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QUERY 2: A white cat with spots is playing with a feathery toy

(No Query) QUERY 1: A person cuts up photos

Video
(Input)

Audio
(Input)UMT

Figure 1. The proposed UMT is a unified and flexible framework which can handle different input modality combinations, and output
video moment retrieval and/or highlight detection results (marked by red rectangles and golden stars, respectively). Note that different text
queries lead to different outcomes from the same video. Arrows in different colors denote different input-output combinations.

Abstract

Finding relevant moments and highlights in videos ac-
cording to natural language queries is a natural and highly
valuable common need in the current video content explo-
sion era. Nevertheless, jointly conducting moment retrieval
and highlight detection is an emerging research topic, even
though its component problems and some related tasks have
already been studied for a while. In this paper, we present
the first unified framework, named Unified Multi-modal
Transformers (UMT), capable of realizing such joint opti-
mization while can also be easily degenerated for solving
individual problems. As far as we are aware, this is the
first scheme to integrate multi-modal (visual-audio) learn-
ing for either joint optimization or the individual moment
retrieval task, and tackles moment retrieval as a keypoint
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detection problem using a novel query generator and query
decoder. Extensive comparisons with existing methods and
ablation studies on QVHighlights, Charades-STA, YouTube
Highlights, and TVSum datasets demonstrate the effective-
ness, superiority, and flexibility of the proposed method un-
der various settings. Source code and pre-trained models
are available at https://github.com/TencentARC/UMT.

1. Introduction

Video has already become the major media in content
production, distribution, and consumption in our daily lives.
It has the unique advantage of being able to include visual,
audio, and linguistic information in the same media, in line
with our natural experiences. Such an advantage on infor-
mation richness, however, is also a challenging factor limit-
ing its production and consumption, as it brings about very
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high costs on satisfying two critical needs. The first one is
to find relevant moments in existing videos for producing
new content or just getting creation hints from such refer-
ences. The second one is to glance at large amounts of
video content quickly by scanning video highlights rather
than watching the entire original videos or video moments
at a normal speed, which is needed by both video producers
and consumers in such a content explosion era.

These two critical needs lead to two important research
topics: video moment retrieval [1,8] and video highlight de-
tection [32, 37, 44], respectively. Although one may realize
that these two tasks are closely related (especially when a
text query is given), they have not yet been explicitly jointly
studied until a very recent work [18] which builds a novel
dataset called QVHighlights for this purpose and presents
the first model Moment-DETR optimized for jointly solving
both problems. Nevertheless, this seminal work has several
limitations. It assumes a text query always exists and it has
only applied to the visual modality of each video. More-
over, it is still a very basic model called a strong baseline,
although it adopts a transformer framework, the latest and
fast-rising neural network architecture type.

This paper goes deeper into designing joint video mo-
ment retrieval and highlight detection approaches by mainly
exploring two aspects: multi-modal learning and flexibility,
as shown in Figure 1. Apart from text and video (i.e. visual
information), audio is also treated as an important input.
Moreover, a unified yet flexible framework called Unified
Multi-modal Transformers (UMT) is proposed to handle
different modality reliability situations and combinations.
For example, when the text input is unavailable, the task de-
generates to highlight detection only. When there is some
significant distraction in the text, its reliability will be com-
promised. Moreover, the audio may also be noisy, which
may limit effective exploration. UMT covers all these nat-
ural variations which conventionally need to be resolved by
different specifically designed models.

To demonstrate the effectiveness and superiority of the
proposed framework, we conduct experiments not only on
the QVHighlights dataset [18], the only one built for joint
video moment retrieval and highlight detection, but also
on popular public datasets for moment retrieval (Charades-
STA [8]) and highlight detection (TVSum [31], YouTube
Highlights [32]), with or without text guidance. For each
case, we compare the proposed scheme with several state-
of-the-art approaches. Detailed ablation studies are also
carried out to evaluate the essential components of the pro-
posed scheme and to reveal meaningful insights.

