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Abstract

The transformer-based encoder-decoder framework has
shown remarkable performance in image captioning. How-
ever, most transformer-based captioning methods ever over-
look two kinds of elusive confounders: the visual con-
founder and the linguistic confounder, which generally lead
to harmful bias, induce the spurious correlations during
training, and degrade the model generalization. In this
paper, we first use Structural Causal Models (SCMs) to
show how two confounders damage the image caption-
ing. Then we apply the backdoor adjustment to propose
a novel causal inference based image captioning (CIIC)
framework, which consists of an interventional object de-
tector (IOD) and an interventional transformer decoder
(ITD) to jointly confront both confounders. In the encod-
ing stage, the IOD is able to disentangle the region-based
visual features by deconfounding the visual confounder. In
the decoding stage, the ITD introduces causal interven-
tion into the transformer decoder and deconfounds the vi-
sual and linguistic confounders simultaneously. Two mod-
ules collaborate with each other to alleviate the spurious
correlations caused by the unobserved confounders. When
tested on MSCOCO, our proposal significantly outperforms
the state-of-the-art encoder-decoder models on Karpathy
split and online test split. Code is published in https:
//github.com/CUMTGG/CIIC.

1. Introduction
Image captioning aims to automatically understand the

semantic information of an image and generate its accurate
description. Inspired by neural machine translation [36], the
encoder-decoder architecture has been widely adopted by
most conventional image captioning models [2, 10, 39, 41],
in which a deep convolutional neural network (CNN) serves
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Cake

Fork

Cake Fork

GT1: A white plate covered in  cake and a fork.

GT2: A slice of  cake sitting on a plate next to a fork.

GT3: A piece of white cake on a plate has a fork.

GT1: The remains of a piece of  cake and a fork.

GT2: A tasty looking piece of cake with a fork next to it.

GT3: Two forks on a plate of cake.

(a)

Cake

Spoon

GT: A bowl with a piece of cake in it next to a spoon.

Transformer: A piece of cake on a plate with a fork.

CIIC: A piece of cake on a plate with a spoon.

(b)

Figure 1. The example about the spurious correlation in im-
age captioning. (a) Examples of the visual confounder (the vi-
sual feature of cake) and linguistic confounder (the word embed-
ding of “cake”) in the MSCOCO training dataset when generating
the word “fork”, where “GT1”, “GT2” and “GT3” denote three
ground truth captions of each image chosen from the dataset. (b)
Some captions generated by the original Transformer [37] and
CIIC. The generated correct and incorrect words are colored by
blue and red, respectively. “GT” means the ground truth caption.

as the encoder to extract visual features from the input im-
age, and a recurrent neural network (RNN) is used as the
decoder to generate the corresponding caption. Based on
this architecture, a large number of improvements have been
made by recent works, which mainly focus on two-fold:
(i) Optimizing the visual representations of the input im-
age [2,15,18,42], and (ii) enhancing the architectural mod-
eling capabilities for inter-modal and intra-modal interac-
tions [8, 28].

In the aspect of visual representation, most captioning
models apply a well-trained detector, e.g., Faster R-CNN
[33], to extract visual features. Nevertheless, these mod-
els neglected the problem of entangled visual features in
the visual feature extraction stage. As shown in Figure 1a,
the features of a region of the fork extracted by Faster R-
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CNN tend to be its surrounding cake-like features since
forks and cake co-occur too many times, i.e., the feature
representations of forks are severely affected by the visual
feature of cake. In this case, the visual feature of the cake
is actually one visual confounder, which builds a “short-cut
path” [11] that leads to the spurious correlations between
object features and target categories, e.g., the learned cake-
like features correspond to the class label of the fork. Con-
sequently, it is critical to disentangle the visual features in
the stage of visual representation to alleviate the spurious
correlation between the cake region and the word “fork”.

In the aspect of model structure improvement,
transformer-based models [13, 15, 17, 23, 27] have ob-
tained the superior performance over the CNN-RNN based
captioning methods. However, most transformer-based
captioning models may still learn dataset bias caused by the
hidden confounders. As shown in Figure 1a, when there
are more forks than spoons co-occur with cake, due to both
the visual confounder (i.e., the visual feature of cake) and
linguistic confounder (i.e., the word embedding of “cake”),
the traditional captioning models tend to learn the spurious
correlation between the cake region and the word “fork”
during training. Thus, as shown in Figure 1b, the original
transformer usually generates the incorrect word “fork”
instead of the correct word “spoon” for the test image.

