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Figure 1. Illustrations of four dense features based methods in a 3-way 1-shot scenario, where each colored pane indicates an image and
particles within each pane indicate three feature vectors of that image. The arrow line indicates a direct connection between two feature
vectors in inference. For example, (a) DN4 [12] accumulates cosine similarities between the nearest features; (b) DeepEMD [31] finds the
optimal matching flow that has the minimum cost; (c) FRN [29] reconstructs query features with the linear combination of support features.
(d) Our MCL lets query and support features bidirectionally random walk to the opposite dense features set and measures the expected
number of visits in a Markov process { X; }. Difference from them, MCL considers mutual affiliations between the dense features instead of
following the unidirectional paradigm whose evident character is an accumulation over all query features followed by a softmax probability.

Abstract

Few-shot learning (FSL) aims to learn a classifier that
can be easily adapted to accommodate new tasks, given
only a few examples. To handle the limited-data in few-shot
regimes, recent methods tend to collectively use a set of local
features to densely represent an image instead of using a
mixed global feature. They generally explore a unidirec-
tional paradigm, e.g., finding the nearest support feature
for every query feature and aggregating local matches for a
Jjoint classification. In this paper, we propose a novel Mutual
Centralized Learning (MCL) to fully affiliate these two dis-
Jjoint dense features sets in a bidirectional paradigm. We first
associate each local feature with a particle that can bidirec-
tionally random walk in discrete feature space. To estimate
the class probability, we propose the dense features’ acces-
sibility that measures the expected number of visits to the
dense features of that class in a Markov process. We relate
our method to learning a centrality on an affiliation network
and demonstrate its capability to be plugged in existing meth-
ods by highlighting centralized local features. Experiments
show that our method achieves the new state-of-the-art.

1. Introduction

Few-shot classification aims to learn a classifier that can
be readily adapted to novel classes given just a small number
of labeled instances. To address this problem, a line of
previous literature adopts metric-based methods [23, 25, 26]
that learn a global image representation in an appropriate
feature space and use a distance metric to predict their labels.

Recent approaches [12, 14, 17, 31] have demonstrated
that the significant intra-class variations would inevitably
drive the image-level embedding from the same category far
apart in a given metric space under low-data regimes. In
contrast, densely representative local features can provide
transferrable information across categories that have shown
promising performances in the few-shot scenario. Among
those methods illustrated in Figure 1, DN4 [12] finds the
nearest neighbor support feature for each query feature and
accumulates all the local matches in a Naive-Bayes way
to represent an image-to-class similarity; DeepEMD [31]
uses the earth mover distance to compare the complex struc-
tured representations composed of local features. FRN [29]
reconstructs each of query dense features with a linear com-
bination of support dense features in a latent space and use
the reconstruction distance to measure the image-to-class

14411



relevance. They all follow a unidirectional query-to-support
paradigm, whose evident character is an accumulation over
all query features followed by a softmax probability.

In this paper, we incorporate an extra support-to-query
connection as a complement to thoroughly affiliate two dis-
joint sets of dense features. The potential offered by this
bidirectional paradigm stems from the intuition that, except
for using query features to find related support features, it is
also plausible to estimate the task-relevance of query features
according to the support features. Specifically, we associate
dense features with particles that could bidirectionally ran-
dom walk to the opposite dense features set in the discrete
feature space. The prediction probability for each class is
then estimated by the dense features’ accessibility, i.e., the
expected number of visits to the dense features of that class
in a time-homogeneous Markov process.

The contributions are as follows: (1) We propose to learn
mutual affiliations between the query and support dense fea-
tures instead of following the unidirectional query-to-support
paradigm in FSL. (2) We introduce the dense features’ acces-
sibility to FSL and demonstrate that traditional transductive
methods could be easily adapted to the inductive setting if
we treat dense features from a single query image as a set of
unlabeled data. (3) We propose a novel bidirectional random
walk based method in FSL and draw its connection to the
single-mode eigenvector centrality of an affiliation network.
(4) The underlying centrality investigated in this work can
be plugged in existing global feature based methods like
ProtoNet and RelationNet by highlighting task-centralized
local features instead of global average pooling.