2. Related Works
Video Moment Retrieval & Highlight Detection Mo-
ment retrieval is a recently studied research topic that fo-
cuses on retrieving related moments in a video given a nat-

ural language query. Most existing works [1, 8] assume
there is only a single moment in a video corresponding to
a given text query, and such queries are usually about ac-
tivities. The recently proposed QVHighlights dataset [18]
goes beyond that by annotating multiple moments in a video
for each query and breaks the former moment distribution
bias (locating more likely at the beginning of the videos).
Video retrieval via text query [24] is a similar task, but it
retrieves whole videos rather than video moments. Some
works on language grounding [27, 34] align textual phrases
to temporal video segments, which operate at a finer scale
than moment retrieval and target at different applications.
Highlight detection concerns about detecting interesting or
salient video segments (i.e. highlights) in a video. It has a
long history of about two decades with a rich literature, cov-
ering various domains of videos, including sports [33, 37],
social media [32], and first-person [44]. QVHighlights is
the only dataset supporting highlight detection conditioned
on text-guided moment retrieval results. Video summariza-
tion is a closely related task that targets at summarizing a
long video with short video segments. It focuses on repre-
sentativeness, diversity, and storyline, and thus it tends to be
considered as a downstream application of highlight detec-
tion [44]. Dynamic video thumbnail generation is another
downstream task, which selects attractive video highlights
and reforms them into a very short segment [42] to serve as
the thumbnail. Among all these tasks, moment retrieval and
highlight detection are two fundamental ones and they get
highly correlated when a text query is given. This study fol-
lows the seminal work of QVHighlights on modeling both
tasks together within a single framework. Different from
Moment-DETR [18], our model has the flexibility to per-
form moment retrieval or highlight detection only.

Text Query Based Models While text query is a must
for moment retrieval, it seldom appears in the studies for
video highlight detection, though we believe that provid-
ing text queries leads to better results as highlights are usu-
ally subjective and interest-dependent. An early work [16]
proposes using text to find video highlights, but it is just
about using a text ranking algorithm to rank video descrip-
tions in the text domain for providing supervision to video
shot ranking, not directly matching text and highlights. The
only text-guided highlight detection exists in the very re-
cent work [18]. In the closely related field of video thumb-
nail generation, text queries were first investigated in [46],
where a graph convolutional network is used to model the
word-by-clip interactions. Later on, sentence-guided tem-
poral modulation mechanism [28] is proposed to modulate
an encoder-decoder based network. All these works as-
sume the reliability of the text query and have to rely on
it, while our proposed framework can easily work without
text queries or with unreliable text queries.
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Figure 2. Overall architecture of our framework. When either the video or audio is unavailable, the corresponding uni-modal encoder
and cross-modal encoder are deactivated. If text queries are not provided, the model would simply use learnable moment queries instead.
Detailed explanations of notations are described in Section 3.1.

Multi-modal Learning Recently, multi-modal learning
approaches have been explored for highlight detection by
jointly modeling visual and audio modalities. The earli-
est work seems to be MINI-Net [12], which simply con-
catenates the feature vectors of both modalities. Very
recently, two more sophisticated modality fusion models
[3, 45] have been proposed and significantly boosted the
performances. One of them invents a visual-audio ten-
sor fusion mechanism [45] to learn cross-modality relation-
ships with tensor decomposition and low-rank constraints.
The other does the fusion via cross-modal bidirectional at-
tention layers [3] which extract audio-attended visual fea-
tures and visually-attended audio features. Though all the
three approaches share the same idea with us on learning
multi-modal fused representations for highlight detection,
only the attention-based work build their model under the
same supervised-learning setting as ours (the other two are
weakly-supervised and thus not fairly comparable). More-
over, to the best of our knowledge, our approach is the first
one to solve joint moment retrieval and highlight detection
with multi-modal (visual-audio) learning.