Recently, Yang et al. [44] analyzed the spurious corre-
lation between the visual features and captions by causal
graph and proposed a deconfounded image captioning
(DIC) framework to tackle the confounders. But they still
have two limitations: (i) In their causal graph, the whole
dataset is considered as the confounder and hard to be strat-
ified. Thus, the complex front-door adjustment is utilized
to deconfound it by introducing an additional mediator. (ii)
DIC focuses on deconfounding the decoder while neglect-
ing the confounded visual features in the encoder, leading
to limited performance improvements.

To solve these problems, we first divide the confounder
of the existing causal graph into two classes: visual con-
founder and linguistic confounder. Based on the detailed
causal graph, we propose a novel causal inference based
image captioning (CIIC) framework, which mainly con-
sists of two components: an interventional object detec-
tor (IOD) and an interventional Transformer decoder
(ITD) to jointly confront two kinds of confounders. Specif-
ically, the IOD incorporates causal inference into Faster R-
CNN [33] to cope with the visual confounder, aiming to
obtain the disentangled region-based representations. The
ITD implements causal intervention in the Transformer de-
coder by deconfounding both the visual and linguistic con-
founder simultaneously. As shown in Figure 1b, CIIC can
effectively eliminate the spurious correlations caused by the
visual and linguistic confounders and generate the correct
word “spoon”.

Our contributions can be summarized as follows:
• We decompose the confounder into the visual and lin-

guistic confounders and show a more detailed causal graph
for the transformer-based image captioning system, which
can be easily deconfounded by the backdoor adjustment, in-
stead of the more complex front-door adjustment.

• We propose an IOD to disentangle the region-based
features in the encoder and design a novel ITD by decon-
founding the causal graph, which can effectively eliminate
the spurious correlations caused by both visual and linguis-
tic confounders.

• We implement our transformer-based CIIC framework
to facilitate the unbiased captioning generation and ex-
tensively evaluate our approach on the MSCOCO bench-
mark [24]. CIIC achieves a new state-of-the-art perfor-
mance compared to previous transformer-based captioning
approaches.

2. Related Work
2.1. Image Captioning

The mainstream image captioning methods generally
follow the encoder-decoder paradigm [2, 12, 39, 41, 50],
where image features extracted by a CNN are fed into a
recurrent net (often based on LSTM units) to generate the
corresponding sentence. Since RNN-based models are lim-
ited by their sequential nature, the convolutional language
model has been explored to replace conventional RNNs as
well [3]. Different from the local operator essence of convo-
lution, new transformer-based captioning models, based on
the fully-attentive paradigm, have recently been proposed
and achieved quite promising results [9, 13, 17, 25]. For ex-
ample, spatial relationships between region features [13,15]
and relative geometry features between grids [27] were ex-
plicitly incorporated with geometric attention to enhance
visual representations. Li et al. [23] introduced Entangled
Attention that exploits visual and semantic information si-
multaneously. Pan et al. [28] applied Bilinear Pooling to
encode region-level and image-level features. Despite great
progress made on the basis of fully-attentive paradigms,
how to cope with dataset biases caused by the visual and
linguistic confounders in image captioning is still largely
under-explored.

2.2. Causal Inference

Recently, some researchers have incorporated causal in-
ference into deep learning models in the computer vision
community [6,26,32,47,49,51]. These efforts make it pos-
sible to endow DNNs with the abilities to learn the causal
effects, which significantly advance the performances of
many CV and NLP models, including image classification
[4, 26], image semantic segmentation [47], visual feature
representation [40], visual dialog [32], image captioning
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Figure 2. Illustration of the CIIC framework for image captioning. The RoI features are first disentangled by the interventional object
detector, which are then combined with the bottom-up features of Faster R-CNN as inputs of the transformer encoder. In the decoder of
CIIC, we propose a causal intervention module to confront both the visual and linguistic confounders for word prediction. The notation
“L×” denotes that the block in the dotted box is stacked with L times. Our CIIC is able to effectively eliminate the spurious correlations
that occurred in both the visual feature representation and caption generation to get more grounded image captions.

(a) Confounded (b) Deconfounded

Figure 3. The causal intervention P (Y |do(X)) in object detec-
tion. The backdoor path X←Z→Y is blocked by cutting off
Z→X , i.e., the backdoor adjustment, which is able to effectively
deconfound the unobserved confounder as a fundamental causal
inference technique [30].