2. Related Work

Dense Feature based FSL. Those methods focus on
learning image-to-image similarities by encoding each input
into a set of dense feature vectors (or a feature map). Among
them, DC [14] proposes to predict for each local features
and average their probabilities. DeepEMD [31] adopts the
earth mover’s distance to compute an image-to-class distance.
DN4 [12] uses the top-k nearest neighbors in a Naive-Bayes
way to represent image-level similarities. ADM [11] and
SAML [8] use extra network layers for dense classifications.
FRN [29] reconstructs the dense query features from support
features of a given class to predict their relevance. Lifchitz et
al. [13] propagates labels from support sets to query features.
MCL is also among the family of dense feature based frame-
works. A major difference is that we consider the mutual
affiliations between the query and support features instead
of the unidirectional one in previous work.

Graphical models in FSL. Another branch of methods
learns graphs on FSL. Among them, [7] build graph neu-
ral network (GNN) from a collection of images. [5] use
the degree-centrality as part of graph features to adjust the
weight of graph vertex in transductive FSL. Our proposed

feature accessibility of bidirectional random walks is well-
related to the eigenvector centrality. Differently, we use the
single-mode centrality of bipartite data as a novel criterion
for the inductive classification.

From Transductive to Inductive. TPN [16] first intro-
duces the well-known label propagation [32] to the trans-
ductive FSL that transfers information from labeled data
to unlabeled one and shows substantial improvements over
inductive methods. Lifchitz er al. [13] first demonstrates
it feasible to adopt label for inductive FSL by treating the
query dense features as numerous unlabeled data. Differ-
ent from unidirectional label propagation, our MCL further
considers the set of query and support features as bipartite
data where the self-reinforcements (i.e., query-to-query and
support-to-support random walks) are avoided.

3. Method
3.1. Formulation of Dense Features based FSL

In a N-way K -shot episode, the goal is to predict a class
label for a single query image given N support classes, each
of which contains K support images for reference.

We first encode each input image into r» number of d-
dimensional dense features fp(-) € RYX". We use q =
{q1, .-, ¢ } to denote dense features from a query image. In-
spired by prototype learning [23], we average feature vectors
from the same spatial locations of K different images into
support dense features for each s© = {s{, ..., s¢} category.

We use the bold font (e.g., q and s) to denote a set of
feature vectors and use the normal font (e.g., ¢ and s) to
denote a single feature vector. We use S = |J . s° to
represent the union set of dense features from all supporting
classes. The cardinalities for the sets q, s® and S are 7, r
and Nr respectively.

The target of dense features based FSL is to find the label
of a query image, given its dense query features q and the
union set of dense support features S from all categories.

3.2. Bidirectional Random Walks on Dense Features

We start by using the cosine similarity ¢(vi,ve) =
( o> H‘;—zu) to measure the closeness between the two fea-
ture vectors where (-, -) is the Frobenius inner product.

Given two dense features sets q and S, we learn inter sim-
ilarity matrix ® € R"*" between those two disjoint sets
where the entry of [®] . = ¢(g, s) indicates the similarity
between vectors ¢ € q and s € S.

We build query-to-support affiliations from every query

feature ¢ to all support features s € S by a random walk
PRLACD)

Zs’es ev®(s’q) *

from all query to support features can be written by

probability ps, = The probability matrix

Psq = exp(’y‘I>T)D_1 €))
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where exp(+) is the element-wise exponential function, = is
a scaling temperature for a softmax like probability and D
is a diagonal normalization matrix with its (7, j)-value to
be the sum of the j-th column of exp(y®™). The subscript
serves both as the matrix size and as an indication for the
feature vector with which it is associated. For example, Pgq
is of size |S| x |q| and it includes random walk probabilities
from query features q to support features S.

Likewise, we connect every support feature s to all ¢ € q
by a similar probability matrix:

P,s = exp(f®)W ! )

where W is the analogous diagonal matrix with its (5, j)-
value to be the sum of the j-th column of exp(5®).

It should be noted that we use two different scaling pa-
rameters since P is a non-square matrix due to the different
cardinalities of dense feature sets q and S. Although the
matrices exp(y®T) and exp(3®) would be symmetric if
we ignore their different scaling parameters, the probability
matrices Pqg, Psq are both column-normalized by different
D, W respectively and are thus directional.