3. Method
3.1. Overview

Given an untrimmed video V containing Nv clips and a
natural language query T with Nt tokens, the goal of joint
video moment retrieval and highlight detection is to local-
ize all the moments (represented by temporal boundaries
b ∈ R2) in V , in which the visual and/or audio contents
are highly relevant to T , while predicting clip-level saliency
scores {si}Nv

i=1 for each moment simultaneously.
As shown in Figure 2, the overall architecture of our

framework derives from the transformer encoder-decoder

structure, and can be divided into five parts, i.e. uni-modal
encoder, cross-modal encoder, query generator, query de-
coder, and prediction heads. The input video and text are
firstly processed by pre-trained feature extractors. Specifi-
cally, we use three different models (Ev , Ea, and Et) to ex-
tract visual, audio, and textual features, respectively. Each
video-text pair can be therefore represented by three col-
lections of feature vectors, namely visual features {vi}Nv

i=1,
audio features {ai}Nv

i=1, and textual features {ti}Nt
i=1. The

visual and audio features are fed into separate uni-modal
encoders to be contextualized under global receptive field,
then be fused by the cross-modal encoder for visual-audio
joint representations {ri}Nv

i=1. These representations, to-
gether with textual features, are used to generate clip-level
moment queries {qi}Nv

i=1 that can be utilized to retrieve
moments and highlights from joint representations in the
query decoder. After decoding query-guided video features
{di}Nv

i=1, we use two prediction heads to obtain the final mo-
ment retrieval and highlight detection results.

3.2. Uni-modal Encoder

Most existing feature extractors for videos and audios
[4, 15, 35] are under the sliding window scheme, thus these
methods only consider local temporal correlations, with-
out being aware of the global context information, which
is of great essence for video understanding tasks. Detecting
queried moments and highlights in a video also requires an
overall view of the global content. Therefore, to augment
the features with global context within each modality, we
adopt uni-modal encoder to process the input visual and au-
dio features. This module is constructed by stacking stan-
dard transformer encoder layers [36], each consisting of a
multi-head self-attention block and a feed-forward network.
In each attention head, self-attention for either of the visual
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Figure 3. The architecture of bottleneck transformer module. We
introduce bottleneck tokens for cross-modal feature compression
and expansion, largely reducing the computational cost.

or audio modality x ∈ {v, a} can be computed as

x′
i = xi + wz

Nv∑
j=1

exp(wqxi × wkxj)∑Nv

m=1 exp(wqxi × wkxm)
wvxj (1)

where xi and x′
i are the input and output features of clip

i, and w{q,k,v,z} indicates linear transform weights for
the query, key, value, and output matrices. More details
about self-attention computation are referred in [36]. The
above formula computes the embedded gaussian correla-
tions among clips, and aggregates the global context in-
formation into each clip. After aggregating the features,
subsequently, a two-layer feed-forward network formed by
Linear→ReLU→Dropout→Linear is used to fur-
ther project the features.

3.3. Cross-modal Encoder

Previous works [3, 23] have claimed that jointly model-
ing multi-modal features can better obtain the overall rep-
resentations. Hence after the uni-modal encoders, an extra
cross-modal encoder is utilized to jointly capture the global
correlations across modalities. Here, the exact form of the
cross-modal encoder is not crucial. A straightforward ap-
proach is to apply cross-modal attention [3]. However, such
a strategy has two weaknesses. First, as typical natural
signals, both visual and audio features have heavy spatial-
temporal redundancy and noisy information that are use-

less for other modalities. Second, the computation of cross-
modal attention is costly, with square complexity when cal-
culating clip-to-clip correlations. A recent work [23] tried
to tackle the first problem by introducing attention bottle-
necks that can be regarded as the information bridge across
modalities. Although promising results have been achieved,
this module still suffers from high computational cost since
inter- and cross-modal correlations are jointly modeled. In
this work, we extend this idea and propose to disentangle
these strategies, thus the resulting bottleneck transformer
module can be divided into two stages, i.e. feature compres-
sion and expansion, shown in Figure 3.

