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Figure 1. From the left to right: Detection accuracy and computational comparisons with the state-of-the-art, the scenario and pixel
distributions of our benchmark M3FD. Ours outperforms all counterparts with higher detection rates, lower average runtime, and fewer
training parameters. M3FD covers comprehensive scenarios with a wide range of pixel variations especially on both modalities.

Abstract
This study addresses the issue of fusing infrared and visi-

ble images that appear differently for object detection. Aim-
ing at generating an image of high visual quality, previous
approaches discover commons underlying the two modal-
ities and fuse upon the common space either by iterative
optimization or deep networks. These approaches neglect
that modality differences implying the complementary in-
formation are extremely important for both fusion and sub-
sequent detection task. This paper proposes a bilevel opti-
mization formulation for the joint problem of fusion and de-
tection, and then unrolls to a target-aware Dual Adversar-
ial Learning (TarDAL) network for fusion and a commonly
used detection network. The fusion network with one gen-
erator and dual discriminators seeks commons while learn-
ing from differences, which preserves structural informa-
tion of targets from the infrared and textural details from
the visible. Furthermore, we build a synchronized imag-
ing system with calibrated infrared and optical sensors, and
collect currently the most comprehensive benchmark cov-
ering a wide range of scenarios. Extensive experiments
on several public datasets and our benchmark demonstrate
that our method outputs not only visually appealing fusion
but also higher detection mAP than the state-of-the-art ap-
proaches. The source code and benchmark are available at
https://github.com/dlut-dimt/TarDAL.

1. Introduction

Multi-modality imaging has attracted significant atten-
tion in a wide range of applications, e.g., surveillance [28]
and autonomous driving [5], with the rapid development of
sensing hardware. Especially, the combination of infrared
and visible sensors has remarkable advantages for subse-
quent intelligent processing [11, 38, 39]. Visible imaging
provides rich details with high spatial resolution under well-
defined lighting conditions while infrared sensors, captur-
ing ambient temperature variations emitted from objects,
highlight structures of thermal targets insensitive to light-
ing changes. Unfortunately, infrared images are often ac-
companied by blurred details with lower spatial resolution.
Owing to their evident appearance discrepancy, it is chal-
lenging to fuse visually appealing images and/or to support
higher-level vision tasks such as segmentation [4,29], track-
ing [2,7], and detection [32], by making full use of the com-
plementary information from the infrared and visible.

Numerous infrared and visible image fusion (IVIF) ap-
proaches that aim at improving visual quality have been de-
veloped in the past decades. Traditional multi-scale trans-
form [10, 24], optimization model [16, 20, 41], spare rep-
resentation [37, 43], and subspace methods attempt to dis-
cover intrinsic common features of the two modalities and
to design appropriate weighting rules for fusion. These

5802



approaches typically have to invoke a time consuming it-
erative optimization process. Recently, researchers intro-
duce deep networks into IVIF by learning powerful fea-
ture representation and/or weighting strategies when re-
dundant well-prepared image pairs are available for train-
ing [8,12,21–23,35]. The fusion turns out to be an efficient
inference process yielding fruitful quality improvements.

Nevertheless, either traditional or deep IVIF approaches
strive for quality improving but leave alone the follow-up
detection, which is the key to many practical computer vi-
sion applications. The fusion emphasizes more on ‘seeking
commons’ but neglects the differences of these two modal-
ities on presenting structural information of targets and tex-
tural details of ambient background. These differences play
a critical role on differentiating distinct features of targets
for object detection meanwhile generating clear appearance
of high contrast favorable for human inspection.

Moreover, learning from these differences (actually com-
plementary information) demands a comprehensive collec-
tions of imaging data from the two modalities. The images
capturing in scenarios varying with lighting and weather ex-
hibit significantly different characteristics from both modal-
ities. Unfortunately, existing data collections only cover
limited conditions, placing an obstacle to learn the comple-
mentary information and validate the effectiveness.

