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Abstract

State-of-the-art methods for counting people in crowded
scenes rely on deep networks to estimate crowd density.
While effective, these data-driven approaches rely on large
amount of data annotation to achieve good performance,
which stops these models from being deployed in emergen-
cies during which data annotation is either too costly or
cannot be obtained fast enough.

One popular solution is to use synthetic data for train-
ing. Unfortunately, due to domain shift, the resulting mod-
els generalize poorly on real imagery. We remedy this
shortcoming by training with both synthetic images, along
with their associated labels, and unlabeled real images. To
this end, we force our network to learn perspective-aware
features by training it to recognize upside-down real im-
ages from regular ones and incorporate into it the abil-
ity to predict its own uncertainty so that it can gener-
ate useful pseudo labels for fine-tuning purposes. This
yields an algorithm that consistently outperforms state-of-
the-art cross-domain crowd counting ones without any extra
computation at inference time. Code is publicly available
at https://github.com/weizheliu/Cross-
Domain-Crowd-Counting.

1. Introduction

Crowd counting is important for applications such as
video surveillance and traffic control. For example during
the current COVID-19 pandemic, it has a role to play in
monitoring social distancing and slowing down the spread
of the disease. Most state-of-the-art approaches rely on re-
gressors to estimate the local crowd density in individual
images, which they then proceed to integrate over portions
of the images to produce people counts. The regressors typ-
ically use Random Forests [37], Gaussian Processes [4], or
more recently Deep Networks [3,28,39,44,50,51,59,63,69–
71, 74, 77, 79, 94, 105, 106, 111], with most state-of-the-art
approaches now relying on the latter.

Unfortunately, training such deep networks in a tradi-
tional supervised manner requires much ground-truth an-
notation. This is expensive and time-consuming and has
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Figure 1. Motivation. (a): Time, expense, and robustness. An-
notating dense crowd is extremely time-consuming. It can take
hours for someone to annotate a single image and the process is
error prone. (b) Accuracy: For region far away from the camera
where people are very small and bunched up, it is almost impossi-
ble for human beings to annotate accurately. (c): Privacy issues.
Real images feature real people and information about them will
be exposed to the annotator, which can create ethical concerns.
(d): Solution. All of these problems can be solved by using syn-
thetic data.

slowed down the deployment of data-driven approaches,
as illustrated by Fig. 1. One way around this difficulty
is to use synthetic data for training purposes. However
there is usually too much domain shift—change in statis-
tical properties—between real and synthetic images for net-
works trained in this manner to perform well.

In this paper, we remedy this shortcoming by training
with both synthetic images, along with their associated la-
bels, and unlabeled real images. We force our network
to learn perspective-aware features on the real images and
build into it the ability to use these features to predict
its own uncertainty using a fast variant of the ensemble
method [14] to effectively use pseudo labels for fine-tuning.
We train it as follows:

1. Initially we use synthetic images, unlabeled real im-
ages, and upside-down version of the latter. We train
the network not only to give good results on the syn-
thetic images but also to recognize if the real images
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are upside-up or upside-down. This simple approach
to self-supervision forces the network to learn features
that are perspective-aware on the real images.

2. At the end of this first training phase in which we
perform image-wise self supervision on the real im-
ages, our network is semi-trained and the uncertain-
ties attached to the people densities it estimates have
meaning. We exploit them to provide pixel-wise self-
supervision by treating the densities the network is
confident about as pseudo labels, that we use as if they
were ground-truth labels to re-train the network. We
iterate this process until convergence.

Our contribution is therefore a novel approach to self-
supervision for cross-domain crowd counting that relies on
stochastic density maps, that is, maps with uncertainties at-
tached to them, instead of the more traditional deterministic
density maps. Furthermore, it explicitly leverages a speci-
ficity of the crowd counting problem, namely the fact that
perspective distortion affects density counts. We will show
that it consistently outperforms the state-of-the-art cross-
domain crowd counting methods.

2. Related Work
Given a single image of a crowded scene, the currently

dominant approach to counting people is to train a deep net-
work to regress a people density estimate at every image lo-
cation. This density is then integrated to deliver an actual
count [29,40,42,43,45,47,52,58,75,87,95,100,107,112].
Most methods work on counting people from individual im-
ages [10, 76, 80, 86, 96, 103, 104] while others account for
temporal consistency in video sequence [15, 46, 48, 49, 94,
108].