Feature Compression Following [23], we introduce bot-
tleneck tokens {zi}Nb

i=1 to capture the compressed features
from all modalities. Here Nb is a number much smaller
than the number of video clips Nv . The feature compres-
sion is realized by several multi-head attentions between
bottleneck tokens and the features from different modali-
ties. Since there are only visual and audio modalities in this
case, the compression process can be represented by

z′i = zi + wz

Nv∑
j=1

exp(wqzi × wkxj)∑Nv

m=1 exp(wqzi × wkxm)
wvxj (2)

where zi and z′i are input and output features of bottleneck
tokens. Other notations are consistent with Eq. 1. The only
difference between Eq. 1 and Eq. 2 is that the query matrix
is replaced by zi, aiming to aggregate features into bottle-
neck tokens. We apply this operation for both visual and
audio features, so that multi-modality information is refined
and compressed into bottleneck tokens.

Feature Expansion After compressing the multi-modal
information, we expand the features and propagate them
into each modality using another multi-head attention. For-
mally, the computation is as follows.

x′
i = xi + wz

Nv∑
j=1

exp(wqxi × wkzj)∑Nv

m=1 exp(wqxi × wkzm)
wvzj (3)

Here, x′
i represents the cross-modality enhanced features of

clip i. These features are then fed into feed-forward net-
works for further projection. Leveraging such a two-stage
feature propagation across modalities, visual and audio fea-
tures are augmented under linear computational complexi-
ties, without incorporating noisy information.

3.4. Query Generator

As transformers are firstly introduced for language trans-
lation tasks, the lengths of the input and output sequences
may not be the same, where the length of the output se-
quence is determined by the query embeddings fed into the
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Table 1. Experimental results on QVHighlights test split. MR
and HD represent moment retrieval and highlight detection, re-
spectively. w/ PT means pre-training with ASR captions.

MR HD

R1 mAP ≥ Very GoodMethod

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

BeautyThumb [30] – – – – – 14.36 20.88
DVSE [21] – – – – – 18.75 21.79
MCN [1] 11.41 2.72 24.94 8.22 10.67 – –
CAL [6] 25.49 11.54 23.40 7.65 9.89 – –
XML [19] 41.83 30.35 44.63 31.73 32.14 34.49 55.25
XML+ [18] 46.69 33.46 47.89 34.67 34.90 35.38 55.06

Moment-DETR [18] 52.89 33.02 54.82 29.40 30.73 35.69 55.60
Moment-DETR w/ PT 59.78 40.33 60.51 35.36 36.14 37.43 60.17

UMT (Ours) 56.23 41.18 53.83 37.01 36.12 38.18 59.99
UMT (Ours) w/ PT 60.83 43.26 57.33 39.12 38.08 39.12 62.39

decoder. When generalized to vision tasks, query embed-
dings are randomly initialized and learned during training.
Such a scheme may not be suitable for video highlight de-
tection, since the outputs ought to be strictly aligned with
the input tokens. Besides, query embeddings shall naturally
guide the process of representation decoding. Therefore,
we introduce a query generator to adaptively generate tem-
porally aligned moment queries depending on the natural
language input. This module is also constructed by a multi-
head attention layer, in which visual-audio joint represen-
tations {ri}Nv

i=1 act as query, textual features are key and
value. Our hypothesis is that by computing the attention
weights between video clips and text queries, each clip can
learn whether it contains which of the concepts described
in the text, and predict a query embedding that can be used
to decode the learned information for different needs. Note
that when text queries are not available, joint representa-
tions and learnable positional encodings are summed up to
serve as moment queries instead.

3.5. Query Decoder and Prediction Heads

Query decoder takes visual-audio joint representations
{ri}Nv

i=1 and text-guided moment queries {qi}Nv
i=1 as inputs,

and decodes the video features for joint moment retrieval
and highlight detection. The output sequence of the query
decoder has the same length as the encoder input. Such a
peculiarity has two advantages: 1) We may obtain the clip-
level saliency (highlight) scores as simple as adding a linear
projection layer with sigmoid activation. 2) The dynamic
length of output sequence also enables us to define moment
retrieval as a keypoint detection problem [17, 50]. That is,
each moment can be represented by its temporal center and
duration (window), where the center point can be estimated
by predicting a temporal heatmap and extracting local max-
ima. The window can be further regressed from features of

Table 2. Comparison with representative moment retrieval meth-
ods on Charades-STA test split. All the models use the officially
released VGG and/or optical flow features of Charades.