[44] and dialogue generation [51]. For example, Wang et
al. [40] presented Visual Commonsense Region-based Con-
volutional Neural Network (VC R-CNN) to boost the per-
formance of visual feature representation learning, in which
causal intervention, instead of the conventional likelihood,
is used to predict the contextual objects of a region. Yang
et al. built a Deconfounded Image Captioning (DIC) frame-
work [44] and a causal attention mechanism [45] respec-
tively to cope with the confounders. However, these models
still lack a detailed analysis of the confounders in both vi-
sual and linguistic domains. Consequently, we present the
IOD to directly disentangle the visual features of the RoI
proposals. The IOD incorporates causal intervention into
self-predictor instead of the more complicated context pre-
dictor in VC R-CNN. As a result, the IOD can extract the

visual features from both single-object and multi-object im-
ages. Compared with the works by Yang et al. [44, 45], we
devise the more detailed causal graphs for the transformer-
based image captioning system and propose the ITD to si-
multaneously eliminate the spurious correlations caused by
both the visual and linguistic confounders.

3. CIIC
As illustrated in Figure 2, CIIC is composed of a trans-

former encoder and a transformer decoder, in which causal
inference is introduced into the visual representation step
and sentence generation step, respectively.

3.1. Interventional Object Detector

Causal Intervention in Object Detection. In the causal
graph [6,26], a variable is defined as the confounder if such
variable is a common cause for the other two variables. As
illustrated in Figure 3a, we formulate the causalities among
the region-based visual features X , the visual confounder Z
of an image, and class labels Y based on SCM [6], where
the direct edges represent the causalities between the two
variables. On one hand, we denote the causal effect of Z
on X as Z → X since the extracted visual features are in-
evitably affected by the visual contexts from the real world
when the classifier of Faster R-CNN is trained. On the other
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Figure 4. The architecture of our interventional object detector,
where Faster R-CNN is used as the visual backbone [33] to extract
visual features from regions of interest (RoIs). Subsequently, the
extracted RoI feature is utilized to predict the class probability out-
put yC and the bounding box yB , respectively. Depending on the
class probability output yC and the confounder dictionary Z , we
perform causal intervention based on the do calculus to accurately
predict the final object class label yI .

hand, we have the causal effect Z → Y because the vi-
sual contexts also affect the classifier’s probability outputs.
Hence, in the case of dataset bias, Faster R-CNN tends to
learn some spurious correlation between X and Y caused
by Z, i.e., overexploiting the co-occurrence between the vi-
sual contexts and class labels to learn biased visual repre-
sentations of image regions.

As shown in Figure 3a, conventional object detec-
tors, such as Faster R-CNN, essentially use the likelihood
P (Y |X) as the training objective of classifier, which is usu-
ally affected by the confounder Z and gives rise to the spu-
rious correlations. To see this, we formulate P (Y |X) as:

P (Y |X) =
∑

z
P (Y |X,Z = z)P (Z = z|X) , (1)

where the confounder Z generally brings about the ob-
servational bias via P (z|X). For instance, when P (z =
cake|X = fork) is large while P (z = spoon|X = fork)
is small. According to Eq. (1), P (Y = lfork|X =
fork, z = cake), where lfork denotes the class label of
fork, plays a more important role than P (Y = lfork|X =
fork, z = spoon) in estimating P (Y |X). Thus, the clas-
sifier learns the correlation between the visual features of
cake and the class label of fork by mistake, i.e., the learned
RoI features of one fork are actually its surrounding cake-
like visual features.

Motivated by the recent success of applying causal in-
ference in deep learning [6, 26, 32, 47], we introduce causal
intervention P (Y |do(X)) into object detection to block
the backdoor path X←Z→Y , where the do calculus do(•)
plays a role of cutting off Z → X . As shown in Fig-
ure 3b, the backdoor adjustment is exploited to achieve
P (Y |do(X)) as follows [40]:

P (Y |do (X)) =
∑

z
P (Y |X,Z = z)P (Z = z) . (2)

In Eq. (2), P (Y |do(X)) forces X to fairly “borrow” each
z in the confounder set and “put” them together for the

prediction of Y . In this way, the classifier removes the
confounding effect and learns the true causality from X
to Y , leading to the visual representations of high quality.
However, Eq. (2) requires expensive sampling to estimate
P (Y |do(X)) when applying it to a deep object detection
network, which will make training time prohibitive. For-
tunately, by applying the Normalized Weighted Geometric
Mean (NWGM) approximation [40, 41], Eq. (2) can be ap-
proximated as:

P (Y |do (X = x))