To learn the mutual affiliations between the two dense fea-
ture sets, we first associate each feature vector with a particle
z that forms a discrete feature space z = qU S. Next, we let
particles bidirectionally random walk between particles in
that space according to Pgq and Pys (i.e., particles at query
features set are only allowed to move to the support features
set, and vice versa). We assume it time-homogeneous in a
Markov process { X; } and the random walk probability from
zj to z; for all z;, z; in z can be formulated by:

eV (%i:2;)
72 . ) 2z €8,z; €q
S
Pr(Xi1 =2 Xy = 25) = ePo(z1:25) ) ‘
S o A EBHES
0 otherwise.
(3)
To write it in matrix, we can obtain the Markov transition
matrix P:
0 Ps
P = d 4
<PqS 0 > @

that consists of the column-normalized Pgq and Pgs.

It can be proved (in supplementary) that, after infinity
times of bidirectional random walks, the Markov chain with
anti-diagonal P reaches the periodic stationary distribution:

lim P2t — W(S)E%T 0
t—o00 0 m(q)er )
. 2—1 _ 0 7’(8)67T
Jm P = (ﬂ(q)e%r 0

where (S) € RV",
butions with equations 7 (S)

7(q) € R" are the stationary distri-
=PgqPqs7(S) and w(q) =

P4sPsqm(q) respectively. e|.| is a vector of ones with
different length indicated by its subscript.

The motivation of using these stationary distributions
to encode mutual affiliations is straightforward: support
features would be frequently visited in the long times of
bidirectional random walk if they shared the same local char-
acteristics with the query ones. In other words, the support
class that owns the most mutual affiliations with querying
image would be predicted due to their mutual closeness.

3.3. Classification by Dense Features’ Accessibility

To formulate it in FSL, we first assume particles are uni-
formly distributed in the discrete finite space z. Then, we
use the expected number of visits from all particles z € z
to support features s® C S of class ¢ in the long times of
bidirectional random walks { X} to measure the amount of
local characteristics that class ¢ owns for the query image:

t
Pr(g =c) « lim E Z 1[X; € 59| Xo = z]
f=oo zZ€z k=1
t
1 2% 2k—1
-y s S (S P S,
565L s’eS q€q
2t 2t—1
Nr+r ( hmP +Z[tli>%lop } q>
s€sc \s’€S q€q

= Z o

ses®

(6)

where 1[-] is an indicator function that equals 1 if its argu-
ment is true and zero otherwise. [-];; indicates the entry of
the matrix from particle j to particle ¢ and [-]; indicates the
entry of the vector that associated to feature 7.

We give the derivation when the Markov chain length
t is even in the first equality of Eqn.(6) and prove that the
odd ¢ reaches the same result in the supplementary mate-
rial. The second equality is from the absorbing property of
the periodic Markov chain where the power of matrix gets
saturated to Eqn.(5) for the increasing ¢. Since 7r(S) is the
stationary distribution of column-stochastic PgqP4s under
the probability constraint e, w(S) = 1, Pr(g) is a valid
distribution for classifications.

3.4. Reinterpretation as a Graph Centrality

If we interpret the random walk probability matrix P as
an adjacency matrix {a,, o, } of a directed bipartite graph
G := (V = {q,S}, E), we find that the dense features’
accessibility in the time-homogeneous bidirectional random
walk would be equivalent to learning a single-mode eigen-
vector centrality on the graph G. The bipartite graph is also
called the affiliation network in social network analysis [1-3]
that models two types of entities "actors" and "society" re-
lated by affiliation of the former in the latter. The concept
of centrality in social network analysis is generally used to
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investigate the acquaintanceships among people that often
stem from one or more shared affiliations.

To see this in graph theory, we start with a brief overview
of the eigenvector centrality that reflects score x of vertex
v for both ¢ € q and s € S in the affiliation network with
adjacency {ay, v, }*

vy = % S ager = ;Zx

veV(q) veES
Ty = X Z As Ty = X Zas,vxv
veV(s) veq

where V() is a set of neighbors for the given vertex and A is
a constant.