Method
R@1 R@5

IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

SAP [5] 27.42 13.36 66.37 38.15
SM-RL [39] 24.36 11.17 61.25 32.08
MAN [47] 41.24 20.54 83.21 51.85
2D-TAN [49] 40.94 22.85 83.84 50.35
FVMR [9] 42.36 24.14 83.97 50.15

UMT† (Ours) 48.31 29.25 88.79 56.08
UMT‡ (Ours) 49.35 26.16 89.41 54.95

† video + audio, ‡ video + optical flow

the center. Note that the points in the heatmap are discrete,
which may be misaligned with the real temporal center and
inevitably damage the retrieval performances. An extra off-
set term used to adjust the center should also be predicted.
We adopt four linear projection layers to predict the salien-
cies, centers, windows, and offsets, respectively.

During training, the clip-level saliency score prediction
is optimized using a binary cross-entropy loss Ls. For each
ground truth moment with center p ∈ [1, Nv] and window d,
we quantize the center point to p̃ and fill the heatmap H ∈
[0, 1]Nv using a 1D gaussian kernel Hx = exp(− (x−p̃)2

2σp
2 ),

where x is the temporal coordinate and σp is the window-
adaptive standard deviation. We optimize the center point
prediction using the gaussian focal loss [20] as

Lc = − 1

N

∑
x

{
(1− Ĥx)

α log(Ĥx) ifHx = 1

(1−Hx)
γĤx

α
log(1− Ĥx) otherwise

(4)

Here, N is the number of moments, α and γ denote the
weighting and the exponent of the modulating factors in the
focal loss, which are set to 2.0 and 4.0 in practice. For win-
dow and offset regression, we simply adopt L1 losses to op-
timize the actual values for all ground truth centers as

Lw = − 1

N

∑
p

|wp − ŵp| (5)

Lo = − 1

N

∑
p

|(op − p̃)− ôp| (6)

where wp, ŵp, op, and ôp are the ground truth and predicted
windows and offsets respectively. The overall training loss
would be the weighted sum of all the losses above as

L = λsLs + λcLc + λwLw + λoLo (7)

where λ{s,c,w,o} are the weights for saliency, center, win-
dow, and offset losses, respectively. When testing, the mo-
ment boundries are obtained by comining the center, win-
dow, and offset terms as introduced in [17, 50].
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Table 3. Experimental results on YouTube Highlights
(metric: mAP). Above are the methods using visual fea-
tures only, the others are using visual-audio features.

Method Dog Gym. Par. Ska. Ski. Sur. Avg.

RRAE [43] 49.0 35.0 50.0 25.0 22.0 49.0 38.3
GIFs [11] 30.8 33.5 54.0 55.4 32.8 54.1 46.4
LSVM [32] 60.0 41.0 61.0 62.0 36.0 61.0 53.6
LIM-S [40] 57.9 41.7 67.0 57.8 48.6 65.1 56.4
SL-Module [41] 70.8 53.2 77.2 72.5 66.1 76.2 69.3

MINI-Net [12] 58.2 61.7 70.2 72.2 58.7 65.1 64.4
TCG [45] 55.4 62.7 70.9 69.1 60.1 59.8 63.0
Joint-VA [3] 64.5 71.9 80.8 62.0 73.2 78.3 71.8
UMT (Ours) 65.9 75.2 81.6 71.8 72.3 82.7 74.9

Table 4. Comparison with representative highlight detection methods on TV-
Sum (metric: Top-5 mAP). Above are the methods using visual features only,
the others are using visual-audio features.

