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Abstract

Interpreting objects with basic geometric primitives has
long been studied in computer vision. Among geometric
primitives, superquadrics are well known for their abil-
ity to represent a wide range of shapes with few parame-
ters. However, as the first and foremost step, recovering
superquadrics accurately and robustly from 3D data still re-
mains challenging. The existing methods are subject to lo-
cal optima and sensitive to noise and outliers in real-world
scenarios, resulting in frequent failure in capturing geomet-
ric shapes. In this paper, we propose the first probabilistic
method to recover superquadrics from point clouds. Our
method builds a Gaussian-uniform mixture model (GUM)
on the parametric surface of a superquadric, which explic-
itly models the generation of outliers and noise. The su-
perquadric recovery is formulated as a Maximum Likeli-
hood Estimation (MLE) problem. We propose an algorithm,
Expectation, Maximization, and Switching (EMS), to solve
this problem, where: (1) outliers are predicted from the pos-
terior perspective; (2) the superquadric parameter is opti-
mized by the trust-region reflective algorithm; and (3) lo-
cal optima are avoided by globally searching and switch-
ing among parameters encoding similar superquadrics.
We show that our method can be extended to the multi-
superquadrics recovery for complex objects. The proposed
method outperforms the state-of-the-art in terms of accu-
racy, efficiency, and robustness on both synthetic and real-
world datasets. The code is at http://github.com/
bmlklwx/EMS-superquadric_fitting.git.

1. Introduction

Understanding 3D environments (and the objects
therein) has been a crucial task for computer vision and in-
telligent systems [24]. With the recent breakthroughs in 3D
vision and the advancement of computing power, modern
computer vision systems are able to reconstruct and reason
about scenes with low-level representations, such as point
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Figure 1. (a) Shape vocabulary of convex superquadrics. We focus
on the interpretation of point clouds with convex superquadrics.
(b) Superquadric representations inferred by our method.

clouds [11, 25, 26], meshes [18] and voxels [9, 38]. In con-
trast, the human visual system favors abstracting scenes into
canonical parts for a better perceptual understanding [3,15].
Human vision seems to work well with basic geometric
structures of the scene, and not rely on detailed point-wise
models [24]. Therefore, understanding the geometric struc-
ture of visual inputs appears to be a promising approach
for intelligent systems to achieve high-level goals such as
physical reasoning, decision making, planning and interac-
tion with the environment. Inspired by this idea, researchers
turned to exploring the possibility of using basic volumetric
primitives for object description, e.g., cuboids [20, 33, 39].
However, due to the limited expressiveness of cuboids, ob-
jects can only be describe in a highly abstracted way.

Superquadrics are a family of geometric primitives with
a rich shape vocabulary, including cuboids, cylinders, el-
lipsoids, octahedra and their intermediates (Fig. 1), but
only encoded by 5 parameters. In the recent few years, su-
perquadrics have raised considerable attention in the com-
munity and are widely applied in robotics and computer vi-
sion tasks, e.g., object modeling [5, 22, 23], collision de-
tection and motion planning [28, 29], pose estimation [4],
and grasping [27, 36, 37]. A single superquadric is already
expressive enough to reasonably model many everyday ob-
jects [14, 30]. The pioneering work on single superquadric
recovery includes [1, 12, 32], where the recovery is formu-
lated as a Least-Square (LSQ) problem. In [6,16], the meth-
ods are extended to model complex objects with multiple
superquadrics. However, the existing methods are vulnera-
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ble to noise and outliers, and the inherent deficiency of the
local optimizer makes them sensitive to initialization.