With a small rearrangement, Eqn.(7) can be rewritten in
vector notation with an eigenvector equation Px = Ax. The
additional requirement that all the entries of the eigenvector
be non-negative implies (by the Perron—-Frobenius theorem
[18]) that only the greatest eigenvalue results in the desired
centrality measure. For the column-stochastic adjacency
matrix P in our method, the largest eigenvalue A is 1.

Single-mode centrality [3] is a special form of graph
centrality that measures the extent to which nodes in one
vertex set are relatively central only to other nodes in the
same vertex set on bipartite graph. For example, the single-
mode centrality for different s in S is defined by Xg =
Xs/ Y scg Ts- Lemma 1 (proved in supplementary material)
shows that dense features’ accessibility 7r(S) of bidirectional
random walks in Eqn.(6) is equivalent to the single-mode
eigenvector centrality of support set S on bipartite data.

Lemma 1. Assume G is the affiliation network of bipartite
data q, S with the adjacency matrix defined by the anti-
diagonal Markov transition matrix P in Eqn.(4). The single-
mode eigenvector centrality Xs = Xs/ ) g Ts Of vertex
set S is equivalent to the dense features’ accessibility m(S)
on S in a time-homogeneous Markov process.

Based on this reinterpretation, it is straightforward to
introduce the attenuation (damping) factor o in Markov bidi-
rectional random walks motivated by the Katz centrality [9],
where connections made with distant neighbors are penal-
ized by . The dense features’ accessibility with attenuation
factor « for few-shot classifications is defined by

Pria:. (7 = ¢) x Z]E

z€z

SR NPT SEE SN

t=1 s€s® \s’€S q€q
®)

where e = (Nr+ 7)Y 2, o' = (Nr+r)a/(1—a)isa
constant for a valid distribution.

Z Oét]l[Xt € SC]
t=1

XOZZ‘|

Although we simply consider the single-mode central-
ity on S for an end-to-end classification purpose, it is also
beneficial to learn its conjugate centrality 7r(q) on q in the af-
filiation network (by the analogous 7(q) = xq/ > ¢ T in
Lemma 1). We will show that both single-mode centralities
on two dense features sets could serve as plug-and-play for
finding centralized local characteristics in existing methods
(hence the term Mutual Centralized Learning, MCL).

3.5. End-to-End Training by Katz Approximation

The algorithm of Mutual Centralized Learning (MCL) in
Eqn.(6) involves the computation of Markov stationary dis-
tribution 7 (S) with equation 7w (S) = PgqPqsm(S). The-
oretically, the 7 (S) is the eigenvector of PgqPq4g with the
eigenvalue 1 under a probability constraint e%ﬂr(S) =1

The above constraints could lead to a solution of 7w (S) by
solving the overdetermined linear system

PsqPys — I 0
(g )e=0)

where I is an identity matrix and O is a vector of zeros.
Although we can solve it by various methods like pseudo-
inverse or QR decomposition and back substitution, it is
empirically found time-consuming as these operators are
either numerically unstable or not paralleled well in modern
deep-learning packages.

To handle it, we present an alternative solution based on
Lemma 1 as follows: We first calculate the Katz centrality
by its closed-form solution [9]:
=((I-aP)™ ' —DNenrir (10)

XKatz

and then solve single-mode Katz centrality in Eqn.(8) by the
definition of the single-mode centrality:
. XKatz
ZSES i{ ( 11 )
ZSIES XS/atz
Since Katz centrality degrades to the eigenvector central-
ity when o approaches 1 [9] (indicates no attenuation), we
can obtain the approximation of eigenvector centrality by a
large o = 0.999:
xPigen — lim (I —aP)™ ' —Denrir
a—1 (12)
~ ((I-0.99P)"' — Denyyr
and the analogous single-mode eigenvector centrality in
Eqn.(6) can then be approximated by:

Zsés“ XsEigen
Zs/ cs XsE/igen

We use the negative log-likelihood loss to update parame-
ters in different feature extractors and the whole picture of
MCL for few-shot classifications is shown in Figure 2. We
provide the detailed algorithm/pseudo-codes in the supple-
mentary material for reference.