This paper proposes a bilevel optimization formulation
for the joint problem of fusion and detection. This for-
mulation unrolls to a well-designed dual-adversarial fusion
network, composed of one generator and two target-aware
discriminators, and a commonly used detection network.
One discriminator distinguishes foreground thermal targets
from the image domain of infrared imaging while the oth-
er one differentiates the background textural details from
gradient domain of the visible image. We also derive a co-
operative training strategy to learn optimal parameters for
the two networks. Figure 1 demonstrates that our method
accurately detects objects from target-distinct and visual-
appealing fusion with less time and fewer parameters than
the state-of-the-art (SOTA). Our contributions are four-fold:

• We embrace both image fusion and object detection
with a bilevel optimization formulation, producing
high detection accuracy as well as the fused image with
better visual effects.
• We devise a target-aware dual adversarial learn-

ing network (TarDAL) with fewer parameters for
detection-oriented fusion. This one-generator and
dual-discriminator network ‘seeks commons while
learning from differences’ that preserves information
of targets from the infrared and textural details from
the visible.
• We derive a cooperative training scheme from the bi-

level formulation yielding optimal network parameters
for fast inference (fusion and detection).

• We build a synchronized imaging system with well-
calibrated infrared and optical sensors and collect a
multi-scenario multi-modality dataset (M3FD) with
4, 177 aligned infrared and visible image pairs and
23, 635 annotated objects. The dataset covers four ma-
jor scenarios with various environments, illumination,
season, and weather, having a wide range of pixel vari-
ations, as shown in Figure 1.

2. Related Works
The fusion module is critical to detect objects from

multi-modality sensors. This section briefly reviews previ-
ous learning-based IVIF approaches closely related to ours
and available benchmarks that are necessary for learningand
empirical evaluation.

2.1. Learning-based approaches

Deep learning has achieved promising progress in low-
level vision tasks [12, 15, 17, 19, 23, 25, 35, 40] due to the
powerful nonlinear fitting ability of multi-layer neural net-
works. Early works plugged deep networks into the IVIF
process acting as a module of feature extraction or weight-
s generation [8, 12, 13, 16]. Liu et al. [16] cascaded two
pre-trained CNNs, one for feature and the other for weights
learning. Researchers also resort to an end-to-end archi-
tecture so that one-step network inference can generate a
plausible fused image by one set of network parameters.
Li et al. [9] introduced a residual fusion network to learn
enhanced features in a common space, yielding structure
consistent results favorable to human inspection.

More recently, the IVIF approaches based on generative
adversarial networks (GAN) [26, 36, 42] produce appealing
results by transporting different distributions to the desired
one [21–23]. For the first time, Ma et al. introduced an
adversarial game between the fused and visible in order to
enhance texture details [22]. However, this signal adver-
sarial mechanism may lose the vital information from the
infrared. Ma et al. apply an identical adversarial strategy to
both the visible and infrared, which partially compensates
the infrared information [21]. Unfortunately, all these ap-
proaches fail capturing the different characteristics of these
two imaging types. It is worth investigating these differ-
ences complementary to each other from which both fusion
and detection can benefit.

2.2. Benchmarks

In recent years, we have witnessed the rapid evolu-
tion of IVIF benchmarks, including the TNO Image Fu-
sion [33], INO Videos Analytics1, OSU Color-Thermal2,
and RoadScene [35] and Multispectral datasets [32]. The

1https://www.ino.ca/en/technologies/video-analytics-dataset/videos/
2http://vcipl-okstate.org/ pbvs/bench/
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Figure 2. Methodology framework: (a) bilevel optimization formulation for fusion and detection, (b) target-aware adversarial dual learning
network for fusion, and (c) cooperative training scheme.