While effective these approaches require a large anno-
tated dataset for training purposes, which is hard to obtain
in many real-world scenarios. Unsupervised domain adap-
tation seek to address this difficulty. We discuss earlier ap-
proaches to it, first in a generic context and then for the
specific purpose of crowd counting.

Unsupervised Domain Adaptation. Unsupervised do-
main adaptation aims to align the source and target domain
feature distributions given annotated data only in the source
domain. A popular approach is to learn domain-invariant
features by adversarial learning [8,9,11,12,17,23,24,26,33,
55,56,68,83,84,93,109,110], which leverages one extra dis-
criminator network to narrow the gap between two different
domains. Another way to bridge the domain gap is to define
a specific domain shift metric that is then minimized during
training [13,30,31,35,36,38,41,53,54,61,62,65,85,97–99].
Other widely used approaches include generating realistic-
looking synthetic images [2, 22, 72, 101, 102], incorporat-
ing self-training [7, 19, 73, 78], transferring model weights

between different domains [66, 67], and using domain-
specific batch normalization [5]. The method of [82] in-
troduces a self-supervised auxiliary task such as detecting
image-rotation in unlabeled target domain images for cross-
domain image classification and served as an inspiration to
us.

Crowd Counting. Most of the techniques described
above are intended for classification problems and very few
have been demonstrated for crowd counting purposes.

One exception is the method of [18,90,91] that trains the
deep model on synthetic images and then narrows the do-
main gap, by using a CycleGAN [113] extension to trans-
late synthetic images to make them look real and then re-
train the model on these translated images. A limitation of
this work is that the translated images, while more realistic
than the original synthetic ones, are still not truly real.

Another exception is the method of [81]. It uses pseudo
labels generated by a network trained on synthetic images as
though they were ground-truth labels. It relies on Gaussian
Processes to estimate the variance of the pseudo labels and
to minimize it. However, the uncertainty of these pseudo
labels is not estimated or taken into account and the com-
putational requirements can become very large when many
synthetic images are used simultaneously.

The method of [20] uses adversarial learning to align fea-
tures across different domains. However, it relies on extra
discriminator networks which are complicated and hard to
train. [25, 64, 92] leverage a few target labels to bridge the
domain gap, therefore require extra annotation cost.

More recent work [6, 21, 57] advocates bridging the do-
main gap by leveraging real dataset that collected from an-
other scene. However, unlike synthetic data that can be sim-
ply rendered to specifically fit the people distribution in tar-
get domain, existing real data often featueres dramatically
different scene structure and people distribution. In prac-
tice, adding more real data that from another can even de-
crease the performance if the domain gap is too large [6]. In
our ablation study, we will show that our model trained with
synthetic data covering a large range of crowd distributions
can outperform one trained with an existing real dataset col-
lected from a different scene.

By contrast to these approaches, ours explicitly takes
uncertainty into account and leverages a specificity of the
crowd counting problem, namely the fact that perspective
distortion matters.

3. Approach
We propose a fully unsupervised approach to fine-tuning

a network that has been trained on annotated synthetic data,
so that it can operate effectively on real data despite a poten-
tially large domain shift. At the heart of our method is a net-
work that estimates people-density at every location while
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Figure 2. Two-stage approach. Top: During the first training stage, we use synthetic images, real images, and flipped versions of the
latter. The network is trained to output the correct people density for the synthetic images and to classify the real images as being flipped
or not. Bottom: During the second training stage, we use synthetic and real images. We run the previously trained network on the real
images and treat the least uncertain people density estimates as pseudo lablels. We then fine tune the network on both kinds of images and
iterate the process.

incorporating a variant of the deep ensemble approach [14]
to provide uncertainties about these. The key to success is
to first pre-train this network so that these uncertainties are
meaningful and then to exploit them to recursively fine-tune
the network.