In this paper, we focus on the single superquadric recov-
ery problem and propose the first probabilistic method to
recover superquadrics from noisy point clouds. We build
a probabilistic model to simulate how observations (point
cloud) are possibly generated from a given parameterized
superquadric surface. GUM is adopted to accommodate the
generation of noise and outliers. The superquadric recov-
ery is thus formulated as a MLE problem (Sec. 3.1). Ex-
pectation and Maximization (EM) algorithm is most com-
monly used to solve MLE problems with latent variables
[10]. However, the EM algorithm typically converge to a
local optimum, resulting in an inaccurate shape approxi-
mation. To solve this problem, we propose a novel algo-
rithm, Expectation, Maximization and Switch (EMS), which
takes advantage of the geometric features of superquadrics
to avoid local optima (Sec. 3.2). In the E-step, the prob-
ability of a point being an outlier is inferred from a pos-
terior perspective (Sec. 3.3). In the M-step, the parame-
ter of the superquadric is updated given the current estima-
tion of the latent variables in the E-step (Sec. 3.4). The
E and M-step alternate until converged to a local optimum,
where we introduce the S-step: globally search for candi-
date parameters encoding similar superquadrics in terms of
shape and pose, and then switch to the one from which we
can further increase the likelihood (Sec. 3.5). This strat-
egy is made possible by investigating the geometric symme-
try and algebraic ambiguity of superquadrics. Furthermore,
we show our probabilistic formulation can be extended to
multi-superquadrics recovery tasks (Sec. 3.6).

The motivations and key features of this paper come
from the two following questions. (1) Can we design an
algorithm robust, accurate and efficient enough to abstract
an optimal superquadric primitive from a noisy point cloud
whose underlying shape is indeed within the vocabulary of
superquadrics? This question is answered in Sec. 4.1 and
Sec. 4.2. (2) If the point cloud is too complex to be approx-
imate by a single superquadric, can the algorithm figure out
a major part which can be approximated by a superquadric?
This is a challenging goal which cannot be achieved by
any existing single superquadric recovery algorithm. We
demonstrate qualitatively that the proposed method is capa-
ble of doing this in Sec. 4.3.

2. Related work
2.1. Preliminary: Superquadrics

Superquadrics are a family of geometric primitives (Fig.
1), which can be defined by the implicit function [2]:
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where x
.
= [x, y, z]T ∈ R3 is a point defined in the su-

perquadric frame; ax, ay and az ∈ R>0 are the scale pa-
rameters corresponding to the x, y, z-axis; ϵ1 and ϵ2 ∈ R≥0

are the shape parameters. ϵ1 governs the shape along the
z-axis and ϵ2 controls the shape orthogonal to the z-axis.
A superquadric is convex, if both ϵ1 and ϵ2 are within
(0, 2]. Eq. (1) is also called the ‘inside-outside’ func-
tion, since x locates on the surface if F (x) = 1, in-
side if F (x) < 1 and outside otherwise. We are able to
fully parameterize a superquadric of a general pose with
θ

.
= {ϵ1, ϵ2, ax, ay, az, g}, where g = [R ∈ SO(3), t ∈

R3] ∈ SE(3) is the Euclidean transformation.

2.2. Superquadric Recovery

The single superquadric recovery plays an important role
in all superquadric recovery problems. In the previous
works [1, 12, 13, 32, 35], it is formulated as a LSQ prob-
lem and solved with the Levenberg-Marquardt (LM) algo-
rithm [17]. Recently, researchers have also explored the
possibility of deep learning approaches [21, 31]. Solina et
al. [1,32] propose a cost function based on the implicit func-
tion of superquadrics. Gross et al. [12] modifies the cost
function with the radial distance between points and the su-
perquadric surface. In [13, 34], the robustness of the al-
gorithms is investigated, and outliers are randomly rejected
by a customized heuristic function. All the above meth-
ods suffer from numerical instability when either ϵ1 or ϵ2
approaches 0. As a consequence, they compromise by con-
straining the lower bounds of ϵ1 and ϵ2 to 0.1, resulting in
less accuracy when modeling shapes with sharp edges, e.g.,
cuboids and cylinders. Recently, this problem is revisited
and solved by approximating the implicit function with an
auxiliary function in the unstable region [35]. Also in [35],
the authors point out that the methods are sensitive to the
initialization, and suggest to try 3 different initial guesses
obtained by performing the Principal Component Analysis
(PCA) to the point cloud. However, all the methods are still
subject to local optima, especially when the point cloud is
partially sampled on the object surface.

