecture. During the
inference, an image which is hard to be accurately recog-
nized will be assigned with a larger network and vice versa.
For an arbitrary image, a bit-controller is utilized for pre-
dicting its optimal bit-width sequence for weights and ac-
tivations of all layers. The bit-controller is designed with
a lightweight architecture so that its additional computa-
tional costs can be ignored. The quantized neural network
is trained together with the bit-controller in an end-to-end
manner for better performance. Since our dynamic quan-
tized network (DQNet) can provide the optimal bit-width
configuration according to different input images, the com-
putational cost for processing each sample can be largely
reduced. The dynamic computation resource allocation
can achieve a better trade-off between computational cost
and accuracy than those of conventional static quantization
methods. Extensive experiments conducted on CIFAR-10
and ImageNet datasets demonstrate that DQNet can achieve
similar or even better classification accuracy than that of
static quantization methods while consuming less computa-
tion resources.

2. Related works
Here, we will briefly introduce the current works on net-

work quantization including the conventional static quanti-
zation and mixed-precision quantization. Besides, the ex-
isting dynamic inference methods are summarized and ana-

lyzed.

Quantization In order to improve the hardware effi-
ciency, many researchers have proposed to quantize the
weights and activations, thus allowing the lower precision
computational units in hardware. Courbariaux et al. [9] pro-
posed to present weights and activations with binary val-
ues and furthermore they proposed to compute the scaling
factor applying to both binary weights and binary inputs in
XNOR-Networks [34]. The concept of non-uniform quan-
tization had been suggested by [32] and [1]. Yang et al. [45]
formulated quantization function as a linear combination of
several sigmoid functions with learnable biases and scales.
Esser et al. [13] introduced a means to estimate and scaled
the task loss gradient at each weight and activation layer’s
quantizer step size. These methods utilize the same quanti-
zation structure for all the samples and ignore the diversity
and complexity of the given dataset.

Mixed-precision Quantization Conventional quantiza-
tion methods often compress all the layers to the same
precision, which may cause significant performance degra-
dation. One possibility to address this problem is to use
mixed-precision quantization. Wang et al. [41] proposed a
reinforcement learning based method to implement mixed-
precision quantization. Dong et al. [10, 11] proposed to
decide the quantization bit-widths exploiting second-order
(Hessian Matrix) information, which considered the quanti-
zation effect of each layer individually. Guo et al. [17] pro-
posed a single path one-shot approach to search the mixed-
precision architectures. Differentiable architecture search
(DARTS) [28] relaxed the discrete search space into a con-
tinuous one, enabling the optimization by gradient descent.
Wu et al. [43] and Cai et al. [4] employed DARTS to find
the bit allocation for each layer of CNNs. Although these
methods quantize each layer with different bit-widths, they
do not consider that computation requirement for different
samples are various.

Dynamic Inference Recently, there are some dynamic
neural networks that focus on designing different architec-
tures under different circumstances. Liu et al. proposed
D2NN [29], which executed a subset neurons of a network
given an input. Wang et al. [42] introduced to selectively
skip convolutional blocks based on the activations of the
previous layer using a gating network. Huang et al. de-
veloped MSDNet [21], which trained multiple classifiers
with varying resource demands. Yu et al. [47] proposed
slimmable neural networks, which learned a single neural
network executable at different width. Cai et al. [3] pro-
posed to train a one-for-all network that supports diverse ar-
chitectural settings by decoupling training and search. Chen
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Figure 2. The diagram of the proposed dynamic network quantization approach. The bit-controller first generates the optimal bit-width
sequence for each input image and the network will be adjusted to the optimal quantization accordingly.

et al. [6] proposed to aggregate multiple parallel convolu-
tion kernels dynamically based upon their attentions. These
methods consider either the complexity of the dataset or
the limits of different computation resources and further en-
hance the performance of CNNs. Based on the fact that the
required computational complexity for different samples are
various, we shall develop an instance-aware quantization al-
gorithm to properly allocate computation resources of quan-
tized neural networks.

3. Approach
In this section, we first revisit the conventional network

quantization approach and then describe our dynamic quan-
tization strategy for higher performance in terms of both
network accuracy and efficiency.