We have therefore developed a two-stage approach that
first relies on real-images and upside-down versions of these
to provide an image-wise supervisory signal. We use them
to train the network not only to give good results on the
synthetic images but also to recognize if the real images are
upside-up or upside-down. This yields a partially-trained
network that can operate on real images and return mean-
ingful uncertainty values along with the density values. We
can therefore exploit them to provide pixel-wise supervisory
signal, by treating the people density estimates the network
is most confident about as pseudo labels, that are treated
as ground-truth and use to re-train the network. We iterate
this process until the network predictions stabilize. Fig. 2
depicts our complete approach.

3.1. Network Architecture

Formally, let Ds = {(xs
i ,y

s
i )}

Ns
i=1 be a synthetic source-

domain dataset, where xs denotes a color synthetic image
and ys the corresponding crowd density map. The target-
domain dataset is defined as Dt = {xt

i}
Nt
i=1 without ground

truth crowd density labels where xt denotes a color real im-
age. In most real-world scenarios, we have Ns ≫ Nt. Our
goal is to learn a model that performs well on the target-
domain data.

To this end, we use a state-of-the-art encoder/decoder
architecture for people density estimation [90]. We chose
this one because it has already been used by cross-domain
crowd counting approaches and therefore allows for a fair
comparison of our approach against earlier ones. Let E and
D be the encoder and decoder networks that jointly form the
people density estimation network F of [90]. Given an in-
put image x as input, E returns the deep features f = E(x)
that D takes as input to return the density map D(f).

One way to enable self-supervision for classification pur-
poses is to use a partially trained network to predict labels
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Figure 3. Masksembles approach. During training, for every in-
put vector, a binary mask is selected from a set of pre-generated
masks and is used to zero out a corresponding set of features.
Performing the inference several times using different masks then
yields an ensemble-like behavior.

and associated probabilities, treat the most probable ones
as pseudo labels that can be used for training purposes as
though they were ground-truth labels [101,102]. This strat-
egy is widely used to provide pixel-wise [115] and image-
wise [114] self-supervision to address classification prob-
lems. If the probability measure is reliable and allows the
discarding of potentially erroneous labels, repeating this
procedure several times results in the network being pro-
gressively refined without any need for ground-truth labels.

To implement a similar mechanism in our context, we
need more than labels at the image-level. We require esti-
mates of which individual densities in an estimated density
map are likely correct and which are not. In other words,
we need a stochastic crowd density map instead of the de-
terministic one that existing methods produce. Among all
the methods that can be used to turn our network F into one
that returns such stochastic density maps, MC-Dropout [16]
and Deep Ensembles [34] have emerged as two of the most
popular ones. Both of those methods exploit the concept of
ensembles to produce uncertainty estimates. Deep Ensem-
bles are widely acknowledged to yield significantly more
reliable uncertainty estimates [1, 60]. However, they re-
quire training many different copies of the network, which
can be very slow and memory consuming. Instead, we rely
on Masksembles, a recent approach [14] that operates on
the same basic principle as MC-Dropout. However, instead
of achieving randomness by dropping different subsets of
weights for each observed sample, it relies on a set of pre-
computed binary masks that specify the network parameters
to be dropped. Fig. 3 depicts this process.

In practice, we associate to the first convolutional layer
of the decoder D a Masksembles layer. During training,
for each sample in a batch we randomly choose one of the
masks, set the corresponding weights to one or zero in the
Masksembles layers, which drops the corresponding parts
of the model just like standard dropout. During inference,
we run the model multiple times, once per mask, to obtain
a set of predictions and, ultimately, an uncertainty estimate.
This turns out to provide uncertainty estimates that are al-

(a) (b)
Figure 4. Upside-up vs Upside-down. (a) Original image. Due
to perspective effects, the apparent size of people is less at the top
of the image and the people density appears to be larger. (b) In the
upside-down image the effect is reversed. To enable the decoder
to distinguish between these two cases, the encoder must produce
perspective-aware features, that is, features that take perspective
distortion into account and turn out to be important for accurate
crowd counting.

most as reliable as those of Ensembles but without having
to train multiple networks and is therefore much faster and
easier to train. Formally, we write

ȳ =
1

M

M∑
m=1

Fm(x) , (1)

u =

√√√√ M∑
m=1

(Fm(x)− ȳ)2 , (2)

where x is the input image, Fm is the modified network F
used with mask m. ȳ and u are the same size as input image
and we treat the individual values of u ∈ u as pixel-wise
uncertainties.