Scene : ¬: Road ­: Campus ®: Street ¯: Hash Weather °: Disguise ±: Smoogy ²: Forest ³: Others
Dataset Img pairs Resolution Color Camera angle Nighttime Objects Scene Annotation
TNO 261 768×576 7 horizontal 65 few ¬°±²³ 7
INO 2100 328×254 4 surveillance 7 few ¬¯³ 7
OUS 285 320×240 4 surveillance 7 few ¬ 7

Roadscene 221 768×576 4 driving 122 medium ¬® 7
Multispectral 2999 768×576 4 driving 1139 14146 ¬® 4

M3FD 4200 1024×768 4 multiplication 1671 33603 ¬∼³ 4

Table 1. Illustration of M3FD and existing aligned multi-modality datasets. Resolution refers to the average when it is different in a dataset.

TNO dataset [33] is the most commonly used public avail-
able dateset for IVIF, which contains 261 pairs of multi-
spectral imagery at day and night time. The INO dataset
is provided by the National Optics Institute of Canada and
contains aligned infrared and visible pairs. It contributes to
developing multiple sensor types for video analysis applica-
tions in challenging environments.The OSU Color-Thermal
Database is established for fusion-based object detection
containing 285 pairs of registered infrared and color visi-
ble images. The whole dataset is collected at a busy path-
way on the Ohio State University Campus during the day-
time. Xu et al. released Roadscene, having 221 aligned in-
frared and visible pairs taken in the road scene containing
rich objects, such as vehicles and pedestrians [35]. Taku-
mi et al. [32] proposed a novel Multispectral dataset for au-
tonomous driving that consists of RGB, NIR, MIR, and FIR
images and annotated object categories.

Table 1 lists the profiles of these datasets such as scale,
resolution, lighting, and scenario categories. The low image
resolution, limited number of object and scenario types, and
few labels stumble wide applications of existing datasets to
the higher-level detection task on multiple modalities.

3. The Proposed Method
This section details our method, staring from the bilevel

optimization formulation of fusion and detection. Then, we

elaborate the target-aware dual adversarial learning network
for fusion. Finally, we give a cooperative training scheme
to learn optimal parameters for both fusion and detection.

3.1. Problem formulation

Unlike previous approaches catering for high visual
quality, we state that IVIF has to generate an image that ben-
efits both visual inspection and computer perception, name-
ly detection-oriented fusion. Suppose that the infrared, vis-
ible and fused are all gray-scale with the size of m× n, de-
noted as column vectors x, y, and u ∈ Rmn×1, respective-
ly. Following the truism Stackelberg’s theory [14, 18, 27],
we formulate the detection-oriented fusion as a bilevel op-
timization model:

min
ωd

Ld
(
Ψ(u∗;ωd)

)
, (1)

s.t. u∗ ∈ arg min
u
f(u;x,y) + gT(u;x) + gD(u;y), (2)

where Ld is the detection-specific training loss and Ψ
denotes a detection network with learnable parameter-
s ωd. f (·) is an energy-based fidelity term contain-
ing the fused image u, and source images x and y
while gT (·) and gD (·) are two feasibility constraints defined
on the infrared and visible, respectively.

Figure 2(a) illustrates that this bilevel formulation makes
it possible to find the solution mutually favoring fusion and
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detection. Nevertheless, it is nontrivial to solve Eq. (2) by
a traditional optimizing technique as the fusion task is not a
simple equality/inequality constraint. Instead, we introduce
a fusion network Φ with learned parameters ωf and convert
the bilevel optimization to single-level:

min
ωd,ωf

Ld
(
Ψ(u∗;ωd)

)
, s.t. u∗ = Φ(x,y;ωf). (3)

Hence, we unroll the optimization into two learning net-
works Φ and Ψ. We adopt YOLOv53 as our backbone for
the detection network Ψ, where Ld also follows its setting,
and carefully design the fusion network Φ as below.
3.2. Target-aware dual adversarial network

Typical deep fusion methods strive for learning common
features underlying the two modalities that appear different-
ly. Instead, our fusion network seeks commons while learn-
ing from differences that imply complementary characteris-
tics of these two types of imaging. Typically, the infrared
highlights distinct structures of targets while the visible pro-
vides textural details of background.