3.1. Network Quantization

For an arbitrary neural network with n convolutional
layers {L1, ..., Ln}, there are n sets of weights W =
{W1, ...,Wn} belonging to these layers. For the i-th convo-
lutional layer, its weight is denoted as Wi ∈ Rci×si×si×oi ,
where si is the kernel size, ci and oi are the input and output
number of channels in this layer respectively. Given a batch
of training samples X and the corresponding ground truth
Y, the error of the network can be defined as Lcls, where
Lcls could be cross entropy loss or mean squared error, etc..
The training of the given deep neural network is conducted
by solving an Empirical Risk Minimization problem.

Basically, the training and inference of conventional neu-
ral networks utilize floating-point numbers, i.e., both the
weights and activations are stored using 32-bit precision.
Model quantization methods represent the weights or acti-
vations in neural networks with low-bit values so as to re-
duce the computation and memory costs. To quantize the
weights Wi and activations Ai, these floating-point num-

bers need to be restricted to a finite set of values. The quan-
tization function is usually defined as:

Q(z) = γj , ∀ z ∈ (uj , uj+1], (1)

where (uj , uj+1] denotes a real number interval (j =
1, ..., 2b), b is the quantization bit-width, and z is the input
value, i.e. a weight or an activation. The quantization func-
tion in Eq. (1) maps all the values in the range of (uj , uj+1]
to γj . For the choices of these intervals, the widely used
strategy is to use an unified quantization function [23,51] in
which the above range is equally split, i.e.,

Q∆(z) = R(
z

∆
) ·∆, (2)

where the original range (l, r) is divided into 2b unified in-
tervals, ∆ = r−l

2b is the interval length and R is the round
function. To make the non-differential quantization process
can be optimized end-to-end, the straight-through estima-
tor [2] is usually adopted to approximate the derivative of
the quantization function.

3.2. Dynamic Quantization

Although a great number of quantization methods have
been explored, the bit-width in conventional quantization
method is usually static for all the inputs. In fact, the diver-
sity of natural images in recent datasets is very high and
most of existing quantization algorithms do not consider
their variousness and intrinsic complexity. To allocate the
computation resources precisely, we propose the dynamic
quantization to adjust the bit-width for each layer accord-
ing to the input. Suppose there are K bit-width candidates,
i.e., b1, b2, · · · , bk. Dynamic quantization aims to select an
optimal bit-width for quantizing weights and activations of
each layer, which can be formulated by aggregating multi-
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ple bit-widths as follows:

Qi,j(z) =

K∑
k=1

pki,j ·Q∆k
i
(z),

s.t. pki,j ∈ {0, 1},
K∑
k=1

pki,j = 1.

(3)

where pki,j denotes the selection of the kth bit-width for the
jth sample in the ith layer. Then the dynamic quantization
of jth sample in the ith layer can be formulated as:

Yi,j = Ŵi,j ∗ X̂i,j , (4)

Ŵi,j = Qi,j(Wi) =

K∑
k=1

pki,j ·Q∆k
i
(Wi), (5)

X̂i,j = Qi,j(Xi,j) =

K∑
k=1

pki,j ·Qδki (Xi,j), (6)

where ∆k
i and δki denote the quantization intervals of

weights and activations, respectively and the same bit-width
is applied to the weights and activations in one layer. By ex-
ploiting Eq. (4)-(6), the dynamic convolutional layer is ex-
actly the aggregation of mixed precision layers for a given
input, which can fully exploit the potential of the resulting
quantized neural network. Note that the biases are omitted
in the formulation for convenience, the quantization interval
∆k
i of biases are the same with which of weights in practice.
The diagram for using the proposed dynamic quantized

network (DQNet) is shown in Figure 2, Given an image, our
goal is to provide an optimal trade-off between network per-
formance and computation burden. Thereby, the quantized
neural network can still work well under a certain limit of
computation. However, Eq. (4)-(6) cannot be directly opti-
mized since the selection indicators pki,j for each layer are
not fixed, which are variant to the input x. The test dataset
cannot be obtained in advance and for the training dataset,
the storage requirement for the selection indicators will be
tremendous. For example, for ResNet-50 network, the num-
ber of possible bit-width configurations is 550 = 8.8× 1034

for each sample when there are five bit-width candidates.

3.3. Bit-Controller for Dynamic Quantization

To address the above challenging problem, we employ a
bit-controller to predict the bit-widths of weights and activa-
tions of all layers by identifying the complexity of each in-
put sample. In practice, the bit-controller will output a vec-
tor consisting of prediction logits, representing the selection
probabilities of each bit-width candidate in each layer.