3.2. Image-Wise Self-Supervision

Fm can be trained in a supervised fashion using the syn-
thetic training set Ds but that does not guarantee that it will
work well on real images. Hence, we introduce the auxil-
iary task decoder Daux shown at the top of Fig. 2 whose
task is to classify an image as being oriented normally or
being upside-down from the features produced by the en-
coder. To train the resulting two-branch network, we use
synthetic images from Ds along with real images from Dt

and flipped versions of these, such as the ones shown in
Fig. 4. For the synthetic images, the output should mini-
mize the usual L2 loss given the ground-truth density maps
and, for the real images, the output should minimize a cross
entropy loss for binary classification as being either upside-
up or upside-down.
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Formally, we introduce the loss function

Lst1 = Ls + λ1La , (3)

Ls =
∑
i

∥ys
i −D(E(xs

i ))∥2 ,

La = −
∑
i

〈
yt
i , log(Daux(E(xt

i)))
〉
,

which we minimize with respect to the weights of the en-
coder E and the two decoders D and Daux. Ls is the L2

distance between the predicted people density map and the
ground truth one ysi while La is the cross-entropy loss for
binary classification given the ground-truth upside-up or
down label yt

i for image xt
i. We use this label only for the

real images because we have ground truth annotations for
the synthetic ones. As will be shown in the results section,
this provides sufficient supervision for the synthetic images
and also using the image-wise supervision for these brings
no obvious improvement.

Note that the Ls and La use the same encoder E . To
minimize La and hence correctly estimate if an input image
is upside-down or not, E must extract meaningful features
from the real images and not only from synthetic ones. Fur-
thermore, these features must enable the decoder D to han-
dle scene perspective, that is, the fact that people densities
are typically higher at the top of the image than the bottom
in upside-up images. In other words, minimizing La forces
E to produce perspective-aware features while minimizing
Ls forces the decoder D to operate on such features to prop-
erly estimate people densities on the synthetic images. In
this way, we make E produce features that are appropriate
both for synthetic and real images, hence mitigating the do-
main shift between the two, as will be demonstrated in the
results section.

This first training stage is summarized by the first proce-
dure of Alg. 1.

3.3. Pixel-Wise Self-Supervision

After the first training stage described above, our model
can produce both a density map ȳ and its corresponding
uncertainty u. Let F0

m be the corresponding network. We
can now refine its weights to create increasingly better tuned
networks Fk

m for 1 ≤ k ≤ K by iteratively minimizing

Lst2 =
∑
i

∥ys
i −Fk

m(xs
i )∥2 (4)

+ λ2

∑
i

∥1uk−1
i <uα

(ȳk−1
i −Fk

m(xt
i))∥2 ,

where ȳk−1
i ,uk−1

i = Fk−1
m (xt

i) and 1uk−1
i <uα

is one for
all densities for which the uncertainty is less than the top
α% uncertainty uα. In other words, at each iteration we use
the densities produced by Fk−1

m for which the uncertainty
is low enough as pseudo labels to train Fk

m.

Algorithm 1 Two-Stage Training Algorithm

Require: Source domain data Ds = {(xs
i ,y

s
i )}

Ns
i=1 .

Require: Unlabeled target domain data Dt = {xt
i}

Nt
i=1.

procedure FIRST STAGE( Ds and Dt)
Initialize the weights for people density estimation

network Fm with single encoder E and two decoders D
and Daux

for # of gradient iterations do
Pick one source domain image xs

i

Pick one target domain image xt
i

Generating one random variable β ∈ [0, 1]
if β ≥ 0.5 then

Flip xt
i upside-down

else
Do nothing

end if
Minimize Lst1 of Eq. 3

end for
end procedure

Generating pseudo labels for xt
i ∈ Dt using Fm

procedure SECOND STAGE( Ds, Dt and pseudo labels
for xt

i ∈ Dt)
for # of recursive iterations do

for # of gradient iterations do
Pick one source domain image xs

i

Pick one target domain image xt
i

Minimize Lst2 of Eq. 4
end for
Update pseudo labels

end for
end procedure

This second training stage is summarized by the second
procedure of Alg. 1.