For the multi-superquadrics recovery, Leonardis [16]
Borges [5], and Chevalier et al. [6] try to interpret com-
plex objects with multiple superquadrics by first segment-
ing the point cloud into parts and fitting a superquadric to
each of them. In contrast, our multi-superquadrics recov-
ery extension works in a hierarchical way. Other than a
multi-superquadrics representation, we can also obtain the
hierarchical relationships among the superquadrics (Fig. 3).

Another line of the multi-superquadrics recovery is
based on deep learning [22, 23], where superquadrics can
be obtained from meshes or even an RGB image. However,
their approaches are data-driven with limitations in general-
ization, while we focus on the recovery of unseen real-world
objects based on a case by case probabilistic reasoning.
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3. Our Method
3.1. Probabilistic Formulation

In this section, we demonstrate how to formulate the su-
perquadric recovery as a MLE problem. Our model is built
as follows. First, on the superquadric surface Sθ ⊂ R3 pa-
rameterized by θ, a Gaussian centroid µ ∈ Sθ is sampled
randomly according to the uniform density function

p(µ) =
1

Aθ
, Aθ =

∫
Sθ

1dS (2)

where Aθ is the area of the superquadric surface. Sub-
sequently, an observation x ∈ R3 is generated from a
Gaussian-uniform model (GUM), the probability density
function of which is given as

p(x|µ) = wopo(x) + (1− wo)N (x|µ,Σ) (3)

whereN (·|µ,Σ) represents the density function of a Gaus-
sian distribution with mean µ and covariance Σ. We as-
sume the noise to be isotropic, i.e., Σ = σ2I, where
I ∈ R3×3 is the identity matrix. A uniform outlier com-
ponent is introduced to model the generation of outliers.
wo ∈ [0, 1] is the probability of a point being sampled from
the outlier component. To make Eq. (3) a proper probabil-
ity density function (integrates to 1 over R3), we introduce a
working space V encapsulating the point set, whose volume
equals V . The probability density of the outlier component
po(x) =

1
V if x ∈ V and po(x) = 0 otherwise.

For the convenience of the upcoming derivation, we re-
formulate Eq. (3) into an equivalent form by introducing a
latent random variable z ∈ {0, 1} encoding the membership
of x. When z = 0, x is sampled from the uniform outlier
component. On the contrary, z = 1 indicates that x is gen-
erated from the Gaussian inlier component. We assume the
membership z is independent of the mean µ of the Gaussian
component. Therefore, Eq. (3) is equivalent to

p(x|µ, z) = po(x)
1−z · N (x|µ,Σ)z

z ∼ p(z) = Bernoulli(1− wo)
(4)

Given a set of points X = {xi ∈ R3|i = 1, 2, ..., N},
the parameters of the superquadric surface can be estimated
by maximizing the following likelihood function

L(θ, σ2) =

N∏
i=1

p(xi|µi, zi)p(µi)p(zi) (5)

or equivalently, minimizing the negative log-likelihood
function

l(θ, σ2) =

N∑
i=1

zi

(
∥xi − µi∥22

2σ2
− log c

)
+N log(Aθ)

(6)

where c is the normalizing constant of the Gaussian distri-
bution defined in Eq. (3). Note that the terms independent
of θ and σ2 have been omitted for simplicity.

3.2. Expectation, Maximization and Switching

Eq. (6) is intractable to solve directly because of the ex-
istence of a set of continuous latent variables µi ∈ Sθ, i =
1, 2, ..., N , and discrete latent variables zi ∈ {0, 1}, i =
1, 2, ..., N . The EM algorithm [10] is most commonly used
to solve MLE with latent variables. However, in our sce-
nario, it suffers from multiple local optima and has diffi-
culties in calculating the expectation of the latent variables
in an exact form. Therefore, we propose a novel algorithm
called EMS, which is adapted from the EM algorithm by
utilizing the geometric properties of superquadrics. The al-
gorithm first estimates the latent variables from a posterior
perspective given the current estimation of the superquadric
parameter (E-step). Next, the parameters are inferred and
updated by minimizing the negative log-likelihood function
(M-step). These two steps alternate until converged to a
local minimum. Then, we globally search for candidate pa-
rameters which encode superquadrics geometrically similar
to the current estimation but have the potential of further de-
creasing the negative log-likelihood function (S-step). If a
valid candidate is found, we reinitialize the EM-phase with
this candidate; else, we declare a termination and return the
final result. Detailed motivations and derivations of each
step are discussed in the following sections.