The bit-controller is carefully designed with extremely
small architectures to avoid obviously increasing the over-
all burden on memory and computation of the resulting net-
work. Specifically, the bit-controller is a smaller network

Bit-controller: predicted bit-width 
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Figure 3. The paradigm of training one layer using dynamic quan-
tization approach. The bit-widths of weights and activations in this
layer are predicted by the bit-controller and only one bit-width will
be selected for processing the given input.

consisting of the first several layers of the main network
followed by a MLP and the MLP consists of only two fully-
connected layer in practice. In this way, our DQNet pre-
dicts the bit-width of each layer with negligible computa-
tion. We examine the impact of employing some layers
from the main quantized network for the bit-controller in
Sec. 4.4. In addition, the bit-controller is jointly trained
with the main quantized network in an end-to-end manner
and the bit-controller will generate the prediction logits of
bit-widths of all the subsequent layers at once.

Assuming that the output logits of the bit-controller are
h1, h2, · · · , hk for the weights and activations of a certain
layer, the bit-width can be selected accordingly, i.e., pk is
determined as

pk =

1, if k = arg max
k′

hk
′
,

0, otherwise.
(7)

During both training and inference, only one bit-width
will be selected for one layer as shown in Figure 3. To
provide a differentiable formula for sampling argmax, we
utilize the Gumbel-softmax trick during training:

pk =
e(hk+πk)/τ∑
j e

(hj+πj)/τ
, (8)

where τ is the temperature parameter that controls how
closely the new samples approximate one-hot vectors. πk

is a random noise that follows Gumbel distribution,which
can be described as :

πk = −log(−log(uk)), uk ∼ U(0, 1). (9)

During the feed-forward process, after obtaining the bit-
width of a certain layer for a specific sample, DQNet will
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Algorithm 1 The training procedure of the proposed dy-
namic quantization scheme.
Input: Input images X and their labels; the trade-off pa-

rameter α.
Output: The dynamic quantized neural network using our

algorithm.
1: Set epochs T and batch size m for training DQNet
2: Initialize the weights of network and bit-controller ran-

domly and quantize the input images
3: for t = 1, · · · , T do
4: Output the probability of different bit-widths for

each layer using the bit-controller.
5: Generate the one-hot vectors for selections of differ-

ent bit-widths using Eq. (7).
6: for i = 1, · · · , n do
7: for j = 1, · · · ,m do
8: Quantize Xi,j and Wi for jth sample in the ith

layer according to the selection of different bit-
widths using Eq. (5) and (6).

9: end for
10: Calculate the output of i-th layer using Eq. (4).
11: end for
12: Update the entire network using back propagation

according to Eq. (11) and utilize Eq. (8) when up-
dating the Gumbel-softmax layer.

13: end for

quantize the weights and the activations accordingly, i.e.,

Ŵi,j = Qi,j(Wi) = Q∆k
i
(Wi),

X̂i,j = Qi,j(Xi,j) = Qδki (Xi,j),

where k = arg max
k′

hk
′
,

(10)

where ∆k
i and δki are the quantization intervals for weights

and activations using the predicted bit-width, respectively.
During back-propagation, the quantized network will uti-
lize the gradient computed by Eq. (8). It is worth noting
that although there are multiple bit-width candidates, only
the biggest bit-width of weight value need to be stored in
practice. Since the bottleneck on devices is the inference
time, the slightly additive storage of weights can be ignored.

3.4. Optimization

In order to control the computational cost of DQNet flex-
ibly, we add a Bit-FLOPs constriction term in the loss func-
tion so the total loss is formulated as:

Ltotal = Lcls + α ·max(

n∑
i=1

Bi −Btar, 0), (11)

where Bi is the Bit-FLOPs of the i-th layer and Btar is the
target Bit-FLOPs of the quantized networks. α is the trade-

off parameter.
Given a target Bit-FLOPs, the dynamic quantized neu-

ral network will capture the inherent variance in the com-
putational requirements of the dataset and allocate optimal
bit-widths for different instances and different layers. The
training procedure of the proposed dynamic quantization
scheme is shown in Algorithm 1.

4. Experimental Results
In this section, we first introduce the training details of

DQNet and then present the results of DQNet on CIFAR-
10 dataset [25] and ImageNet dataset [36]. In the ablation
study, the effect of employing first several layers from the
main network for the bit-controller and the influence of the
number of layers in bit-controller are presented. Last but not
the least, we explore the computation allocation of DQNet
among different input instances.