4. Experiments

In this section, we first introduce the evaluation metrics
and benchmark datasets we use in our experiments. We
then provide the implementation details and compare our
approach to state-of-the-art methods. Finally, we perform a
detailed ablation study.

4.1. Evaluation Metrics

Previous works in crowd density estimation use the mean
absolute error (MAE) and the root mean squared error
(RMSE) as evaluation metrics [81, 90]. They are defined
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Input Image Ground Truth Estimated People Density

Figure 5. Density maps. We indicate the ground-truth and estimated total number of people in the bottom left corner of the density maps.
Note how close our estimations are to the ground truth ones. Please refer to the supplementary material for additional such images.

as

MAE =
1

N

N∑
i=1

|zi − ẑi| and RMSE =

√√√√ 1

N

N∑
i=1

(zi − ẑi)2 ,

where N is the number of test images, zi denotes the true
number of people inside the ROI of the ith image and ẑi
the estimated number of people. In the benchmark datasets
discussed below, the ROI is the whole image except when
explicitly stated otherwise. The number of people are re-
covered by integrating over the pixels of the predicted den-
sity maps.

4.2. Benchmark Datasets

GCC [90] is the synthetic dataset we use. It consists of
15,212 images of size 1080 × 1920, containing 7,625,843
people annotations. It features 400 different scenes in-
cluding both indoor and outdoor ones. We test on Shang-
haiTech [111], UCF CC 50 [27], UCF CC 50 [27] and
WorldExpo’10 [105] and use the same experimental pro-
tocols as in earlier work [90]. We briefly describe it in the
supplementary material.

4.3. Implementation Details

For a fair comparison with previous work [81, 90],
we use SFCN [90] as the crowd density regressor and
Adam [32] for parameter update with a learning rate of
1e − 6. After a grid search on one single dataset as dis-
cussed below, we set λ1 in Eq. 3, λ2, and K in Eq. 4 to
10−4, 1.0 and 2 respectively for all our experiments.

To estimate uncertainty, we generate 3 stochastic den-
sity map for each image and take the standard deviation
to be our uncertainty measure. We set the threshold value
α of Eq. 4 to 10, which means that 10% most uncertain
pseudo labels are discarded and that we keep the other 90%
as pseudo labels for model training. This large percentage is
appropriate because there are large areas of the real images
that do not contain anyone and for which the pseudo labels
are very dependable. We will show below that removing
only 10% of the labels suffices to substantially boost per-
formance over keeping all pseudo labels.

Recall that we drop the auxiliary network Daux in the
second training stage. In the final evaluation phase, we gen-
erate only one density map for each image instead of av-
eraging multiple estimates, we will show that the perfor-
mance is similar for both cases in supplementary material.
Hence our model does not require any extra computation at
inference time. Fig. 5 depicts qualitative results on Shang-
haiTech Part B dataset and we provide additional ones in
the supplementary material along with more details about
the model.

4.4. Comparing against Recent Techniques

In Tab. 1, we compare our results to those of state-of-the-
art domain adaptation approaches for each one of the public
benchmark datasets, as currently reported in the literature.
In each case, we reprint the results as given in these papers
and add those of OURS, that is, of our method. We con-
sistently and clearly outperform all other methods on all the
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Model MAE RMSE

No Adapt 160.0 216.5
Cycle-GAN [113] 143.3 204.3
SE Cycle-GAN [90] 123.4 193.4
SE Cycle-GAN(JT) [88] 119.6 189.1
SE+FD [20] 129.3 187.6
GP [81] 121 181
OURS 109.2 168.1

Supervised 76.3 144.2

Model MAE RMSE

No Adapt 22.8 30.6
Cycle-GAN [113] 25.4 39.7
SE Cycle-GAN [90] 19.9 28.3
SE Cycle-GAN(JT) [88] 16.4 25.8
SE+FD [20] 16.9 24.7
GP [81] 12.8 19.2
OURS 11.4 17.3

Supervised 11.0 17.1

Model MAE RMSE

No Adapt 487.2 689.0
Cycle-GAN [113] 404.6 548.2
SE Cycle-GAN [90] 373.4 528.8
SE Cycle-GAN(JT) [88] 370.2 512.0
GP [81] 355 505
OURS 336.5 486.1

Supervised 259.3 407.2

(a) (b) (c)