≈P
(
Y |concat

(
x,

1

n

∑n

i=1
P (yci |x) zi

))
,

(3)

where concat(·) denotes vector concatenation, yci is the i-th
class label and P (yci |x) is the pre-trained classifier’s proba-
bility output that x belongs to class yci . Note that we approx-
imate the confounder in Eq. (2) to a predefined confounder
dictionary Z = [z1, z2, ..., zn], where n is the class num-
ber and zi ∈ Rd denotes the average RoI feature of the i-th
class pretrained by Faster R-CNN.
IOD Architecture. In Figure 4, we propose a novel IOD
network to extract the disentangled visual features, where
Faster R-CNN [33] is used as the visual backbone. In IOD,
we use the same bounding box regressor as Faster R-CNN
to specify each RoI on the feature map. As shown in Fig-
ure 4, the RoI feature x is then fed into two parallel branches
to predict the class probability output yC and bounding box
yB , respectively. Finally, based on the RoI feature x, the
class probability output yC , and the predefined confounder
dictionary Z, we make the do calculus to implement the in-
terventional class predictor and output the final object class
label yI , namely, the IOD applies Eq. (3) as the new classi-
fication objective to replace the classifier of Faster R-CNN.
In this way, the RoI feature x can be effectively disentan-
gled and subsequently adopted to facilitate the Transformer
decoder to generate the unbiased caption.

3.2. Transformer Encoder with Multi-view Visual
Representation

Now we are ready to utilize the IOD to extract the disen-
tangled object features (called the IOD features) from any
RoI proposal. Considering the bottom-up visual features
obtained by the Up-Down approach [2] have the discrimi-
native ability of different object attributes, we integrate the
IOD features with the bottom-up features extracted from
the same image to facilitate the visual representation of the
CIIC model. Since the bottom-up and IOD features are
unaligned, we introduce a multi-view transformer encoder,
namely, Unaligned Feature Transformer (UFT) encoder, to
adapt them.

As illustrated in Figure 2, the UFT encoder takes the
unaligned visual features as inputs and performs the align-
ment and fusion operations simultaneously. Assume that
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(a) Confounded (b) Deconfounded

Figure 5. The causal intervention P (W |do(V ), do(h1)) in image
captioning. Aiming at capturing the true causal effect: V →W ,
we block the backdoor path V ←h1←D2→W and V ←D1→W
by cutting off D2→h1 and D1→V simultaneously.

the extracted bottom-up features and IOD features from an
image can be respectively denoted as XF ∈ Rm×d1 and
XI ∈ Rn×d2 , where m ̸= n and d1 ̸= d2. Two linear
layers are utilized to transform XF and XI into a common
d-dimensional space, denoted as X̄F and X̄I , respectively.
Subsequently, we choose X̄F as the features of the primary
view and exploit it to learn the cross-attentions over X̄I :

X̃I = MultiHead(X̄F , X̄I , X̄I), (4)
where MultiHead(·) denotes the multi-head attention
function of standard transformer, and X̃I ∈ Rm×d is the at-
tended features over X̄I . Accordingly, we model the multi-
head self-attentions within X̄F as follows:

X̃F = MultiHead(X̄F , X̄F , X̄F ). (5)
Note that X̃I has the same shape as X̃F and X̄F , we encap-
sulate them by the AddNorm operator as follows:

F = LayerNorm(X̄F + X̃F + X̃I), (6)
where LayerNorm(·) denotes layer normalization [37] .
Finally, the fused features F are fed into the FFN module to
generate the encoding results of UFT. Noticeably, the UFT
encoder is actually stacked in depth to generate more ab-
stract and discriminative visual features for decoding, we
omit them for a concise expression.

3.3. Interventional Transformer Decoder

To alleviate the spurious correlations between attended
visual features and their corresponding words, we build a
novel Transformer-based decoder architecture, which incor-
porates a causal intervention module into each Transformer
decoder layer to cope with both the visual and linguistic
confounders in image captioning.
Causal Intervention in Image Captioning. We first for-
mulate the causalities among the attended visual features
V , visual context D1, linguistic context D2, attended word
features over the partially generated sentence h1, fused fea-
ture h2 and predicted word W with an SCM, as illustrated
in Figure 5a. Concretely, the causal effect V → W de-
notes that the attended visual features cause the generation
of their corresponding words. The causal effect of D1 on V
stands for D1 → V because the attended visual features are
severely affected by some frequently appearing visual con-

texts when one captioner is trained, while the causal effect
D1 → W means that the visual contexts directly affect the
frequency of some related words in the captions. In addi-
tion, D2 → h1 → V denotes that the attended word fea-
tures, affected by the linguistic contexts, are used to guide
the attended visual features via multi-head cross-attention.
h1 → h2, V → h2 and h2 → W indicate that the decoder
integrates the visual features with linguistic features and uti-
lizes the fused feature h2 to infer the next word W . Thus,
when we use the observational likelihood P (W |V, h1) as
the training target, the captioner is likely to learn some spu-
rious correlation between V and W due to the confounders
D1 and D2. To describe the principle of causal intervention
in image captioning, we formulate P (W |V, h1) as:

P (W |V, h1) =
∑

d2

P (d2|h1)·∑
d1

P (W |V, h1, d1, d2)P (d1|V ),
(7)

where the confounders D1 and D2 generally introduces
the observational biases via P (d1|V ) and P (d2|h1).
Similar to the IOD, we substitute causal intervention
P (W |do(V ), do(h1)) for the conventional training objec-
tive of image captioning, aiming at removing the causal ef-
fects of D1 on V and D2 on h1, as shown in Figure 5b.
Thus, the two backdoor paths: V ← D1 → W and
h1 ← D2 → W are blocked and the spurious corre-
lations are eliminated. Suppose that the confounders D1

and D2 can be stratified respectively, P (W |do(V ), do(h1))
can be calculated based on the backdoor adjustment as fol-
lows [6, 26]:

P (W |do (V ) , do (h1))

=
∑

d2

P (d2)
∑

d1

P (W |V, h1, d1, d2)P (d1) .
(8)

Consequently, based on the interventional probability in
Eq. (8), the image captioner is forced to learn the true causal
effect: V →W rather than the spurious correlations caused
by the visual confounder D1 and linguistic confounder D2.

Likewise, we build the approximate visual confounder
dictionary D1 and linguistic confounder dictionary D2 since
both D1 and D2 are unobserved and beyond objects in im-
age captioning. On the one hand, we construct the visual
matrix Vr ∈ Rc×dv by setting each entry as the average
RoI feature of objects in each class, where c denotes the
class size and dv is the dimensionality of each RoI feature.
On the other hand, a set of de-dimensional word embed-
dings We ∈ RN×de from a pre-defined word vocabulary
are utilized to build a semantic space. Then, the captioner
is trained to learn two linear projections Pv ∈ Rdv×d and
Pw ∈ Rde×d to respectively transform Vr and We into D1

and D2, i.e., D1 = VrPv,D2 = WePw. Thus, Eq. (8) can be
computed by utilizing the NWGM approximation [40, 41]
as follows:

P (W |do(V ), do(h1))

≈Softmax{g(h2,ED1
[D1],ED2

[D2])},
(9)
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where g(·) represents an FC layer, ED1 [D1] ≈
softmax(D1h2)D1 and ED2 [D2] ≈ softmax(D2h2)D2.
Similar to DIC [44], we set D1 and D2 to be conditioned
on the fused feature h2 to increase the representation power
of ITD.
Transformer Decoder Architecture. The flowchart of
the Transformer decoder architecture is shown in Figure 2.
Similar to the Transformer encoder, the decoder consists
of L identical decoder layers stacked in sequence. Unlike
the original Transformer decoder, our proposal inserts a CI
module after the FFN module. Specifically, by means of
the visual dictionary D1 and linguistic dictionary D2, the CI
module integrates the fused feature h2 with the expectations
of both the visual confounder D1 and linguistic confounder
D2 to predict the next word, i.e., it actually implements
causal intervention by the backdoor adjustment according
to Eq. (9). The output of the last decoder layer is subse-
quently projected into an N -dimensional space by a linear
embedding layer, where N is the vocabulary size. Finally,
a softmax operation is adopted to predict a probability over
words in the vocabulary.

3.4. Training Details

Following the same training strategies in [2, 10], our
model is first pre-trained with the word-level cross entropy
(XE) loss:

LXE (θ)

=−
∑T

t=1
log

(
pθ

(
w∗

t |do (V ) , do (h1) , w
∗
1:t−1

))
,

(10)

where θ denotes the parameters of CIIC, w∗
1:T is the target

ground truth sequence.
After that, the model is optimized for the non-

differentiable metric via Reinforcement Learning (RL). In
practice, we adopt a variant of the Self-Critic Sequence
Training (SCST) [34] on sequences sampled by beam
search. The target is to minimize the following negative
expected score:

LRL (θ) = −Ew1:T∼pθ
[r (w1:T )] , (11)

where the reward r(·) denotes the CIDEr-D score.
In the testing stage, we use beam search to generate the

sentence word-by-word and obtain the sequence with the
largest probability among those in the last beam.