4.1. Training details

Datasets and metrics We evaluate our method on two
benchmark classification datasets: CIFAR-10 and Ima-
geNet. The CIFAR-10 dataset consists of 50K training im-
ages and 10K test images, which are labeled for 10 classes.
During training and inference, the simple data augmentation
like in [19] is utilized, which contains translation and flip.
ImageNet dataset contains 1.2 million training images and
50K validation images labeled for 1,000 categories. We use
translation and flip for the data augmentation and we test on
the validation set and report top-1 classification accuracy.

Bit-controller For the bit-controller network, the expres-
sion ability will be insufficient if a minor network is
adopted. However, the computation burden will be over-
sized which is against our original intention if a large net-
work is embraced. To achieve a optimal trade-off, we
employ the first several layers from the main network for
the bit-controller, where a MLP consisting of two fully-
connected layers is followed by the output. In this way, the
additional computation is negligible for the total network.
For example, the additional computation of bit-controller
are 1.1% for CIFAR-10 (ResNet-20) and 0.9% for Ima-
geNet (ResNet-50), respectively. Specifically, the output
feature maps of stage one in ResNet (one convolutional
layer and two residual blocks for ResNet20) is utilized as
the input of the MLP.

Bit-width candidates As for the bit-width candidates, the
values around the target bit-width2 are selected. For exam-
ple, the bit-width candidates are {3,4,5,6,7} if the target bit-

2For a convenient description, here we replace target Bit-FLOPs with
the corresponding bit-width. In practice, target bit-width could be a float
number, which is more flexible than conventional quantization methods.
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Table 1. Comparison on the performance of proposed DQNet with PACT and DoReFa of ResNet20 on CIFAR-10 dataset. The Top-1
accuracy of the reference full-precision model is 91.6%. Here ’MP’ represents for mixed-precision.

Static Quantization Dynamic Quantization
Method Bit Bit-FLOPs(G) Top-1 Accuracy(%) Bit Bit-FLOPs(G) Top-1 Accuracy(%)

DoReFa [51] 3 0.34 89.9 ∼3 MP 0.34 90.23
DoReFa [51] 4 0.61 90.5 ∼4 MP 0.62 90.79
DoReFa [51] 5 0.95 90.4 ∼5 MP 0.96 91.09

Average – 0.63 90.27 – 0.64 90.70
PACT [8] 3 0.34 91.1 ∼3 MP 0.36 91.38
PACT [8] 4 0.61 91.3 ∼4 MP 0.65 91.60
PACT [8] 5 0.95 91.7 ∼5 MP 0.98 92.01
Average – 0.63 91.37 – 0.65 91.63

width is 5. Note that the bit-width candidates are {2,3,4} if
the target bit-width is 3, since the performance will decline
a lot from 1-bit quantization. It is well known that the first
convolutional layer and the last fully-connected layer are
critical for the recognition and 8-bit quantization is applied
for these two layers like the settings in conventional quanti-
zation methods.

Implementation details We adopt four quantization
methods as the benchmark: DoReFa-Net [51], PACT [8],
LQ-Nets [48] and LSQ [12]. We conduct DQNet based on
these methods and demonstrate the effectiveness of our ap-
proach.

We adopt PyTorch [33] and MindSpore [22] for im-
plementation and utilize stochastic gradient descent (SGD)
as the optimizer with momentum of 0.9. For CIFAR-10
dataset, the learning rate starts from 0.1 and is scaled by
0.1 at epoch 60, 120, 180. L2-regularizer with decay of
0.0002 is applied to weight. The mini-batch size of 256 is
used and the maximum number of epochs is 200. For Im-
ageNet dataset, the learning rate starts from 0.1 and scaled
by 0.1 at epoch 30, 60, 85, 110. L2-regularizer with decay
of 10−4 is applied to weight. The mini-batch size of 256 is
used and the maximum number of epochs is 120. For the
hyper-parameter α, it is set to 0.01 for CIFAR-10 and 0.05
for ImageNet, as the classification loss on these two datasets
are of different orders of magnitude. All the experiments are
conducted on NVIDIA V100 GPUs.