3.3. E-step: Latent Variables Estimation

Given the current superquadric parameter θ, we estimate
µi via maximum a posteriori (MAP)

µ̂i = argmin
µi∈Sθ

p(µi|xi) (7)

which guarantees to minimize Eq. (6). By the Bayes’ rule,
we show that it is equivalent to find the nearest point on the
superquadric surface to xi

µ̂i = argmin
µi∈Sθ

∥xi − µi∥2 (8)

As far as we know, there is no analytical solution to Eq.
(8), and numerical optimization is prohibitively time con-
suming for a large number of observations. Therefore, we
approximate µ̂i with a sub-optimal solution

µ̂s
i = xi −

(
1− F− ϵ1

2 (g−1 ◦ xi)
)
(g−1 ◦ xi) (9)

which is the intersection of the vector xi (defined in the su-
perquadric frame) and the superquadric surface Sθ. F (·) is
the implicit function of the superquadric. This idea was first
introduced by [12] to establish the radial distance measure
for superquadrics fitting.
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Given the current estimation of µi, the expectation of the
posterior probability of xi being an inlier is inferred via the
Bayes’ rule

E(zi = 1|xi, µ̂
s
i ) =

N (xi|µ̂s
i , σ

2I)

N (xi|µ̂s
i , σ

2I) + wopo

1−wo

(10)

For simplicity, we denote the value of the expectation as ẑi.

3.4. M-step: Parameter Optimization

Substituting µi and zi in Eq. (6) with the their posterior
estimations µ̂s

i and ẑi, we obtain an updated negative log-
likelihood function

l̂(θ, σ2) =

N∑
i=1

ẑi

(
∥xi − µ̂s

i∥22
2σ2

− log c

)
+N log(Aθ)

(11)
To the best of our knowledge, Aθ cannot be expressed in
closed-form with respect to θ. For efficiency, Aθ is approx-
imated by a bi-linear interpolation along ϵ1 and ϵ2. Details
are presented in the Supplementary Material. N log(Aθ)
indicates a preference for a small superquadric. To avoid
local optima, it is preferable to delay the introduction of
this term until σ2 falls below a threshold, i.e., the shape is
roughly captured. We apply the trust-region-reflective [8] to
optimize θ. The main reason we do not use the LM solver
lies in its numerical instability when approaching the lower
bound of the shape parameters. In contrast, the reflective
transformation [7], empirically, always keeps the optimiza-
tion numerically stable. More discussion can be found in
the Supplementary Material. After θ is solved, σ2 is up-
dated by setting the the corresponding partial derivative of
Eq. (11) to zero.

3.5. S-step: Geometric Local Optimum Avoidance

Superquadrics hold many geometric and algebraic fea-
tures, e.g., symmetry and parametric ambiguity. Trivial
cases can be raised where two superquadrics possess a sim-
ilar or even identical shape and pose but are distant in the
parameter space. The likelihood function Eq. (11) quanti-
fies how well an underlying geometric primitive fits the ob-
servations, and thus two similar (or identical) superquadrics
must possess similar (or identical) likelihoods as well. In-
spired by this idea, we propose a geometry-guided local op-
tima avoidance strategy: globally search for candidate pa-
rameters encoding similar shapes, and switch to the one
which has the potential of further increasing the likeli-
hood. The switch action is discontinuous in the parameter
space, while the change in terms of the underlying geomet-
ric shape is almost smooth. We investigate the conditions
when two parameters distant to each other represent similar
superquadrics, and summarize the cases into two categories.
The idea of switch and examples of similarities are visual-
ized in Fig. 2.