4. Experiments
4.1. Experimental Setup

MS COCO Dataset [24]. This popular benchmark dataset
contains 123,287 images and each of them equipped with
5 manually annotated sentences. In the experiments, We
adopt two popular splits: the Karpathy split [20] and the
online test split.
Evaluation Metrics. To evaluate the performance of differ-
ent captioning methods, we utilize the full set of the stan-

dard evaluation metrics, including BLEU [29], METEOR
[5], ROUGR [7], CIDEr [38], and SPICE [1]. Besides, we
employ two metrics: CHAIRs and CHAIRi [35] to mea-
sure the object bias degree of the generated captions.
Implementation Details. To represent the image features,
we first train the proposed IOD on the MSCOCO dataset
to extract the 1024 dimensional IOD features of the top-100
objects with the highest confidence scores. Then, we use the
pre-trained Up-Down model [2] to extract the 2048 dimen-
sional bottom-up features of the detected objects. Finally,
we linearly project both features to the 512 dimensional
vectors and fed them into the UFT encoder. To represent
the words, we respectively utilize one-hot vectors and pre-
trained GloVe word embeddings [31] in the experiments.
Both of them are linearly projected to the 512 dimensional
input vectors of ITD. To represent word positions inside the
sentence, we sum the input vectors and their sinusoidal po-
sitional encodings [36] before the first decoding layer.

Following the same settings in [37], we convert all sen-
tences to lowercase, delete the punctuation characters and
tokenize each caption. We construct a new vocabulary by
selecting the words which appear more than 5 times. In
addition, we use 8 attentive heads in both the encoder and
decoder of CIIC. The latent dimensionality in each head is
set to dh = d/h = 64, where the latent dimensionality d is
512. We train our CIIC on one Nvidia 3080 GPU with a
batch size of 10 images for 220K iterations. For fair com-
parisons, we employ ResNet-101 as the backbone for both
the image feature extraction and encoding.

In the training stage, we employ the Adam optimizer
[21] with a batch size of 10 and 20000 warmup steps. Our
models are first trained for 30 epochs based on the XE loss
and then optimized with the SCST approach [34] for addi-
tional 30 epochs with a beam size of 5. The learning rate
is set to 5 × 10−6. During the inference stage, the beam
search [36] is also adopted with a beam size of 3.

4.2. Ablation Studies

We carry out extensive experiments to investigate the im-
pacts of different modules on captioning performance.
Comparing Methods. Base: We denote the original Trans-
former captioning model with the bottom-up features as
Base. Base+GloVe: We incorporate the GloVe embed-
ding [31] into Base to represent the words. Base+ITD:
We introduce the ITD module into the decoder of Base.
Base+ITD+GloVe: Compared with Base+ITD, we further
integrate the GloVe embedding with Base. Base+UFT: We
exploit the UFT to improve the visual representation ability
of Base. Base+UFT+GloVe: Compared with Base+UFT,
we replace the one-hot embeddings by the GloVe embed-
dings for the generated words. CIICO and CIICG: The
subscripts “O” and “G” represent that our CIIC is imple-
mented with the one-hot word vectors and GloVe word em-
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Table 1. Ablation experiments. All the models are trained with
the XE loss. B@1, B@4, M, R, C, S, CHs and CHi are short
for BLEU-1, BLEU-4, METEOR, ROUGE-L, CIDEr, SPICE,
CHAIRs and CHAIRi scores. “↓” and “↑” denote the lower the
better and the higher the better, respectively.

Model B@1↑ B@4↑ M↑ R↑ C↑ S↑ CHs↓ CHi↓

Base 75.9 35.5 28.0 56.5 114.1 21.0 8.4 6.3
Base+GloVe 76.3 36.2 28.2 56.8 115.9 21.3 7.9 6.0
Base+ITD 76.1 36.2 28.1 56.7 116.0 21.2 7.7 6.0
Base+ITD+GloVe 76.5 36.5 28.4 57.0 117.1 21.3 6.9 5.4
Base+UFT 77.0 36.7 28.4 57.1 117.5 21.5 5.8 3.9
Base+UFT+GloVe 77.1 36.9 28.1 57.0 117.9 21.3 5.9 3.9
CIICO 77.3 37.0 28.3 57.4 118.3 21.3 5.6 3.9
CIICG 77.5 37.3 28.5 57.4 119.0 21.5 5.3 3.6

beddings, respectively.
Results and Analysis. Table 1 shows the ablation exper-
iments on different encoding and decoding modules with
the number of attention blocks L = 6. From Table 1,
we can observe that GloVe and CI schemas respectively
bring an improvement over Base. When they are both em-
ployed, the performance can be further enhanced, which in-
dicates that both of them are beneficial. The performance
of Base+UFT and Base+UFT+GloVe is superior to that of
Base+GloVe+CI, which confirms the effectiveness of the
extracted IOD features. After respectively incorporating the
CI module into Base+UFT and Base+UFT+GloVe, the per-
formance of both CIICO and CIICG can be further sig-
nificantly boosted (from 117.5 CIDEr to 118.3 CIDEr and
from 117.9 CIDEr to 119.0 CIDEr, respectively), which fur-
ther confirms the utility of deconfounding the visual and
linguistic confounders in the sentence generation.