4.2. CIFAR-10

In this section, we present the experimental results of
ResNet-20 model on CIFAR-10 dataset. Specifically, the
comparison between static quantization and our dynamic
quantization are shown in Table 1. For ResNet20, it can be
seen that the average top-1 accuracy of DQNet is 0.43% and
0.26% better than DoReFa and PACT under the similar Bit-
FLOPs, respectively. Besides, DQNet can save about 40%
computation while achieves a even better performance than

PACT (91.38% in 0.36G Bit-FLOPs vs. 91.3% in 0.61G
Bit-FLOPs). Specifically, the results of DQNet is even bet-
ter than 32-bit precision neural network whose accuracy is
91.6% and our DQNet can achieve 92.01% accuracy using
only 0.98G Bit-FLOPs. More results can be seen in the sup-
plementary materials.

4.3. ImageNet

To further demonstrate the effectiveness of DQNet, we
apply it on a much larger dataset–ImageNet. We apply the
proposed DQNet on four quantization methods: DoReFa-
Net [51], PACT [8], LQ-Nets [48] and LSQ [12]. The ex-
periments are conducted with ResNet-50 model, which con-
sists of a convolutional layer followed by 16 ResNet bottle-
neck blocks and a final FC layer. The results are shown in
Table 2.

DoReFa-Net DoReFa-Net quantizes both weights and ac-
tivations and also uses low bit-width for parameter gradi-
ents. As we can seen, dynamic quantization can achieve
2.16% average top-1 accuracy gain over DoReFa-Net,
which is a great progress. Besides, the accuracy of the 3-
bit DQNet is even better than the performance of the 5-bit
DoReFa-Net.

PACT PACT proposes a parameterized clipping activa-
tion function and automatically optimizes the quantization
scales during model training. PACT is a much better bench-
mark and we also conduct DQNet based on PACT. The re-
sults show that DQNet still can achieve remarkable profit,
which is 0.45% average Top-1 accuracy. It is worth noting
that dynamic quantization can save 35% computation while
achieving a better top-1 accuracy (76.94% in 61.49G Bit-
FLOPs vs. 76.7% in 95.73G Bit-FLOPs).

LQ-Nets LQ-Nets is a classical non-uniform quantization
method, where DoReFa-Net and PACT are both uniform
quantization methods. It apply learnable quantizers which
can be jointly trained with the network parameters. The
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Table 2. Comparison on the performance of proposed DQNet with DoReFa-Net, PACT, LQ-Nets and LSQ of ResNet50 on ImageNet
dataset. The Top-1 accuracy of the reference full-precision model is 76.96%. Here ’MP’ represents for mixed-precision.

Static Quantization Dynamic Quantization
Method Bit Bit-FLOPs(G) Top-1 Accuracy(%) Bit Bit-FLOPs(G) Top-1 Accuracy(%)

DoReFa [51] 3 34.46 69.9 ∼3 MP 34.68 71.81
DoReFa [51] 4 61.27 71.4 ∼4 MP 61.38 72.90
DoReFa [51] 5 95.73 71.4 ∼5 MP 95.86 74.48

Average – 63.82 70.9 – 63.97 73.06
PACT [8] 3 34.46 75.3 ∼3 MP 34.70 75.81
PACT [8] 4 61.27 76.5 ∼4 MP 61.49 76.94
PACT [8] 5 95.73 76.7 ∼5 MP 96.27 77.12
Average – 63.82 76.17 – 64.15 76.62

LQ-Nets [48] 3 34.46 74.2 ∼3 MP 34.75 74.89
LQ-Nets [48] 4 61.27 74.89 ∼4 MP 61.39 75.72

Average – 47.86 74.54 – 48.07 75.31
LSQ [12] 3 34.46 75.8 ∼3 MP 34.69 76.16
LSQ [12] 4 61.27 76.7 ∼4 MP 61.35 2 3 77.02
Average – 47.86 76.17 – 48.02 76.59

Table 3. Comparison on the performance of proposed DQNet with mixed-precision methods HAQ and HAWQ using ResNet-50 on
ImageNet dataset.