Figure 2. Visualization of the S-step and similarities. The EM
steps change the shape and pose of the superquadric towards a
local optimum, while the S-steps tries to preserve the current shape
but jump between distant parameters to avoid the local optimum.

Axis-mismatch similarity: According to the definition
in Sec. 2.1, the x and y-axis are of an equivalent class in
terms for interchangeability, i.e., if we interchange the value
of ax and ay , we can obtain an identical superquadric by ro-
tating 90 degrees about the z-axis. However, the z-axis dis-
tinguishes itself because it is generally not interchangeable
with them. We thus name the z-axis as the principal axis.
Now let us consider a special case when the shape param-
eters ϵ1 = ϵ2. In this scenario, the implicit function (Eq.
(1)) degenerates and makes all the three axes equivalent.
From another perspective, the ‘degree’ of interchangeabil-
ity decrease as the difference between ϵ1 and ϵ2 increases.
Therefore, when ϵ1 and ϵ2 are close to each other, a similar
superquadric can be obtained by reassigning the principal
axis to either the x or y-axis and then applying a correspond-
ing rotation. We call this axis-mismatch, because it helps to
avoid the local optimum caused by the incorrect assignment
of the principal axis, which prohibit the shape from further
varying to the global optimum.

Duality similarity: This case is derived from the shape
ambiguity regarding ϵ2. When ax = ay and ϵ2 = 0, we
can always represent the same superquadric (in terms of
shape and pose) by scaling ax and ay with 1/

√
2, setting

ϵ2 = 2, and rotating 45 degrees about the principal axis.
This is because ϵ2 = 0 and ϵ2 = 2 define a pair of squares
dual to each other in the subspace orthogonal to the princi-
pal axis. Utilizing this property, when ax ≈ ay , a similar
superquadric can be constructed by setting ϵ2 = 2− ϵ2, re-
scaling and rotating. The duality similarity is of great im-
portance to local optimum avoidance, since it connects two
extreme ends of the parameter space. Local optimizer tends
to converge monotonically towards one of the ends, while
the duality similarities glue the ends together, allowing the
algorithm to check and explore the counterpart.

Similar superquadrics can also be resulted by a combina-
tion of the two similarities. Detailed mathematical formula-
tion about the candidates generation and switching strategy
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can be found in the Supplementary Material.

3.6. Extension: Multi-superquadrics Recovery

Although our method is designed for single superquadric
recovery, it can be easily extended to understand the
shape and structure of a complex object with multiple su-
perquadrics. One of the key features of our single su-
perquadric recovery method is that it can capture the major
superquadric-like part of a point cloud and identify the un-
fitted points as ‘outliers’. Therefore, from a point cloud X
of a complex object, we can first recover a superquadric
capturing the major superquadric structure along with a
set of unfitted ‘outlier’ clusters C. Then, we feed C back
to the algorithm as the input to recover a new set of su-
perquadrics along with an updated C. The process (Algo-
rithm 1) is repeated hierarchically until C is empty or a max-
imum depth of layer is reached. In this way, not only the
point cloud is represented with the union of the acquired su-
perquadrics, but also the hierarchical relationship between
the superquadrics is obtained, as illustrated in Fig. 3.

Algorithm 1 A layer of hierarchical superquadric recovery

1: Input: {X1,X2, ...,Xn}
2: Output: {θ1,θ2, ...,θn}, C = {X̄1, X̄2, ..., X̄m}
3: C ← {}
4: for i = 1, ..., n do
5: (θi, outliers)← EMS(Xi)
6: {X̄1i , X̄2i , ..., X̄γi} ← Clustering(outliers)
7: ▷ clustering the outliers by Euclidean distance [19]
8: C ← C ∪ {X̄1i , X̄2i , ..., X̄γi

}
9: ▷ clusters with points less then a threshold are pruned

10: end for

Figure 3. Hierarchical process of the multi-superquadrics recov-
ery. We demonstrate with a Seal from the KIT ObjectModels. (a)
The original point cloud. (b-d) Steps of the hierarchical process
and the generation of the structure graph. (e) The recovered su-
perquadric model. (f) Segmentation of the original point cloud
based on the superquadric model.