Method VT VU GA MS PK PR FM BK BT DS Avg.

sLSTM [48] 41.1 46.2 46.3 47.7 44.8 46.1 45.2 40.6 47.1 45.5 45.1
SG [22] 42.3 47.2 47.5 48.9 45.6 47.3 46.4 41.7 48.3 46.6 46.2
LIM-S [40] 55.9 42.9 61.2 54.0 60.4 47.5 43.2 66.3 69.1 62.6 56.3
Trailer [38] 61.3 54.6 65.7 60.8 59.1 70.1 58.2 64.7 65.6 68.1 62.8
SL-Module [41] 86.5 68.7 74.9 86.2 79.0 63.2 58.9 72.6 78.9 64.0 73.3

MINI-Net [12] 80.6 68.3 78.2 81.8 78.1 65.8 57.8 75.0 80.2 65.5 73.2
TCG [45] 85.0 71.4 81.9 78.6 80.2 75.5 71.6 77.3 78.6 68.1 76.8
Joint-VA [3] 83.7 57.3 78.5 86.1 80.1 69.2 70.0 73.0 97.4 67.5 76.3
UMT (Ours) 87.5 81.5 88.2 78.8 81.4 87.0 76.0 86.9 84.4 79.6 83.1

4. Experiments

4.1. Datasets and Experimental Settings

Datasets QVHighlights [18] is the only existing public
dataset that has ground-truth annotations for both moment
retrieval and highlight detection, thus being suitable for
evaluating the full version of our proposed model. This
dataset contains videos cropped into 10,148 short (150s-
long) segments, and had each segment annotated with at
least one text query depicting its relevant moments. There
are averagely about 1.8 disjoint moments per query, anno-
tated on non-overlapping 2s-long clips. In total, there are
10,310 queries with 18,367 annotated moments. We follow
the original QVHighlights data splits in all experiments.

We also utilize three more datasets: Charades-STA [8],
YouTube Highlights [32], and TVSum [31] for further eval-
uation on the moment retrieval or highlight detection task
only, as our model has the flexibility for tasks. Charades-
STA contains 16,128 query-moment pairs annotating dif-
ferent actions. YouTube Highlights has 6 domains with 433
videos currently available. TVSum includes 10 domains
with 5 videos each. We follow the tradition to work on a
random 0.8/0.2 training/test split. Note that the annotators
for TVSum were aware of the video titles, so we believe
that these titles can serve as noisy text queries. Our model’s
flexibility to handle this situation is studied.

Evaluation Metrics We use the same evaluation metrics
used in existing works. Specifically, for QVHighlights, Re-
call@1 with IoU thresholds 0.5 and 0.7, mean average pre-
cision (mAP) with IoU thresholds 0.5 and 0.75, and the av-
erage mAP over a series of IoU thresholds [0.5:0.05:0.95]
are used for moment retrieval. For highlight detection, mAP
and HIT@1 are utilized, where a clip prediction is treated as
a true positive if it has the saliency score of Very Good. For
Charades-STA, Recall@1 and Recall@5 with IoU thresh-
olds 0.5 and 0.7 are used. For YouTube Highlights and TV-
Sum, mAP and Top-5 mAP are adopted, respectively.

Implementation Details On QVHighlights, we simply
leverage the pre-extracted features using SlowFast [7] and
CLIP [26]. Official VGG [29] and optical flow features,
as well as GloVe [25] embeddings, are used for Charades-
STA. On YouTube Highlights and TVSum, we obtain clip-
level visual features using an I3D [4] pre-trained on Kinet-
ics 400 [13]. Since each feature vector captures 32 consec-
utive frames, we follow [3] and consider the feature vector
belonging to a clip if their overlap is more than 50%. We
also use CLIP to extract the title features in TVSum. Au-
dio features of all the datasets are extracted by a PANN [15]
model pre-trained on AudioSet [10]. Visual and audio fea-
tures are temporally aligned at clip level.