Method model W-Bits A-Bits Bit-FLOPs(G) Top-1 (%)
HAQ [41] ResNet-50 ∼3 MP ∼3 MP ∼34.46 75.30

HAWQ [11] ResNet-50 ∼2 MP ∼4 MP ∼31.67 75.48
Ours ResNet-50 ∼3 MP ∼3 MP 34.59 75.81

HAQ [41] ResNet-50 ∼4 MP ∼4 MP ∼61.27 76.14
Ours ResNet-50 ∼4 MP ∼4 MP 61.49 76.94

HAQ [41] MobileNet-V2 ∼3 MP ∼3 MP ∼2.72 70.90
Ours MobileNet-V2 ∼3 MP ∼3 MP 2.81 71.56

HAQ [41] MobileNet-V2 ∼4 MP ∼4 MP ∼4.85 71.47
MPDNN [40] MobileNet-V2 ∼4 MP ∼4 MP – 69.74
AutoQ [31] MobileNet-V2 4.14 3.67 – 70.8

FracBits [46] MobileNet-V2 ∼4 MP ∼4 MP 5.33 71.3
Ours MobileNet-V2 ∼4 MP ∼4 MP 4.94 72.05

experimental results prove the universality of our method.
As a result, DQNet promotes the accuracy of LQ-Nets by
0.69% and 0.83% under 3-bit and 4-bit quantization respec-
tively.

LSQ LSQ introduces a novel means to estimate and scale
the task loss gradient at each weight and activation layer’s
quantizer step size, such that it can be learned in conjunc-
tion with other network parameters. We can seen that the
LSQ achieves the best performance among these methods.
However, it can still benefit from the dynamic quantization.
It is worth noting that the top-1 accuracy of DQNet based on
LSQ is even larger than the full-precision model. We think
the reason is that dynamic quantization provides a better
regularization for the neural networks.

Comprison with mixed-precision methods We also
compare our DQNet with the mixed-precision methods.
The results are shown in Table 3. Compared to HAWQ [11],
DQNet achieves a better performance under the similar
computation cost. Note that the bit-width of weights and
activations in HAWQ are different, which is difficult to
achieve the theoretical acceleration in practice. Compared
to HAQ [41], DQNet performs better under about 35G and
61G Bit-FLOPs. With a more compact model MobileNet-
V2, our DQNet outperforms HAQ by 0.66% and 0.58% un-
der about 3-bit and 4-bit quantization, respectively.

4.4. Ablation study

Employing the first several layers of the main network as
the front part of bit-controller can obviously reduce the ad-
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Figure 4. Qualitative results of DQNet on different samples using various Bit-FLOPs. The context of input images are gets complicated
from top to bottom and the consuming computation resources becomes larger.
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Figure 5. Comparison between using additional convolutional lay-
ers and employing convolutional layers from the main network in
the bit-controller.

ditional computation cost. We compare the results with us-
ing separate convolutional layers as the bit-controller. The
experiments are conducted with ResNet18 on ImageNet
dataset. As shown in Figure 5, employing the first sev-
eral layers of the main network achieves comparable results
compared to using separate convolutional layers which in-
troduces additional computation costs.

We also test how the number of shared layers between
the main network and the bit-controller affect the perfor-
mance of DQNet. The experiments are also carried out with
ResNet18 on ImageNet dataset. As we see in Figure 5, the
results of utilizing only one convolutional layer is terrible,
which are even worse than static quantization. The reason is
that the expression ability of bit-controller is not powerful
enough. Along with the increase of the number of layers in
bit-controller, the performance of DQNet becomes better.

However, the shared layers cannot be too large to have a
negative effect on the variety and regularization of the main
network.

4.5. Qualitative Results

Finally, the qualitative results based on our learned dy-
namic quantization strategies are provided. Figure 4 il-
lustrates some samples from ImageNet dataset. The top
row shows the images that are correctly classified with
less Bit-FLOPs, while the sample in the bottom row uti-
lize more Bit-FLOPs. It is shown that samples using fewer
Bit-FLOPs are indeed easier to identify since they contain
single frontal-view objects positioned in the center, while
occlusion or cluttered background occur in samples that re-
quire more computation.

5. Conclusion
In this paper, we develop a novel dynamic quantization

scheme in which the bit-widths of weights and activations
in each layer are variant to the input instance. To this end,
we propose to use a lightweight bit-controller jointly trained
with the entire network. The bit-controller will predict the
optimal bit-widths of all layers for maximally exploiting
the redundancy of the given network architecture for each
input image. Specifically, images with lower recognition
complexity will be assigned with a portable network and
heavy networks will be employed on others for preserving
the recognition accuracy. Experimental results show that
the proposed DQNet can be easily embedded into main-
stream quantization frameworks for better results in terms
of both network accuracy and computation costs. We think
that the benefits of the proposed method will be heuristic
for the developing of specific hardware.
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