We introduce an adversarial game that consists one gen-
erator and two discriminators in order to combine common
with distinct features from the two modalities, as shown in
Figure 2(b). The generator G is encouraged to provide a
realistic fused image to simultaneously fool both discrimi-
nators. The target discriminator DT evaluates the intensity
consistence between the targets from the infrared and those
masked out from the fused given by G (the top row of Fig-
ure 2(b)); the detail discriminatorDD discriminates the gra-
dient distribution of the visible from that of the fused (the
bottom row of Figure 2(b)). These two discriminators work
in different domains as targets exhibit consistent intensity
distribution while gradients characterize textures.

Generator: The generator contributes to generate a
fused image that preserves overall structures and maintains
a similar intensity distribution as source images. The com-
monly used structural similarity index (SSIM) [34] acts as
the loss function:

LSSIM = (1− SSIMu,x)/2 + (1− SSIMu,y)/2, (4)

where LSSIM denotes structure similarity loss. To balance
the pixel intensity distribution of source images, we intro-
duce a pixel loss based on the saliency degree weight (S-
DW). Supposing that the saliency value of x at the kth

pixel can be obtained by Sx(k) =
255∑
i=0

Hx(i)|x(k) − i|,

where x(k) is the value of the kth pixel and Hx is the his-
togram of pixel value i, we define the pixel loss Lpixel as:

Lpixel = ‖u− ω1x‖1 + ‖u− ω2y‖1, (5)

where ω1 = Sx(k)/[Sx(k)− Sy(k)],ω2 = 1− ω1.

3https://github.com/ultralytics/YOLOv5

We employ a 5-layer dense block [6] asG to extract com-
mon features, and then use a merge block with three convo-
lutional layers for feature aggregation. Each convolutional
layer consists of one convolutional operation, batch normal-
ization and ReLU activation function. The generated fused
images u has the same size with the sources.

Target and detail discriminators: The target discrim-
inator DT is used to distinguish the foreground thermal
targets of fused result to the infrared while the detail dis-
criminator DD contributes to distinguish the background
details of fused result to the visible. We employ a pre-
trained saliency detection network [3] to calculate the tar-
get mask m from infrared images so that the two discrim-
inators can perform on their respective regions (target and
background). Thus, we define the adversarial loss Ladv

f as:

LfDT
= Ex∼p̃(R(x))[D(x)]− Ex̃∼p̃(R(u))[D(x̃)], (6)

LfDD
= Ex∼p̃(R̂(∇y))[D(x)]− Ex̃∼p̃(R̂(∇u))[D(x̃)], (7)

Ladv
f = Lf

DT
+ Lf

DD
, (8)

where R = x �m and R̂ = 1 −R, differentiating targets
from background, and � denotes the point-wise multiplica-
tion. ∇(·) denotes a gradient operation, e.g., Sobel.

The adversarial loss functions of these discriminators
calculate the Wasserstein divergence to mutually identify
whether the foreground thermal targets and background tex-
ture details are realistic, defined as:

LDT
= LfDT

+ kEx̃∼r̃(R(x))[(‖∇DT (x̃)‖)p], (9)

LDD
= LfDD

+ kEx̃∼r̃(R̂(∇x))[(‖∇DD(x̃)‖)p], (10)

where r̃(x) denotes sample space that is similar to p̃(x).
Commonly, k and p sets to 2 and 6, respectively.

The two discriminators DT and DD share the same net-
work structure, having four convolutional layers and one
fully connection layer. Figure 3 demonstrates the detailed
architectures of the generator and dual discriminators.