All the models in our experiments contain one uni-modal
and cross-modal encoder layer each. The number of de-
coder layers is set to 3 for QVHighlights and Charades-
STA, and 1 for YouTube Highlights and TVSum since they
have smaller scales. The number of bottleneck tokens Nb is
insensitive thus be set to 4. The weights of losses are set as
λs = 3.0, λc = 1.0, λw = 0.1, and λo = 1.0, while λw and
λo are reduced to 0.05 and 0.5 specially for Charades-STA.
Following [18], we set the hidden dimensions to 256, with
4× dimension expansions in feed forward networks. Learn-
able positional encodings, pre-norm style layer normaliza-
tions [2], 8 attention heads, and 0.1 dropout rates are used
in all transformer layers. We also adopt extra pre-dropouts
with rate 0.5 for visual and audio inputs, and 0.3 for text
inputs. In all experiments, we use Adam [14] optimizer
with 1e-3 learning rate and 1e-4 weight decay. The model is
trained with batch size 32 for 200 epochs on QVHighlights,
batch size 8 for 100 epochs on Charades-STA, batch size 4
for 100 epochs on YouTube Highlights, and batch size 1 for
500 epochs on TVSum, respectively.

4.2. Results on Joint Video Moment Retrieval and
Highlight Detection

We first evaluate our proposed UMT on QVHighlights
test split. The results are shown in Table 1, in comparison
with all the other performances ever reported. On both mo-
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QUERY: They are driving through a somewhat green desert while music plays.(b)

QUERY 1: A toddler meets cartoon characters.

QUERY 2: Mickey mouse and a costume pink bunny are interacting 
with a baby held by a mother.

(c)

(a) QUERY: A fluffy white dog is playing near the grill and getting his own meal at the table.

Figure 4. Qualitative results on QVHighlights. The predicted moments and saliency scores are shown by brackets and lines. a) All the
highlight clips are presented, indicating that UMT can learn implicit correlations between video content and query semantics. b) Different
modality combinations guide the model pay attention to different moments. c) Our model can handle multiple queries in a single video.

ment retrieval and highlight detection tasks, our proposed
model outperforms all the existing approaches, including
the previous state-of-the-art method Moment-DETR [18]
under both settings (with or without pre-training with auto-
matic speech recognition captions). Figure 4 presents some
qualitative results of our method on QVHighlights.

4.3. Results on Moment Retrieval

Table 2 shows the comparison of UMT with some rep-
resentative methods on Charades-STA test split. Our ap-
proach performs better than previous methods under differ-
ent metrics. We also tried adopting optical flow instead of
audio and obtained similar performances.

4.4. Results on Highlight Detection

Highlight detection results on YouTube Highlights and
TVSum are presented in Table 2 and Table 3, respectively.
On both datasets, UMT performs better than not only rep-
resentative methods which only use video, but also existing
multi-modal ones that utilize both video and audio.

4.5. Ablation Studies

Multi-modality (Visual-Audio) Table 5 shows the per-
formances of all the multi-modal methods when different
modalities are used. Note that Moment-DETR+ is a multi-
modal extension of original Moment-DETR [18] by im-
plementing a similar bottleneck structure as UMT. Clearly,
multi-modal learning can significantly boost most methods’
performance on all the datasets and tasks in comparison
with using a single modality, since it can capture more use-
ful information. Compared with the most similar competi-
tor Moment-DETR+, UMT can better explore the comple-
mentary information from different modalities and suppress
the possible noise during information transfer.

Multi-task Co-optimization Given a text query for a
video, retrieving the related moments and detecting salient
highlights in such moments seem to be highly correlated
tasks. Therefore, it is interesting to see how the multi-task
co-optimization performs in comparison with training for
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Table 5. The effectiveness of multi-modal learning on YouTube
Highlights, TVSum, and QVHighlights val split. MR and HD
denote moment retrieval and highlight detection, respectively.