PrKatz (?j - C) -

Pryicn(y =c¢) = (13)
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Figure 2. Our framework for 3-way 1-shot classification. Given the query and support images, we first extract their dense features g and
S which are two sets of feature vectors. Then we calculate their similarity matrix ®. After that, we build probability matrix P based on
the scaled and column-normalized similarity matrix. We obtain the stationary distributions 7 (S) and 7 (q) by the Katz approximation in
Eqn.(12) and the Lemma 1. Finally, we use them for both end-to-end FSL and as a centrality plugin in global feature based FSL. We explore
three dense feature extractors (i.e., VanillaFCN, PyramidFCN, PyramidGrid) inspired by [31] to extract dense feature representations.

3.6. Plugin for Global Feature based FSL.

Since the underlying centrality learned by MCL reveals
the different importance of local features on an affiliation net-
work, it is thus plausible to plug it into global feature based
methods by replacing their native global average pooling
(GAP) with the centrality weighted pooling as follows:

a. Extract dense features for each input image.

b. Compute the eigenvector centrality x®&°" by Eqn.(12).

c. Compute 7(S) and 7(q) according to definition of the
single-mode centrality in Lemma 1.

d. Use m(q) as weights on query dense features and
weighted accumulate them to a single feature vector.

e. Use the class-wise normalized centrality from 7 (S) to
accumulate dense features for each supporting class.

Once we get the centrality weighted features for the query
image and support classes, it is straightforward to perform
traditional global feature based methods like before.

4. Experiments

We conduct experiments on two widely-used FSL datasets
and three fine-grained datasets: (1) minilmageNet [26] con-
tains 600 images per class over 100 classes. We follow
the split used by [20] that takes 64, 16 and 20 classes for
train/val/test respectively; (2) tieredlmageNet [19] is much
larger compared to minilmageNet with 608 classes. The

351, 97 and 160 classes are used for train/val/test respec-
tively. (3) CUB [27] consists 11,788 images from 200 bird
classes. 100/50/50 classes are used for train/val/test and each
image is first cropped to a human-annotated bounding box.
(4) meta-iNat [28] is a benchmark of animal species in the
wild. We follow the same class split proposed by [28] that
uses 908/227 classes for training/evaluation respectively. (5)
tiered-meta-iNat [28] is a more difficult version of meta-
iNat where a large domain gap is introduced. The 354 test
classes are populated by insects and arachnids, while the
remaining 781 classes form the training set.

Backbone networks. We conduct experiments with both
widely-used four layer convolutional Conv-4 [26] and deep
ResNet-12 [24] backbones. As is commonly implemented
in the state-of-the-art FSL literature, we adopt a pre-training
stage for the ResNet-12 before the episode meta-training
while directly meta-train from scratch for the simple Conv-4.

Dense feature extractor fy(-). We explore three dense
feature extractors in our experiments as shown in Figure 2:
(1) VanillaFCN simply treats the feature map output of fully
convolutional network as dense features. (2) PyramidFCN
uses an extra adaptative average pooling layer to obtain 34
dense features for each image. (3) PyramidGrid crops the
image evenly into the grid of size 2 x 2 4 3 x 3 and encodes
each grid cell to a feature vector individually. The feature
vectors from all the cells constitute the set of dense features.
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Conv-4 ResNet-12

Method minilmageNet tieredlmageNet minilmageNet tieredlmageNet
1-shot  5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
DSN [22] 51.78 68.99 5322 7106 62.64 7883 6739 82.85
MetaOptNet [10] 5287 6876 5471 71776  62.64 78.63 6599 81.56