Totally, Lf is combination of the aforementioned three
main parts:

Lf = LSSIM + αLpixel + βLadv
f , (11)

where α and β are the trade-off parameters.
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Figure 3. The architectures of our generator and discriminator.

3.3. Cooperative training strategy

The bilevel optimization naturally derive a cooperative
training strategy to obtain optimal network parameters ω =
(ωd,ωf). We introduce a a fusion regularizer Lf and con-
vert Eq. (3) optimizing detection subject to the fusion con-
straint to to a mutual optimization:
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Figure 4. Visualization of infrared-visible images in our M3FD dataset. The dataset covers extensive scenarios with various environments,
illumination, season, and weather.

min
ωd,ωf

Ld
(
Ψ(u∗;ωd)

)
+ λLf

(
Φ(x,y;ωf)

)
, (12)

s.t. u∗ = Φ(x,y;ωf), (13)

where λ is the trade-off parameter. Rather than designing a
weighting rule, this regularizer can well balance fusion and
detection.

Figure 2(c) illustrates the flow of gradient propagation to
cooperatively train the fusion and detection networks. The
loss gradients with respect to ωd and ωf are calculated as:

∂Ld

∂ωd

=
∂Ld

∂Ψd

∂Ψd

∂ωd

,
∂Ld

∂ωf

=
∂Ld

∂Ψd

∂Ψd

∂Ψf

∂Ψf

∂ωf

+ λ
∂Lf

∂Ψf

∂Ψf

∂ωf

.

(14)
These equations reveal that the gradients of the detection
loss w.r.t. the detection parameters along with those w.r.t.
the fusion parameters are all back propagated and the latter
also consists of the gradients of the fusion loss w.r.t. the
fusion parameters.

Finally, this strategy cannot only generate a visually ap-
pealing image but also output accurate detection given the
trained network parameters, enabling us to find the optimal
solution to detection-oriented fusion and to converge more
efficient than independent training schemes.

4. Multi-scenario Multi-modality Benchmark
Existing datasets with infrared and visible images can

hardly be applied to learn and/or evaluate detection from
multi-modality data. Our benchmark M3FD contains in-
frared and visible images of high resolution covering di-
verse object types under various scenarios as given in the
last row of Table 1.

Figure 5. Illustration of our synchronize imaging system.

We constructed a synchronized system containing one
binocular optical camera and one binocular infrared sensor
(shown in Figure 5) in order to capture corresponding two-
modality images of natural scenes. The baselines (distance

between the focal centers of binocular lens) of the visible
and infrared binocular cameras are 12cm and 20cm, respec-
tively. The optical center distance between the visible and
infrared senors is 4cm. Visible images have a high reso-
lution of 1024×768 and a wide imaging range while in-
frared images have a standard resolution of 640×512 and
the wavelength range is 8− 14µm.

We first calibrated all cameras to estimate their internal
and external parameters, and then calculated a homogra-
phy matrix that projects coordinates of infrared images to
those of the visible. Eventually, we obtained well-aligned
infrared/visible image pairs with the size of 1024× 768 by
warping all images to a common coordinate4.

We categorized all 4, 200 aligned pairs in M3FD into
four typical types, i.e. Daytime, Overcast, Night, and Chal-
lenge, with ten sub-scenarios shown in Figure 4. Mean-
while, we annotated 33, 603 objects of six classes, i.e., Peo-
ple, Car, Bus, Motorcycle, Truck and Lamp, which com-
monly occur in surveillance and autonomous driving. The
quantity and diversity of M3FD pave the possibility to learn
and evaluate object detection by fusing images.

5. Experiments
We performed experimental evaluations on four dataset-

s (three for IVIF, i.e., TNO, Roadscene, and M3FD, and two
for object detection, i.e., MS and M3FD). 180/3,500 multi-
modality images are selected and cropped to 24k/151k
patches with 320×320 pixels by random cropping and aug-
mented for training the fusion and detection task, respec-
tively. The tuning parameters α and β are set to 20 and
0.1, respectively. The Adam optimizer updates the network
parameters with the learning rate of 1.0 × 10−3 and expo-
nential decay. The epoch is set to 300 with batch size of 64.
Our approach is implemented on PyTorch with an NVIDIA
Tesla V100 GPU.