4.3. Quantitative Analysis

Results on the Karpathy Test Splits. In Table 2, we
compare our CIIC with the SOTA models on the offline
COCO Karpathy test split, including SCST [34], Up-Down
[2], RFNet [19], GCN-LSTM [46], SGAE [42], ORT [15],
AoANet [16], M2 Transformer [8], Transformer+CATT
[45] and X-Transformer [28]. SCST applies the RL-based
reward, which is widely used in the following methods.
Up-Down and RFNet utilize the visual attention mecha-
nism. GCN-LSTM and SGAE employ scene graphs and
graph convolution networks. ORT incorporates geometry
information into the transformer. AoANet exploits the rel-
evance of attention results via a gate guided by the con-
text. M2 Transformer proposes a fully-connected archi-
tecture between the encoder and decoder layers. Trans-
former+CATT incorporates a novel causal attention into the
Transformer architecture. X-Transformer applies Bilinear
Pooling to the attention module of Transformer.

For fair comparisons, we conduct experiments to com-
pare our proposed CIIC with the transformer-based methods
on the same ResNext101 region-based features. From Ta-

ble 2, we can observe that CIICO achieves the best BLEU-
1, BLEU-4 and ROUGE-L scores in comparison with the
other SOTA methods. Particularly, it is even comparable
to X-Transformer which is trained on 4 P40 GPUs (4 ×
24 = 96G)1. CIICG surpasses other SOTA methods sig-
nificantly in terms of BLEU-1, BLEU-4, CIDEr, ROUGE-
L, while being competitive on METEOR and slightly worse
on SPICE with respect to X-Transformer.

Table 2. Experimental results of different models on the MSCOCO
“Karpathy” test split.

Model B@1 B@4 M R C S

SCST [34] - 34.2 26.7 55.7 114.0 -
Up-Down [2] 79.8 36.3 27.7 56.9 120.1 21.4
RFNet [19] 79.1 36.5 27.7 57.3 121.9 21.2
GCN-LSTM [46] 80.5 38.2 28.5 58.3 127.6 22.0
SGAE [42] 80.8 38.4 28.4 58.6 127.8 22.1
ORT [15] 80.5 38.6 28.7 58.4 128.3 22.6
AoANet [16] 80.2 38.9 29.2 58.8 129.8 22.4
M2 Transformer [8] 80.8 39.1 29.2 58.6 131.2 22.6
Transformer+CATT [45] - 39.4 29.3 58.9 131.7 22.8
X-Transformer [28] 80.9 39.7 29.5 59.1 132.8 23.4

CIICO 81.4 40.2 29.3 59.2 132.6 23.2
CIICG 81.7 40.2 29.5 59.4 133.1 23.2

Table 3. Performance comparison with the SOTA methods in the
setting of single model on the online MS-COCO test server, where
c5/c40 means employing 5/40 ground-truth captions for testing.

Model
B@4 M R C

c5 c40 c5 c40 c5 c40 c5 c40

Up-Down [2] 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
CAVP [48] 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8
SGAE [42] 37.8 68.7 28.1 37.0 58.2 73.1 122.7 125.5
CNM [43] 37.9 68.4 28.1 36.9 58.3 72.9 123.0 125.3
VSUA [12] 37.4 68.3 28.2 37.1 57.9 72.8 123.1 125.5
AOA-DICv1.0 [44] 38.8 70.5 28.8 38.2 58.6 73.9 126.2 128.4
Transformer+CATT [45] 38.8 70.6 28.9 38.2 58.7 73.9 126.3 128.8

CIICO 38.5 70.0 28.9 38.4 58.4 73.8 126.3 129.2
CIICG 38.5 70.1 29.1 38.4 58.6 74.0 126.4 129.2

Table 4. The bias analysis of different models on MSCOCO
Karpathy split.

Model B@4 ↑ M↑ R↑ C↑ CHs↓ CHi ↓

Up-Down [2] 36.3 27.7 56.9 120.1 13.7 8.9
Transformer 38.4 28.6 58.4 128.6 12.1 8.1
UD-DICv1.0 [44] 39.0 28.8 58.8 128.8 10.1 6.5
Transformer+CATT [45] 39.4 29.3 58.9 131.7 9.7 6.5

CIICO 40.2 29.3 59.2 132.6 8.2 5.0
CIICG 40.2 29.5 59.4 133.1 7.7 4.5

Results on the Official Test Server. Table 3 reports the
performance of different models on the online COCO test

1https://github.com/JDAI-CV/image-captioning/
issues/7
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Fork Cake Ski Person

Figure 6. The t-SNE visualization [22] of some object features
extracted by Faster R-CNN (left) and IOD (right).