4. Experiments
We conduct experiments on both synthetic and real-

world point cloud datasets to verify the accuracy, efficiency
and robusteness of our method. All the algorithms and ex-
periments are implemented in MATLAB, on a computer
running Intel Core i9-9900K(3.6GHz). In all the single su-
perquadric recovery experiments, we compare with 4 base-
line methods: Implicit-LSQ [32], Radial-LSQ [12], Robust-
fitting [13] and Numerical Stable method [35].

Initialization: Following [35], if not specified, the base-
line methods are initialized with 3 different superquadric
parameters obtained via PCA to alleviate the affect of lo-
cal optima. To show the effectiveness of the proposed local
optimum avoidance strategy, our method is only initialized
once with the first one among the three. Implementation
details can be found in the Supplementary Material.

4.1. Recovery on Synthetic Datasets

In this section, we evaluate the performance of the al-
gorithms on recovering the underlying geometric primitives
given points sampled on a superquadric. Three experiments
are designed to evaluate the robustness to partial data, out-
liers, and noise, respectively. To cover the whole parameter
space of superquadrics in convex region, we randomly gen-
erate 500 superquadrics under the following strategy: the
shape parameter [ϵ1, ϵ2] is uniformly sampled on (0, 2]2 ⊂
R2; the scale parameter [ax, ay, az] is uniformly sampled on
[0.5, 3]3 ⊂ R3; the rotation R ∈ SO(3) is generated by first
sampling a rotation axis on the unit sphere and then apply-
ing a random rotation in [0, 2π] about the axis; the transla-
tion t is uniformly sampled on [−1, 1]3 ⊂ R3. Point clouds
are generated by sampling evenly on the surface of the ran-
dom superquadrics with an equal† interval of 0.2. In [35],
a recursive algorithm is proposed to realize this task. How-
ever, the points sampled by the algorithm get denser when
approaching the poles along the z-axis. Therefore, we fur-
ther improve their algorithm by adaptively re-scaling the
sampling intervals at different latitudes to achieve an overall
equal-distance sampling (see Supplementary Material).

The most natural metric to evaluate the goodness of
fitting is the average point-to-surface orthogonal distance.
However, given an arbitrary point, there is no analytical so-
lution of the corresponding closest point on a superquadric
surface. Therefore, we approximate the point-to-surface
metric with

error(X,S)
.
=

1

N

N∑
i=1

min
sj∈S
∥xi − sj∥2 (12)

where S = {sj ∈ Sθ|j = 1, 2, ...,M} is a set of points

†No strict and theoretical way of equal-distance sampling exists. Here
we indicate an practical approximation of almost equal-distance sampling.
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densely and evenly sampled (with an interval of 0.02 in the
synthetic experiments) on the superquadric surface Sθ.

Figure 4. Results of recovery from partial data. (a) Average error
(the baselines are initialized 3 times). (b) Average error (the base-
lines are initialized once). (c) Ablation study. (d) Average runtime.
(e) Global Optimality rate (declared when the fitting error is less
than 0.01) (f) Examples at partial ratio 0.4, when the baselines get
stuck in local optima, while ours have managed to jump out.

Recovery on partial data: This experiment simulates
the cases where points are sampled from a partial area of a
superquadric in the sense that sometimes we can only ob-
tain a partial view of an object. For each point cloud of
the 500 superquadrics, a point is randomly selected and a
certain percentage (partial ratio) of the points which are the
closest to the random point are kept. We test on 5 differ-
ent levels of partial ratio ranging from 1.0 (complete point
cloud) to 0.2, resulting in totally 2500 point clouds. Results
are shown in Fig. 4. Our method significantly outperforms
the baseline methods at all levels of partial ratios. All the
methods perform well when a complete point cloud of a su-
perquadric is available. However, with the decreasing of the
partial ratio, it becomes harder to make a reasonable initial
guess of the parameter. Therefore, the baseline methods be-
come more likely to get stuck at a local optimum, even with
multiple trials. While, our method continuously avoids the
local optima with the geometry-guided switching strategy,
and thus maintains a high success rate in converging to the
global optimum. We also perform ablation studies about the
S-step. The results verify its effectiveness (Fig. 4(c)). Al-
though our algorithm only guarantees local optimality, the

empirical results indicate that our method is very likely to
achieve the global optimum in practice (Fig. 4(e)).