5.1. Results of infrared-visible image fusion

We evaluate the fusion performance of TarDAL by mak-
ing a comparison with 7 state-of-the-art methods, including
DenseFuse [8], FusionGAN [22], RFN [9], GANMcC [23],
DDcGAN [21], MFEIF [12], and U2Fusion [35].

4This set includes pairs from one set of infrared and visible sensors, and
the depth data from the binocular cameras will be published in the future.
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Ir image Vis image DenseFuse FusionGAN RFN GANMcC DDcGAN MFEIF U2Fusion TarDAL

Figure 6. Visual comparisons of our TarDAL with state-of-the-art methods on typical image pairs in TNO, RoadScene and M3FD datasets.

DenseFuse

FusionGAN

RFN

GANMcC

DDcGAN

MFEIF

U2Fusion

TarDAL

Figure 7. Quantitative comparisons with seven IVIF methods on TNO, RoadScene and M3FD datasets, respectively. The x-axis represents
metrics and the y-axis are the values. (∗). In the boxes, the orange lines and the green tangles denote medium and mean values.

Qualitative Comparisons The intuitive qualitative results
on three typical image pairs from three datasets are shown
in Figure 6. Compared with other existing methods, our
TarDAL has two significant advantages. First, the discrimi-
native target from infrared images can be well preserved. As
shown in Figure 6 (the green tangles of the second group),
the people in our method exhibits high contrast and distinc-
tive prominent contour, so that it is benefit to visual obser-
vation . Second, our results can preserve abundant textural
details from visible images (the green tangles of the first and
third group), which are more in line with human visual sys-
tem. In contrast, visual inspection shows that DenseFuse,
and FusionGAN cannot highlight the discriminative targets
well, while GANMcC and DDcGAN fail to obtain rich tex-
tural details. Note that our TarDAL is able to generate more
visual-friendly fused results with clear targets, sharper edge
contours, and preserve abundant textural details.

Quantitative Comparisons Subsequently, we compare our
TarDAL with the above-mentioned competitors quantita-
tively on 400 image pairs ( 20 image pairs from TNO, 40
image pairs from the RoadScene, and 340 image pairs from
M3FD). Besides, three evaluation metrics, i.e., mutual in-
formation (MI) [30], entropy (EN) [31] and standard devi-
ation (SD) [1] are introduced for evaluation. The quantita-
tive results are reported in Figure 7. As can be seen from
the statistical results, our method continuously generates the

largest or the second-largest mean value on three datasets a-
mong all evaluation metrics. Meanwhile, achieving a lower
variance indicates that our method is more stable in dealing
with various visual scenes. In specific, the largest average
value on MI proves that our method transfers more consid-
erable information from both two source images. Values
of EN and SD reveal that our results contain abundant in-
formation and the highest contrast between targets and the
background. In conclusion, our method stably reserves use-
ful information to a certain degree, especially the most dis-
criminative target, the richest texture details, and consider-
able structure similarity with the source images.

5.2. Results of infrared-visible object detection

To thoroughly discuss how does IVIF influences multi-
modality object detection performance, two datasets, i.e.,
Multispectral and M3FD, are employed. In which, we uti-
lized YOLOv5 as the baseline model for object detection.
For fair comparison, we retain the detection model on the
fused result of seven state-of-the-art methods, respectively.
Qualitative Comparisons As shown in Figure 8, note that
merely using an infrared or visible sensor cannot detec-
t well, e.g., a stopped car for infrared image and person for
the visible one. On the contrary, almost all the fusion meth-
ods improve the detection performance by utilizing com-
plementary information from both sides. With designing
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Ir image Vis image DenseFuse FusionGAN RFN GANMcC DDcGAN MFEIF U2Fusion TarDAL

Figure 8. Visual comparison of our TarDAL with state-of-the-art methods on the Multispectral and M3FD datasets.