Model MAE RMSE

No Adapt 275.5 458.5
Cycle-GAN [113] 257.3 400.6
SE Cycle-GAN [90] 230.4 384.5
SE Cycle-GAN(JT) [88] 225.9 385.7
SE+FD [20] 221.2 390.2
GP [81] 210 351
OURS 198.3 332.9

Supervised 134.3 240.3

Model Scene1 Scene2 Scene3 Scene4 Scene5 Average

No Adapt 4.4 87.2 59. 1 51.8 11.7 42.8
Cycle-GAN [113] 4.4 69.6 49.9 29.2 9.0 32.4
SE Cycle-GAN [90] 4.3 59.1 43.7 17.0 7.6 26.3
SE Cycle-GAN(JT) [88] 4.2 49.6 41.3 19.8 7.2 24.4
GP [81] - - - - - 20.4
OURS 4.0 31.9 23.5 19.4 4.2 16.6

Supervised 2.7 18.2 14.3 16.1 4.5 11.2

(d) (e)

Table 1. Comparative results on different datasets. (a) ShanghaiTech Part A. (b) ShanghaiTech Part B. (c) UCF CC 50. (d) UCF-
QNRF. (e) WorldExpo’10. Our approach consistently and clearly outperforms previous state-of-the-art methods on all the datasets.

datasets. And, since we use the same SFCN network archi-
tecture as the methods of [81, 90], the performance boost is
directly attributable to our approach of domain adaptation.

In Tab. 1, we also compare ourselves to the same model
trained in a fully supervised fashion on the target domain.
Note that our unsupervised approach performs almost as
well as the supervised one on Shanghaitech Part B and
WorldExpo’10 while there still remains a gap on UCF-
QNRF and UCF CC 50. This is because the crowds in
Shanghaitech Part B and WorldExpo’10 are still mostly
sparse enough for bodies to be visible, just as in the syn-
thetic source domain. By contrast, in UCF-QNRF and
UCF CC 50, the crowds are denser and, in many cases,
only heads are visible. This creates a larger domain gap
between source and target images that could be bridged in
future work either by using a synthetic dataset that also fea-
tures denser crowds or, more ambitiously, by using a detec-
tion pipeline that focuses more on heads and would mitigate
the domain gap.

4.5. Ablation Study

We perform an ablation study on the UCF-QNRF dataset
to highlight the role of the self-supervision loss terms, the
impact of stochastic density map, the choice of auxiliary
tasks, and the extension of our technique to cross-scene do-
main adaptation for which the source domain is also real
data. In the supplementary material, we provide additional
details about hyper-parameter settings and try using other
approaches to estimating uncertainty than Masksembles.

Self-Supervision. We compare our complete model
against several variants. BASELINE uses the SFCN crowd

Self-Supervision
Model Image Synthetic Image Pixel 2nd Image MAE RMSE

BASELINE 275.5 458.5
OURS-IMG ✓ 242.8 407.6

OURS-IMG-SYN ✓ ✓ 243.0 406.8
OURS-PIX ✓ 208.3 346.9

OURS ✓ ✓ 198.3 332.9
OURS-DUP ✓ ✓ ✓ 198.5 331.7

Table 2. Ablation study on self-supervision. Both image-wise
and pixel-wise self-supervision boost the performance and com-
bining both further improves performance. By contrast, using
image-wise self-supervision during the second stage, as opposed
to the first, makes no obvious difference.

density estimator trained on the synthetic data and with-
out any domain adaptation. OURS-IMG involves the first
image-wise training stage but not the second. OURS-IMG-
SYN also involves only the first image-wise training stage
but both real and synthetic images can be flipped upside
down, whereas in OURS-IMG only the real ones are. Con-
versely, OURS-PIX skips the first image-wise training and
involves only the second pixel-wise training stage. OURS-
DUP is similar to our complete approach except for the
fact that it uses both pixel-wise and image-wise supervision
during the second training stage whereas OURS only uses
pixel-wise supervision by that point.