Negative Margin [15] 52.84  70.41 - - 63.85 81.57 - -
FEAT [30] 55.15 71.61 - - 66.78 82.05 70.80 84.79
Global features Meta-Baseline [4] - - - - 63.17 79.26 68.62 83.29
RelationNet* [25] 52.12 6690 5433 6995 6097 75.12 64.71 78.41
RelationNet+MCL 54.50 70.63 57.73 7446 61.70 7553 6593 80.27
ProtoNet [23] 5232  69.74 5319 7228 62.67 77.88 6848 83.46
ProtoNet+MCL 54.31 69.84 56.67 74.36 64.40 78.60 70.62 83.84
DN4* [12] 54.66 7126 56.86 72.16 6535 81.10 69.60 83.41
DeepEMDT [31] 52.15 6552 50.89 66.12 6591 8241 71.16 8395
Dense features FRN' [29] 5487 7156 5554 7468 6645 8283 71.16 86.01
(VanillaFCN) Label Propagation 5224 67.68 5456 70.08 65.00 80.07 71.12  83.89
MCL (ours) 5538 70.02 57.63 7425 6736 83.63 71.76 86.01
MCL-Katz (ours) 5555 71.74 57.78 7477 67.51 8399 72.01 86.02
DN4% [12] 5454 7094 57.05 7290 6354 79.04 71.10 84.22
DeepEMD:t [31] 50.67 6494 5126 65.64 6627 8241 70.76 84.20
Dense features FRN* [29] 5440 7075 5730 75.58 6594 8197 70.56 85.44
(PyramidFCN) Label Propagation 5338 68.69 55.21 7122  65.71 7578  71.00  78.01
MCL (ours) 55.13  70.77 5793 7436 6745 8436 72.01 86.31
MCL-Katz (ours) 55.77 71.24 5820 7473 67.85 84.47 7213 86.32
DN4% [12] 57.17 7091 56.71 7092 67.86 80.08 71.29  82.60
DeepEMDi [31] 55.68 70.75 5588 70.06 67.83 8132 73.13 84.18
Dense features FRN? [29] 55.80 7152 5568 7287 67.00 8220 7142 85.58
(PyramidGrid) Label Propagation 55.12 6843 56.05 7239 67.18 81.07 73.18 85.19
MCL (ours) 57.50 73.03 5757 73.81 6931 85.11 73.62 86.29
MCL-Katz (ours) 57.88 74.03 57.63 7396 6925 84.71 7338 86.21

Table 1. Few-shot classification accuracy (%) on minilmageNet and tieredlmageNet. The 95% confidence intervals are all below 0.2 for the
10,000 episodes evaluation. Results of ifalic font indicates the performance of MCL as a plugin. Results of bold fonts are the best results for
different dense feature extractors, respectively. We re-implement our plugin baseline methods (i.e., ProtoNet and RelationNet) as well as the
competitive dense features based methods (i.e., DN4, DeepEMD and FRN) in our unified framework in case their performances are not
available under specific settings. {: re-implemented results on Conv-4 backbone, I: re-implemented results on both backbones.

4.1. General Few-shot Classification Results

Table 1 details the comparisons of MCL with global fea-
ture based methods [4, 10, 15,22,30] as well as dense feature
based methods [12,29,31] on mini-/tieredlmageNet.

Besides these methods, we also exploit label propaga-
tion [32] in dense feature based inductive FSL like in [13] to
demonstrate that traditional transductive methods could be
easily adapted to inductive settings if we treat dense feature
vectors as a set of unlabeled data. As shown, our MCL is
highly competitive with recent state-of-the-art results. In par-
ticular, our MCL-Katz achieves 67.51% (1-shot) and 83.99%
(5-shot) on minilmageNet with the simplest VanillaFCN.

Comparisons with dense feature based methods. The
last three panes of Table 1 illustrate that proposed bidirec-
tional MCL outperforms query-to-support DN4’s nearest
neighboring, DeepEMD’s optimal matching and FRN’s la-

tent feature reconstructions in various tasks. Although the
optimal matching flow is unidirectional in DeepEMD, they
adopt a cross-reference attention that encodes the bidirec-
tional relevance to a certain extent. If we treat dense features
as nodes in the graph and use their similarities as edges, a
major difference is that they treat nodes equally to derive
different weights on edges while we use the fixed edges to
derive the centrality of nodes directly for classifications.

Comparisons with global feature based methods. The
centrality investigated in this work is also capable to be
plugged into global feature based methods as local features
are not equally important before global average pooling. As
shown in the first pane of Table 1, our proposed centrality
weighted pooling could provide at most 3.4% and 4.5% per-
formance gains for ProtoNet and RelationNet respectively.
We show in Table 4 that the improvements are also consistent
if we solely apply it on the query and support dense features.
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CUB meta-iNat tiered-meta-iNat