Method
Multispectral dataset M3FD dataset Efficient Analysis

Person Car Bike Car Stop Cone All mAP@.5 Day Overcast Night Challenge All mAP@.5 SIZE(M) FLOPS(G) TIME(s)

Infrared 0.753 0.753 0.733 0.739 0.492 0.709 0.589 0.803 0.795 0.709 0.734 0.748 0.781 - - -
Visible 0.717 0.822 0.740 0.691 0.531 0.739 0.591 0.824 0.787 0.759 0.756 0.779 0.756 - - -

DenseFuse 0.754 0.833 0.829 0.749 0.607 0.755 0.608 0.759 0.806 0.837 0.776 0.791 0.783 0.074 48.92 0.251

FusionGAN 0.763 0.846 0.828 0.751 0.575 0.756 0.601 0.816 0.798 0.667 0.773 0.765 0.788 0.925 497.76 0.124

RFN 0.505 0.619 0.520 0.512 0.427 0.605 0.592 0.796 0.803 0.827 0.793 0.794 0.796 10.93 - 0.238

GANMcC 0.472 0.811 0.765 0.680 0.620 0.724 0.603 0.796 0.811 0.827 0.790 0.805 0.797 1.864 1002.56 0.246

DDcGAN 0.735 0.841 0.810 0.761 0.645 0.766 0.594 0.780 0.771 0.689 0.776 0.748 0.744 1.097 896.84 0.211

MFEIF 0.760 0.837 0.790 0.741 0.640 0.755 0.607 0.770 0.812 0.683 0.778 0.744 0.718 0.158 25.32 0.045

U2Fusion 0.574 0.599 0.579 0.530 0.432 0.562 0.604 0.793 0.783 0.836 0.773 0.801 0.782 0.659 366.34 0.123

TarDAL 0.762 0.868 0.833 0.757 0.678 0.780 0.613 0.823 0.816 0.846 0.869 0.846 0.807 0.296 14.88 0.041

Table 2. Quantitative results of object detection on the Multispectral and M3FD datasets among all the image fusion method + detector
(YOLOv5). The best result is in red whereas the second best one is in blue.

target-aware bilevel adversarial learning and a cooperative
training scheme integration in our method, we can continu-
ously generate a detection-friendly fused result, which has
advantage in detecting person and vehicle, e.g., the shel-
tered car and pedestrians on distant rocks.

Quantitative Comparisons Table 2 reported the quantita-
tive results on two datasets. Almost all the fusion methods
achieve promising detection results, in which the detection
AP greatly exceed the case of using only the visible or in-
frared images. Note that our TarDAL is superior to other
methods in terms of detection mAP on two datasets, which
obtain 1.4% and 1.1% improvement compared to the sec-
ond one, i.e., DenseFuse and GANMcC. It is worth pointing
out that our TarDAL has advantage in dealing with the chal-
lenge scenes because TarDAL fully discovers the unique in-
formation from different modalities.

Computational Complexity Analysis To comprehensive-
ly analyze the computational complexity of our method, we
provide the time consumption and the computational effi-
ciency of all the methods. As shown in the last column
of Table 2, the strong computing ability of CNNs allows
these learning-based methods to achieve high speed. Note
that our method simultaneously achieves the highest run-
ning speed and lower computing complexity in terms of
FLOPs and training parameters, ensembling the follow-up

high-level vision application with high efficiency.