As shown in Tab. 2, both OURS-IMG and OURS-PIX
outperform BASELINE which shows that both training
stages matter. However, OURS does even better, which
confirms that properly pre-training the network before using
pixel-wise supervision matters. Since OURS-IMG-SYN
and OURS-DUP achieve similar performance as OURS-
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Model MAE RMSE

BASELINE 275.5 458.5
BASELINE+Masksembles 273.1 447.9

Table 3. Ablation study on stochastic density map. Generating
stochastic density map slightly improve the performance but not
by a significant amount.

Model MAE RMSE

OURS-PIX 208.3 346.9
OURS-MIRROR 208.1 346.0

OURS-90 205.5 344.7
OURS-270 204.8 342.1

OURS 198.3 332.9

Table 4. Ablation study on auxiliary task. We tested different
auxiliary tasks for image-wise supervision. Flipping the image
upside-down yields the best performance and we used it for all
other experiments.

IMG and OURS respectively, we drop image-wise self-
supervision for synthetic image and in the second stage for
simplicity.

Stochastic Density Map. To test if generating a stochas-
tic density map instead of a deterministic one has a sig-
nificant impact of performance, we compare the perfor-
mance of BASELINE that generates a deterministic map
with a version of it that includes Masksembles to generate a
stochastic map but still without any domain adaptation. As
can be seen in Tab. 3, the version with Masksembles does
slightly better but not by a significant amount. Therefore,
Masksembles by itself does not account for the large im-
provements we saw in Tab. 1.

Choice of Auxiliary Tasks. Having chosen to use in-
verted images to provide a self-supervision signal may seem
arbitrary during the first phase of training. To show that it
is not, we tried variants in which we flip the images left-
right (OURS-MIRROR), we rotate them by 90 degrees
(OURS-90) and by 270 degrees (OURS-270). As can be
seen in Tab. 4, OURS-MIRROR performs on par with
OURS-PIX, the model trained without any image-wise su-
pervision. OURS-90 and OURS-270 do slightly better but
OURS is clearly best. This confirms the importance of flip-
ping the images upside-down, which helps the network deal
with perspective effects.

Cross-Scene Domain Adaptation. In the experiments
described above, we use synthetic data as the source do-
main. However, we could use unlabeled real-data instead
in which the crowd distribution is different from that in
the target domain, which is a typical scenario. To ex-
plore this option, we proceed as in [21] and use the UCF-

Model MAE RMSE

No Adapt [21] 33.95 39.44
Synthetic 29.51 34.79

CSCC [105] 18.05 22.34
CODA [89] 31.39 37.17

SCP [20] 22.79 26.52
EAD [21] 11.23 15.16

OURS+Real 10.26 13.68
OURS+Synthetic 10.02 13.27

Supervised 9.99 14.24

Table 5. Ablation study on cross-scene domain adaptation. We
tested with cross-scene setting where the source domain is UCF-
QNRF dataset and target domain is Venice dataset, both are real
image datasets. Our model still consistently outperforms state-
of-the-art cross-scene domain adaptation work and even achieve
competing performance as the supervised method.

QNRF dataset as the labeled source domain data and the
Venice [47] one as unlabeled target domain one. We rely
again on the BL [58] backbone network and report our re-
sults in Tab. 5. No Adapt and Synthetic denote the BL
model trained without any domain adaptation technique
with UCF-QNRF and GCC respectively. Since the crowd
distribution in GCC is closer to the Venice one than the
one in UCF-QNRF, Synthetic still does a little better than
UCF-QNRF. OURS+Synthetic is our model trained with
the synthetic data, as we did in the rest of the paper, whereas
OURS+Real is a variant in which we replaced the synthetic
data by the real images of UCF-QNRF. The difference is
much less, but OURS+Synthetic does slightly better, again
on account of the more similar crowd distribution. Note that
we are not claiming that synthetic data is better than real
data in general. Our point is that, for the real data to pro-
vide effective training, the crowd distribution in it should be
mirror that of the test images.

5. Conclusion
We have proposed an approach to combining image-wise

and pixel-wise self-supervision to substantially increase
cross-domain crowd counting performance when only syn-
thetic data and real-data without annotations are available.
We demonstrated excellent results that approach those of
fully supervised methods.

The domain adaptation scheme we developed treats the
synthetic data as the source data. However, if annotated
real-data were available, it could also be used for this pur-
pose. In future work, we will therefore expand it to lever-
age both synthetic images and multiple real-world image
datasets with partial annotations.
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