Method Conv-4 ResNet-12 Conv-4 ResNet-12 Conv-4 ResNet-12
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
ProtoNet [23] 71.64 8150 8298 91.38 5378 73.80 7647 90.20 3547 5485 4761 71.06
ProtoNet + MCL 76.87 86.95 84.59 91.71 57.52 74.33 7875 90.53 39.09 59.16 51.22 72.50
DSN [22] 66.01 8541 80.80 91.19 58.08 77.38 78.80 89.77 36.82 60.11 46.61 72.79
CTX [6] 69.64 8731 7847 9090 60.03 78.80 69.04 88.39 36.83 60.84 4291 69.88
DN4 [12] 7831 88.43 8544 9251 6232 79.76 79.58 91.37 4382 64.17 4899 7229
DeepEMD [31] 7534 85.68 83.35 91.60 5448 68.36 76.05 86.82 36.05 48.55 48.14 66.27
FRN [29] 7348 88.43 83.16 9259 6242 8045 7352 91.83 4391 6336 4886 76.62
MCL 77.80 88.71 83.64 92.18 64.66 81.31 80.17 9159 44.08 64.61 5135 76.87
MCL-Katz 79.61 90.56 85.63 93.18 6392 81.09 7934 91.84 44.00 6424 49.68 76.05

Table 2. Few-shot classification (%) results on fine-grained datasets. The 95% confidence intervals are below 0.19 within 10,000 episodes.

minilmageNet tieredlmageNet +MCL | minilmageNet tieredlmageNet
fo() 1-shot 5-shot 1-shot 5-shot q s | l-shot 5-shot 1-shot 5-shot
unidirectional 54.88 69.98 5531 68.87 52.32  69.74 53.19 72.28
MCL VanillaFCN | 55.38 70.02 57.63 74.25 ProtoNet [23] v 53.74 69.61 5536 73.17
MCL-Katz 55.55 71.74 57.78 74.77 v | 5397 69.74 56.60 74.18
unidirectional 5492 69.17 55.69 69.26 vV v | 5431 69.84 56.67 74.36
MCL PyramidFCN | 55.13 70.77 5793 74.36 52.12 6690 5433 69.95
MCL-Katz 55.77 71.24 5820 74.73 RelationNet [25] v 5325 66.79 5446 70.71
unidirectional 56.61 71.40 55.12 69.19 v | 5437 70.57 57.68 74.24
MCL PyramidGrid | 57.50 73.03 57.57 73.81 v v | 5450 70.63 5773 7446
MCL-Katz 57.88 74.03 57.63 73.96

Table 3. Comparisons between the unidirectional random walks
and bidirectional MCL on mini-/tieredlmageNet with Conv-4.

4.2. Fine-grained Few-shot Classification Results

We follow the same setting (shown in supplementary) as
in FRN [29] to train all the models from scratch on those
fine-grained datasets. We re-implement DN4 [12], Deep-
EMD [31] to thoroughly compare with dense features based
methods. Apart from the basic comparisons (both backbones
on CUB and Conv-4 backbone on meta-iNat/tiered-meta-
iNat) in [29], we conduct extra ResNet-12 experiments for all
the comparing methods on meta-iNat and tiered-meta-iNat
in our unified framework for a thorough comparison.

Results in Table 2 demonstrate that both our end-to-end
MCL (VanillaFCN) and the centrality plugin are broadly
effective in various fine-grained few-shot classification tasks.

5. Analysis
5.1. Ablation Study

Different choices of +,5. Since ® is non-square due
to the different cardinalities of set S and q, we use two
different scaling parameters in Eqn.(1) and Eqn.(2). By the
column-wise normalization, v and 3 can be interpreted as the
reciprocal of temperatures in softmax random walk probabil-

Table 4. Ablation of MCL as plug-and-play that individually ap-
plied on query features q and support features s. The experiments
are conducted with Conv-4 and VanillaFCN

ity. Large y, 8 will have a hard random walk probability that
leads to a concentrated centrality in the affiliation network.
However, extremely large ~y, 8 (e.g., one-hot probability
when they approaching infinity) would inevitably bias the
episodic training due to the potential gradient explosion.

Since the cardinality of set S is larger than that of q,
we empirically use a larger « than /3 as we need a harder
probability in random walks from query to the large set of
support features. In the experiments, we carefully select ~
and 3 (generally v=20 and $=10 for 1-shot models and y=40
and $=20 for 5-shot models) from several combinations of
parameters by their validation performance.