Robustness to outliers: We add different levels of Gaus-
sian outliers to the 2500 point clouds. Outlier ratio (the
number of outliers / the number of inliers) is used to quan-
tify the level of outliers added. Results are shown in Fig.
5. Our method shows superior robustness to outliers and
is able to recover the underlying superquadrics even from
severely corrupted point clouds. The Implicit-LSQ, Radial-
LSQ and Numerical Stable are vulnerable to outliers, since
they are not designed to tolerate outliers. The Robust-fitting
performs better, however, is limited by its heuristic outlier
rejection policy, which also imposes an undesirable nega-
tive effect on clean point clouds. In contrast, our method
infers outliers in a posterior probabilistic approach and thus
maintains high robustness among all levels of outliers.

Figure 5. Outlier results. (a) Average error at different outlier ra-
tios. (b) Average runtime. Runtime of Radial, Implicit and NS has
no significant meaning since they cannot recover the superquadric
correctly in most cases. (c) Examples at outlier ratio 0.4.

Robustness to noise: In this experiment, we corrupt
each point in the point clouds with Gaussian noise of differ-
ent variance. Results are shown in Fig. 6. It can be observed
that the fitting error grows with the increase of noise level
for all the methods, including ours. This is because, unlike
outliers, the noise inherently corrupts the geometric infor-
mation. But still, our method shows advantages in robust-
ness and efficiency when dealing with noisy point clouds.

4.2. Recovery on Real-world Datasets

In this section, we evaluate the single superquadric re-
covery on two public datasets: the KIT ObjectModel [14]
and BigBIRD [30]. Both of the datasets consist of various
daily household objects, and are widely used as benchmarks
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Figure 6. Noise results (a) Average errors at different noise levels
(evaluated on uncorrupted point clouds). (b) Average runtime. (c)
Examples at σ2 = 0.01 Gaussian noise level.

in 3D-object reconstruction, recognition, and robot grasp-
ing. KIT is scanned by a high-accuracy laser scanner (Mi-
nolta VI-900), while BigBIRD is captured by a commercial-
grade RGB-D camera (PrimeSense Carmine 1.08).

KIT ObjectModels: We follow the setting in [35]. The
dataset includes 145 objects, among which [35] selects 105
items that can be reasonably approximated by a single su-
perquadric. However, we decide to shrink our scope to 97
items, since some of the objects (e.g., bottles) would be bet-
ter recovered with multiple superquadrics. Therefore, we
defer the discussion of those cases to Sec. 4.3. We down-
sample the point clouds with voxelized grids to about 1500
points. Quantitative results are shown in Fig. 7(c). Our
method outperforms all the baseline methods in accuracy
and efficiency. Our method also demonstrates some inter-
esting features which can not be shown quantitatively. As
shown in Fig. 7(a), some objects have minor local deforma-
tions and/or parts deviating from the main structure, which
affect the major shape capturing. Our probabilistic method
is able to reduce the impact of those parts (inferred as out-
liers) and achieves an overall better fitting. Also in Fig.
7(b), the box-like objects are usually filled with content in-
side, resulting in a shape slightly extended in the middle.
This shape is within the vocabulary of superquadrics, how-
ever, is so close to cuboids that the other algorithms fail in
telling them apart, i.e., get stuck at a local optimum. In con-
trast, our method is able to switch and check among similar
shapes and recover the optimal superquadric.

BigBIRD: Compared with laser scanners, low-cost
RGB-D cameras are inferior in measurement accuracy, re-
sulting in noisy point clouds with outliers. Therefore, the
BigBIRD is an ideal dataset for evaluating the robustness
of an algorithm in daily operation. The dataset consists
of 125 object instances, and we test on 91 of them which
can be reasonably approximated with single superquadrics.