YouTube TVSum QVHighlights
Method

mAP Top-5 mAP MR (mAP) HD (mAP)

MINI-Net† [12] 61.38 69.79 – –
Joint-VA† [3] 70.50 74.80 – –
Moment-DETR† [18] – – 32.20 36.52
UMT† (Ours) 73.48 81.89 37.79 38.97

MINI-Net‡ [12] 52.23 59.72 – –
Joint-VA‡ [3] 67.00 68.70 – –
Moment-DETR‡ [18] – – 16.69 26.00
UMT‡ (Ours) 65.61 76.51 13.73 23.91

MINI-Net [12] 64.36 73.24 – –
Joint-VA [3] 71.80 76.30 – –
Moment-DETR+ [18] – – 34.05 37.67
UMT (Ours) 74.93 83.14 38.59 39.85
† video only, ‡ audio only, + w/ bottleneck transformer

Table 6. Comparison with Moment-DETR using different training
task combinations on QVHighlights val split. MR and HD de-
note moment retrieval and highlight detection, respectively.

Method
Tr. Task(s) MR HD

MR HD R1 R1 mAP mAP HIT@1@0.5 @0.7 Avg.

Moment- ✓ 44.84 25.87 25.05 – –

DETR [18] ✓ – – – 36.52 56.45
✓ ✓ 53.94 34.84 32.20 35.65 55.55

UMT ✓ 54.14 33.82 34.02 – –

(Ours) ✓ – – – 40.22 65.03
✓ ✓ 60.26 44.26 38.59 39.85 64.19

each individual task when the same framework and back-
bone are used. We conduct single-task experiments by turn-
ing off the losses corresponding to each task and training
the rest of the model. Note that moment retrieval is con-
sidered to be a harder task than highlight detection as ex-
plained in Section 1. The results in Table 6 show that the
co-optimization not only generates results for both tasks si-
multaneously, but also significantly boosts the performance
on moment retrieval. This is clear for both our UMT and
Moment-DETR [18]. Note that when training for moment
retrieval only, UMT performs much better than Moment-
DETR, indicating its superiority on the model design. Our
UMT better models the moment retrieval task as a keypoint
detection problem [17, 50] rather than set prediction or clip
classification. Moreover, the inputs to the UMT decoder are
clip-aligned text-guided queries instead of positional encod-
ings, which enables more flexible output sequence lengths
and may provide stronger query information for each clip.
Therefore, we believe that UMT can model the relationship
between the two tasks better than Moment-DETR does.

Table 7. Effectiveness justification of the offset loss for moment
retrieval on QVHighlights val split. Both models are trained us-
ing the co-optimization recipe.

Losses
R1 mAP

@0.5 @0.7 @0.5 @0.75 Avg.

Lc + Lw 62.32 43.23 57.78 38.61 37.36
Lc + Lw + Lo 60.26 44.26 56.70 39.90 38.59

Table 8. The influence of weakly relevant (TVSum) or highly rel-
evant (QVHighlights) text queries on highlight detection.

Text Query TVSum
QVHighlights

mAP HIT@1

81.42 25.14 33.42
✓ 83.14 39.85 64.19

Moment Retrieval Losses Table 7 presents the perfor-
mances of UMT when different combinations of moment
retrieval losses are used. Since the center loss Lc and the
window loss Lw are mandatory for representing a moment,
only the necessity of the offset loss Lo is justified. As the
comparison shows, modeling the temporal offset does make
the moment boundary prediction more accurate.

Justification of Text Queries We believe that highlight
detection based on text queries is an important setting for
highlight detection, as different interests can favor quite dif-
ferent highlights from the same video. Table 8 reports the
results of our model, with or without the text queries. It can
be seen that when the query is relevant, it does improve the
highlight detection performance, and such an improvement
is more significant when the relevance is greater.

5. Conclusion
This paper introduces a novel and also the first frame-

work for solving joint moment retrieval and highlight detec-
tion as well as its individual component problems in a uni-
fied way. It is also the first to integrate multi-modal learning
into its model for such a purpose. The effectiveness and su-
periority of the proposal have been demonstrated on diverse
and representative public datasets, in comparison with rele-
vant methods under various settings. The framework is ro-
bust to modality quality variations and also flexible enough
to work under different text query conditions.
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