Influence of Katz attenuation factor a. When « is
small, the contribution given by paths longer than one rapidly
declines, and the centrality will be determined by short paths
(mostly in-degrees). When « is large, long paths are deval-
ued smoothly, and the centrality would be more influenced
by endogenous topology. When « approaching 0, the classi-
fication will be only determined by the unidirectional query-
to-support random walk where the contributions from paths
longer than one just vanished. In the experiments, we simply
use a = (0.5 for MCL-Katz methods, and the performances
could be further improved by selecting different «.
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ProtoNet
[23]

ProtoNet
+MCL

query ground truth
(a) MCL as a plugin for feature centralization

confounding support classes

2 aal

i =

duery ground truth
(b) MCL as an end-to-end classification method

confounding support classes

Table 5. Grad-CAM visualizations of query and support images in 5-way 1-shot tasks. The left pane (a) illustrates MCL as a plugin on the
ProtoNet. The right pane (b) illustrates MCL as an end-to-end classification method. Images (from minilmageNet) at the second column of
each pane are from the ground truth class while the four on the far right are the confounding support classes.

5.2. Computational Speed

Intuitively, bidirectional methods would be slower than
unidirectional ones since their back-and-forth computations.
However, our MCL would definitely reach to the periodic
equilibrium state as shown in Eqn.(5). Thus, we could di-
rectly solve it by the Katz approximation.

At first glance, the most expensive step in Eqn.(10) is
inverting I — /P that costs O(N3r3) where N is the number
of supporting classes and r is the number of dense features
for each image input. Fortunately, I — a'P is a very special
matrix that equals a diagonal matrix minus an anti-diagonal
matrix, and we can reformulate it by block-wise inversion:

-1
_ -1 _ I —OCPSq
(I—-aP) ' = (7aPSq T
I+a2PSqA*1PqS OzPSqA71
- aA P Al (14)

where A is defined by I — a?PgqPqs. The most expensive
step then becomes a inversion of A € R"*" and the time
complexity is reduced to O(r?).

As shown in Table 6, we compare the inference speed for
different image resolutions on 5-way 1-shot FSL tasks with
ResNet-12. It can be observed that our bidirectional MCL
did not introduce many computational overheads compared
to unidirectional methods, and Katz approximation does
accelerate computing the stationary distribution.

5.3. Qualitative Feature Centralization

To better understand our centrality based methods, we
visualize the Grad-CAM [21] of the last convolutional layer
in ResNet-12 for both plugin and end-to-end methods. We
show in Table 5(a) that our MCL helps ProtoNet concentrate
on the most relevant regions of interest. Table 5(b) demon-
strates that the most centralized support features in MCL are
not only from the ground truth but also mutually affiliated
with task-relevant objects in the query images. We consider
it qualitatively validates our underlying idea that support
features would be frequently visited in the long times of

VanillaFCN resolution r

Model 5%5  8x8 10x10 12x12
DN4 [12] 11.16 1341 1682 2345
DeepEMD [31] 2620 8146 27819 8035.4

FRN [29] (Ridge regression) 1455 20.42 2581 30.65
FRN [29] (Woodbury identity) | 36.74 42.33  47.31 55.84
MCL (torch.pinverse) 55.91 119.0 292.2 464.8
MCL (QR decomposition) 600.0 658.6 7194 802.6
MCL (Katz approximation) 12.59 1459 18.92 29.10

Table 6. Time per episode (ms) for different feature map resolu-
tions r on 5-way 1-shot tasks where the feature extraction time is
excluded for all comparing methods.

bidirectional random walks if they shared the same local
characteristics with the query image.

6. Conclusions

We present a novel dense feature based framework: Mu-
tual Centralized Learning (MCL) to highlight the mutual
affiliations of bipartite dense features in FSL. We introduce
a novel dense features’ accessibility and demonstrate classic
transductive methods like label propagation could be easily
adapted to the inductive setting if we treat dense features
from a single image as the set of unlabeled data. We use
bidirectional random walk to learn mutual affiliations in FSL
and prove its features’ accessibility in the time-homogeneous
Markov process equivalent to the single-mode eigenvector
centrality of an affiliation network. We show that such cen-
trality could not only serve as a noval end-to-end classifica-
tion criterion but also as a plugin in existing methods.
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