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Abstract

Incremental learning (IL) remains an open issue for Per-
son Re-identification (ReID), where a ReID system is ex-
pected to preserve preceding knowledge while learning in-
crementally. However, due to the strict privacy licenses and
the open-set retrieval setting, it is intractable to adapt ex-
isting class IL methods to ReID. In this work, we propose
an Augmented Geometric Distillation (AGD) framework to
tackle these issues. First, a general data-free incremental
framework with dreaming memory is constructed to avoid
privacy disclosure. On this basis, we reveal a “noisy distil-
lation” problem stemming from the noise in dreaming mem-
ory, and further propose to augment distillation in a pair-
wise and cross-wise pattern over different views of mem-
ory to mitigate it. Second, for the open-set retrieval prop-
erty, we propose to maintain feature space structure during
evolving via a novel geometric way and preserve relation-
ships between exemplars when representations drift. Exten-
sive experiments demonstrate the superiority of our AGD to
baseline with a margin of 6.0% mAP / 7.9% R@1 and it
could be generalized to class IL. Code is available here†.

1. Introduction

Person re-identification (ReID) aims at identifying all
images of the same person as the query from a gallery set
of large scale. Training on a certain dataset empirically em-
powers a ReID system to expert in the corresponding do-
main. However, it inhibits the ReID system from adapting
to the ever-changing environment, especially when dealing
with the streamed data or a sequence of ReID tasks from
incremental domains. We expect the system can widen its
generalization in incremental domain and retain its capabil-
ity in base domain simultaneously, which is, briefly, to ac-
cumulate new knowledge while avoiding Catastrophic For-
getting [12,29]. To overcome such similar limitation, Class
Incremental Learning (CIL) [5,10,18,24,33,44] is proposed

∗Corresponding author
†https://github.com/eddielyc/Augmented-Geometric-Distillation
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Figure 1. Illustration of data-free IL-ReID framework. The model
keeps evolving when training on a sequence of ReID tasks. Eval-
uation is adopted in all seen domains. Replaying is in a data-free
setting [37, 47] due to privacy issues in ReID, where no preceding
real data is stored, instead, dreaming memory drives relaying.

in classification task and efforts have been devoted to figur-
ing out how to learn incrementally.

Despite the great success in CIL, it still faces challenges
when directly adopted to a ReID system due to the strict pri-
vacy issues and the open-set retrieval setting. First, in CIL,
reminding the networks of previous knowledge via replay-
ing pre-stored exemplars is well-recognized [5, 19, 33] to
alleviate catastrophic forgetting. However, replaying mem-
ory of real data faces risks of violating privacy licenses in
ReID. Second, on one side, ReID is substantially an open-
set retrieval task, which puts more attention on construct-
ing a robust feature space when compared with the close-
set classification, since not only representations but also
their neighborhoods play key roles in retrieval ranking. On
the other side, feeding new knowledge sequentially will in-
evitably cause semantic drift [49] and distort the preceding
feature space, resulting in forgetting. Hence, there exists
a critical yet ignored contradiction between stabilizing the
feature space for preceding domains and adapting feature
space for the incremental domain.

Considering the limitations aforementioned, we conduct
further research on Incremental ReID (IL-ReID) [32] and
propose a novel Augmented Geometric Distillation (AGD)
framework which consists of Augmented Distillation (AD)
and Geometric Distillation (GD). First, to tackle the pri-
vacy issue, we first construct a general data-free incre-
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mental framework for IL-ReID (overview in Fig. 1), in
which dreaming memory, generated by DeepInversion [47],
drives replaying procedure without access to preceding real
data. Unfortunately, due to the poor quality, directly replay-
ing these dreaming exemplars will induce a phenomenon
termed “noisy distillation”, during which, noisy knowledge
will be transferred into the evolving model and aggravate
forgetting. To alleviate this problem, we further propose
to augment distillation itself. Enlightened by contrastive
learning, we produce different views of memory and dis-
till in a pair-wise and cross-wise pattern to strengthen the
robustness and reduce the perturbation.