5.3. Ablation studies

Study on model architectures We investigate the model
architecture of our method and further validate the effec-
tiveness of different individual components. First, we re-
move the target discriminator DT from our whole network.
In Figure 9, due to the lack of distinguishing significant in-
frared targets in this variant, the fused results tend to blur
the target to a certain degree. Besides, in Table 3, note that
DT also plays a vital role in boosting the detection perfor-
mance after fusion. Second, the detail discriminatorDD has
a contribution in preserving textural details from the visible
images. In the absence of DD, the background details of
the fused image cannot be fully recovered, and the intuitive
visual results can be found in Figure 9. However, DD has
a tiny negative impact on object detection due to redundant
background details. Furthermore, Without DT and DD in-
tegrating into our whole network, EN and SD can achieve
the highest value on the TNO dataset. This is because that
the heavy noise on the fusion results may cause a signifi-
cant rise in terms of EN and SD. In summary, our method
depends on the intermediate results of each step, and each
step plays a positive effect on the final fused result.
Analyzing the training loss functions We discuss the im-
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Model
Discriminator TNO Dateset Roadscene Dataset M3FD Dataset

DT DD MI EN SD MI EN SD MI EN SD mAP@.5

M1 7 7 2.506 7.223 53.107 3.307 7.295 48.561 2.942 7.282 44.857 0.722

M2 7 4 2.591 7.045 50.245 3.274 7.128 46.751 2.842 6.981 39.364 0.719

M3 4 7 2.596 7.024 46.727 3.127 7.037 42.656 2.814 7.086 41.255 0.781

M4 4 4 2.766 7.177 51.352 3.378 7.355 49.637 3.211 7.313 45.827 0.807

Table 3. Quantitative comparisons of different model architectures. The best result is in red whereas the second best one is in blue.

Training Strategy
Multispectral dataset M3FD dataset

Person Car Bike Car Stop Cone All mAP@.5 Day Overcast Night Challenge All mAP@.5

TarDALDT 0.762 0.868 0.833 0.757 0.678 0.780 0.613 0.823 0.816 0.846 0.869 0.846 0.807

TarDALTT 0.827 0.862 0.881 0.667 0.539 0.755 0.615 0.827 0.828 0.862 0.881 0.850 0.809

TarDALCT 0.843 0.863 0.892 0.762 0.679 0.807 0.624 0.816 0.844 0.904 0.935 0.875 0.811

Table 4. Quantitative comparisons of different training strategies. The best result is in red whereas the second best one is in blue.

Figure 9. Progressive fusion results. From left to right: source
images, base network, w/o- DT , w/o- DD and the full model.

pact of different loss functions on our method. In Fig-
ure 10, it is easy to notice that our method can maintain
much salient pixel distribution with high contrast than the
method without SDW, which can illustrate the effective-
ness of the newly designed SDW function. Meanwhile, the
method without m may lose some vital details, e.g., leaves
and chimney silhouette. This is because that m allows two
discriminators to perform adversarial learning under their
respective region, hence paying more attention to their u-
nique features.

Ir image Vis image w/o SDW w/o m Ours

Figure 10. Qualitative results on discussing loss functions.

Ir image Vis image TarDALDT TarDALTT TarDALCT

Figure 11. Visual comparisons of different training strategies.

Evaluating different versions of training strategy We fur-
ther verify the advantages of our cooperative training (CT )
in comparing with direct training (DT ) and task-oriented
training (TT ). As shown in Figure 11, TT only uses de-
tection loss to train the network, resulting in a worse visual
effect for observation. In contrast, CT has a significant ad-
vantage in boosting the detection performance and better
visual effects. The same trend can be found in Table 4, CT
reaches the largest or the second-largest scores among the
two different datasets.

6. Conclusion
Within this paper, a bilevel optimization formulation for

jointly realizing fusion and detection is proposed. By un-
rolling the model to a well-designed fusion network and
a commonly used detection network, we can generate a
visual-friendly result for fusion and object detection. To
promote future researches in this field, we raise a synchro-
nized imaging system with visible-infrared sensors and col-
lect a multi-scenario multi-modality benchmark.
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