Figure 7. KIT results. (a) and (b) are the two cross-section views
of fitting results between Radial-LSQ and the proposed method.
(c) Quantitative results of average error (Eq. (12) with sampling
interval as dense as 0.1 mm) and runtime.

Figure 8. BigBIRD results. (a) A heatmap showing the local fitting
error between the recovered superquadric and the original point
cloud. (b) Quantitative results of the average error (Eq. (12) with
sampling interval as dense as 0.1 mm) and runtime.

The point clouds are downsampled with voxelized grids to
around 1000 points. Results are shown in Fig. 8. Among
the baselines, the Robust-fitting shows better robustness but
takes a much longer time to converge. Our method can
achieve the best accuracy with the least time consumption.

4.3. Multi-superquadrics Recovery

In this section, we show the qualitative results of our
extension to the multi-superquadrics recovery (Sec. 3.6).
We use the complex objects which cannot be properly ap-
proximated by a single superquadric from the KIT Object-
Models. We downsample the point clouds to around 5000
points, so as to keep enough details of the complex shapes.
We set the maximum hierarchical layers to 3 and the prun-
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Figure 9. Examples of multi-superquadrics recovery. (a) The original point clouds. (b) The recovered multi-superquadrics representations
with the proposed method. (c) Segmentation of the original point clouds based on the multi-superquadrics representations.

ing threshold to 60 points. As shown in Fig. 10, the base-
line single superquadric method fails in capturing the major
superquadric-like part of a bottle as a cylinder. Our method
succeeds in doing this and identifies the points around the
cap of the bottle as outliers, from which the bottle is recov-
ered hierarchically. Other results on more complex objects
are shown in Fig. 9. Our method is able to represent the ob-
jects vividly with superquadrics. Some detailed parts such
as ears and mouths of animals can also be recovered.

Figure 10. Qualitative multi-superquadrics recovery on bottles
from KIT. (a) Comparison of single superquadric recovery be-
tween Radial-LSQ and EMS (ours). The proposed method is able
to recover the major superquadric shape (a cylinder) from the point
cloud. (b) Other results of the proposed method.

5. Discussion & Limitations
Various experiments show that our method is robust, ac-

curate and efficient. As shown in Sec. 4.1 and Sec. 4.2, the
baseline methods are sensitive to initialization, and are eas-
ily trapped into local optima. Therefore, to obtain a satisfy-
ing result, they usually require multiple trials starting from
different initial guesses. In comparison, our method is able
to avoid local optima on the fly and achieve a better recovery
accuracy with one shot. Also, our method is robust to out-
liers and noise. This feature is brought in by our probabilis-
tic formulation of the problem, where we explicitly model

the possible sources of outliers and noise with a uniform
distribution and a Gaussian distribution, respectively. This
feature also forms the basis for our multi-superquadrics ex-
tension. As shown in Sec. 4.3, our method is able to cap-
ture the major superquadric-like part from a point cloud and
hierarchically generate subordinate superquadrics from the
‘outliers’ identified at the upper level.

However, there is a limitation in our multi-superquadrics
extension: our approach requires the object being recovered
possesses an inherent hierarchical geometric structure. For
more general cases, a preliminary point cloud segmentation
is preferred [25, 26]. Another limitation is due to the ex-
pressiveness of superquadrics. It is hard to well capture the
shape of a thin-walled non-convex object such as a cup. In
future works, we plan to adapt deformations and primitive
subtractions to extend the vocabulary of superquadrics.

6. Conclusion
We present the first probabilistic method to recover su-

perquadrics from point clouds. We formulate the recovering
process as an MLE problem and propose a novel geometry-
guided approach, EMS, to infer an optimal superquadric.
The proposed method outperforms the state-of-the-art in
terms of accuracy, robustness, and efficiency, which is sub-
stantiated by extensive experiments on both synthetic and
real-world datasets. We also extend our method to repre-
sent a complex object with a hierarchy of superquadrics.
Such representation can reveal the geometric and hierar-
chical structure of an object, which, we believe, has great
potential in facilitating tasks such as object classification,
segmentation and grasping.
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