Second, to handle the contradiction caused by open-
set retrieval property, we propose the geometric distillation
(GD) tailored-made for retrieval task that our intuition is to
maintain the structure of the preceding feature space while
drifting instead of to stabilize the whole space and to pe-
nalize drift. The structure of preceding space is formulated
with exemplars in dreaming memory. To prevent exemplars
from drifting in their own manners arbitrarily and ”roiling”
the space structure, we encourages exemplars to drift in a
consistent manner, so that the structure could be maintained
via similarity criterion in a novel geometric way. This al-
lows to adapt the feature space for new knowledge while
preserving rich preceding information for retrieval, offering
a compromise between learning and memorizing.

To conclude, our contributions could be summarized as:

i) We construct a data-free incremental framework for
ReID with dreaming memory. It serves without pri-
vacy issues;

ii) We propose Augmented Distillation (AD), where dis-
tillation is conducted in a pair-wise and cross-wise pat-
tern to address the “noisy distillation” phenomenon in
dreaming memory;

iii) We propose Geometric Distillation (GD) to adapt new
and preceding knowledge for retrieval tasks via main-
taining space structure geometrically when drifting;

iv) We adapt mainstream solutions in CIL to ReID. Exten-
sive experiments indicate that our AGD is superior to
baseline with a margin of 6.0% mAP / 7.9% R@1 and
it is promising to be generalized to CIL.

2. Related Work
2.1. Incremental Learning

Incremental learning [41] studies the problem of accu-
mulating knowledge sequentially without catastrophic for-
getting [12, 34]. To achieve this, methods based on param-
eters regularization [2, 23] attempted to penalize updating
parameters for preceding tasks. Parameter-isolation based
methods [1,22,28] dedicated extra parameters for new tasks.
The recent mainstreams are on insights of replaying mem-
ory and distilling knowledge. LwF [24] first introduced dis-

tillation into IL. Dhar et al. [9] further proposed to constrain
attention. iCaRL [33] and its improved variants [5, 18] in-
troduced replay mechanism, where a memorizer is main-
tained to store limited samples for replaying. Following up
on this, Wu et al. [44] and Hou et al. [19] corrected the bias
in classifier. PODNet [10] distilled the pooled intermediate
feature maps and GeoDL [36] constrained the geodesic flow
in lower dimensions. TOPIC [40] and TPCIL [39] put their
emphasis on topology of exemplars. Despite the remark-
able insights, a compact memorizer is indispensable to all
these replaying-based methods. As data-free frameworks,
ARM [21] and ABD [37] replayed generated memory in-
stead, but “noisy distillation” is ignored. SDC [49] mea-
sured the semantic drift without memory, but it was oriented
to classification not retrieval.

2.2. Data-free Knowledge Transfer

As the seminal work by Hinton et al. [17], a basic so-
lution was proposed to compress knowledge to student net-
works, on which to base, a line of works [25,45,46,50] has
reported more effective solutions. However, most methods
above are data-driven. To address this flaw, some works
managed to generate images. Lopes et al. [26] synthesized
images via meta-data of networks. Bhardwaj et al. [3] syn-
thesized samples via pre-recorded the centroids of classes.
Some works [4, 14, 47] discovered constraining the gener-
ated images to match BatchNorm [20] statistics in teacher
networks could close the gap between real image distribu-
tion. Similarly, Yoo et al. [48] and Chen et al. [6] trained
a decoder to output class-conditional images. Moreover,
some papers [8, 11, 30] transferred knowledge in an adver-
sarial strategy. Despite notable progress above, how to re-
tain knowledge in the pre-trained base model and incremen-
tally learn from new tasks remains under-explored.

3. Background and Data-free Framework
In this section, we define the IL-ReID (Sec. 3.1) and clar-

ify a data-free incremental framework for ReID (Sec. 3.2).