Transformer: a person walking on a beach in the water.
CIIC: a person walking on the beach next to the ocean.
GT:  a person on the beach next to the ocean.

Transformer: a young boy eating a piece of cake.
CIIC: a young boy eating a sandwich on a bench.
GT:  a young boy sitting on a bench with a sandwich.

Transformer: a young boy holding a tennis racket at a tennis ball.
CIIC: a young boy hitting a tennis ball with a racket.
GT: a person hitting a tennis ball with a tennis racket.

Transformer: a car is sitting at a traffic light.
CIIC: a car stopped at a traffic light on a street.
GT: a car stopped at a traffic light on a city street.

Transformer: a man and a dog on a paddle board in the water.
CIIC: a man and a woman on a paddle board with a dog.
GT: a woman riding a paddle board with their little dog.

Transformer: a man riding on the back of a motorcycle.
CIIC: a man and a woman sitting on a motorcycle.
GT: a painted picture of a man and a woman on a motorcycle.

Object
Bias

Action
Bias

Gender
Bias

Figure 7. Some generated captions by CIIC and the Transformer
baseline in the case of gender, object and action biases. The green
contexts denote the linguistic confounders which may induce bi-
ases. The correct and incorrect words are colored by blue and red,
respectively.

server. For a fair comparison, we still train CIIC and com-
petitive models in the same single model setting on the
official test split. Compared with the top-performing ap-
proaches on the leaderboard, we can see that our single
models still achieve the superior performance against the
competitive methods. Particularly, CIICG can achieve a
new state-of-the-art score of 126.4 on CIDEr (C5) and 129.2
on CIDEr (C40).
Analysis of the Biases. To confirm whether the proposed
CIIC model can mitigate the dataset bias or not, we fur-
ther evaluate the bias degree of the generated captions in
Table 4. From Table 4, we can see that after perform-
ing causal intervention in object detection and image cap-
tioning, CIIC achieves the lowest CHs and CHi, which in-
dicates that CIIC can generate the least biased captions.
Meanwhile, we can see that CIIC obtains the best results in
terms of BLEU-4, METEOR, ROUGE-L and CIDEr, which
can further demonstrates that our CIIC model generates the
more grounded captions in the case of dataset bias. Com-
pared with Table 1, it can be found that CHs and CHi of

both CIICO and CIICG also increase with the increase of
the CIDEr scores. This is due to the fact that the widely-
adopted SCST optimization may cause biases in order to
improve the CIDEr score [35].

4.4. Qualitative Analysis

Finally, we qualitatively evaluate the performance of our
method. Figure 6 visualizes some visual features of MS-
COCO images extracted by Faster R-CNN (left) and the
proposed IOD (right). We can see that our IOD can learn
the more discriminative feature representations compared to
Faster R-CNN. For example, cake and fork features as well
as person and ski features are entangled in red box when the
conventional likelihood P (Y |X) (left) is used. After causal
intervention P (Y |do(X)) (right), they are clearly disentan-
gled, implying that the IOD actually deconfounds the vi-
sual confounder while extracting the visual features. Fig-
ure 7 shows some captions of test images generated by CIIC
and the Transformer baseline. Intuitively, CIIC is able to
produce more grounded and less biased captions compared
with the Transformer baseline. For example, our model ef-
fectively alleviates the spurious correlation between the boy
feature and the word “cake” caused by both the visual and
linguistic confounders. Besides, our CIIC can also alleviate
gender and action biases, which indicates that our CIIC is
able to effectively deconfound both the visual and linguistic
confounders and further validates the effectiveness of our
method.

5. Conclusion
In this paper, we present CIIC, a novel Transformer-

based architecture for image captioning from the causal
perspective, which seamlessly incorporates causal interven-
tion into both object detection and captioning generation to
jointly alleviate the confounding effect. On one hand, the
proposed IOD effectively disentangles the visual features
and facilitates the deconfounding of image captioning. On
the other hand, the proposed ITD implements causal inter-
vention to tackle the visual and linguistic confounders si-
multaneously during the generation of sentences. Experi-
mental results have demonstrated that our method can sig-
nificantly outperform the state-of-the-art image captioners
in the single-model configuration on the MS-COCO dataset.
The limitations of our method are given in the supplemen-
tary material.
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