3.1. Problem Definition

In IL-ReID, to provide basic knowledge, T1 leads the
task sequence. Following the setting in LUCIR [19], the
first task T1 contains samples with a wide variety to achieve
a strong base model f1

θ . After that, similar to the task-
incremental setting [31] in CIL, data from a sequence of
ReID tasks T2, T3, T4 ... will be continually presented for
incremental learning. In incremental training stage of Tn,
the base model fn−1

θ evolves into fn
θ . During this, we can

only access to base model fn−1
θ and dataset of Tn. Espe-

cially, no real data of base tasks T1:n−1 = {Ti}n−1
i=1 is avail-

able. The dataset of Tn is denoted as DTn
= {(xn

i , y
n
i )}

Nn
i=1,

where (xn
i , y

n
i ) is the i-th image and its ID. Nn is the num-

ber of images in DTn
.
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Figure 2. Pipeline of our data-free framework. In n-th incremental
step, Dreaming: Generate dreaming memory MT1:n−1 , Learn-
ing: Learn new knowledge from DTN , Replaying: Replay mem-
ory MT1:n−1 , generally with distillation.

Objectives. When the base model fn−1
θ evolves into fn

θ ,
we expect that i): accumulated knowledge in base tasks
T1:n−1 should be retained as much as possible; ii): based
on pre-trained fn−1

θ , fn
θ should learn better representations

on incremental task Tn. In short, after training on Tn, fn
θ

should perform well on all seen domains in T1:n.

3.2. Data-free Incremental Framework

To circumvent privacy issues, in contrast to storing the
real data as memory, the fixed base model fn−1

θ “dreams”
of the images over preceding image distributions.

Dreaming Memory and Replay. Dreaming memory is
built via DeepInversion [47]. To synthesize images, the in-
puts x̂ are optimized to encourage the fixed base model
fn−1
θ to output the corresponding labels ŷ. During opti-

mization, inputs are regularized to match the BatchNorm
in fn−1

θ to approximate over preceding distributions. After
generation, the dreaming memory MT1:n−1 = {(x̂i, ŷi)}
will be built by base model fn−1

θ to preserve preceding
knowledge via replaying and distillation.

Representation Learning. Following basic representa-
tion training in most ReID researches, given the incremen-
tal data x from DTn and dreaming data x̂ from MT1:n−1 ,
the model should classify the inputs correctly with cross en-
tropy loss Lce and separate class boundaries with triplet loss
Ltri. Together, we formulate representation loss as follow:

Lrep([x∥x̂]) = Lce([x∥x̂]) + Ltri([x∥x̂]), (1)

where [·∥·] denotes data concatenation in batch axis.
Framework Objective. The pipeline of our framework

is illustrated in Fig. 2. We combine representation learning

and replaying to formulate the basic framework objective:

Lbase(x, x̂) = Lrep([x∥x̂]) + λLκ(x̂), (2)

where Lκ(·) is the knowledge distillation term in replaying.

4. Proposed Method
Based on the design above, we propose a novel Aug-

mented Geometric Distillation (AGD) framework to i):
tackle the problem of “noisy distillation” in dreaming mem-
ory; ii): and learn to adapt knowledge flexibly yet reten-
tively via a geometric way for IL-ReID. In Sec. 4.1, we elab-
orate why noise is made, visualize how it impacts the dis-
tillation and how to alleviate it via our augmented distilla-
tion. In Sec. 4.2, we pave a brand-new path to retain knowl-
edge when representations drift via geometrically maintain-
ing structure in euclidean feature space.

4.1. Augmented Distillation

As discussed above, in order to circumvent privacy dis-
closure, we adopt dreaming data to acts as the memory.
We expect data generated by DeepInversion serves as ef-
fectively as real data. However, a drawback of it is that
mimicking the real image distribution imperfectly causes
domain gap. For instance, an evident gap in visual level
between dreaming exemplars and raw images exists due to
the poor quality. And such domain gap weakens the robust-
ness to data augmentation (e.g. crop, flip and REA [52])
as visualized in Fig. 4 (Left). The unexpected perturbation
widens divergence of dreaming exemplars in feature space,
which introduces overfitting of noise in typical pair-wise
knowledge distillation as Fig. 4 (Right) and hence, aggra-
vates forgetting. Even worse, such perturbation could bring
more adverse impacts to our geometric distilling (detailed
in Sec. 4.2) due to unstable relationships between dreaming
exemplars.

Under such circumstance, the guidance from teacher is
noisy, but data augmentation is necessary to promote sam-
ple diversity. For the best of both worlds, we propose to
augment distillation itself. Specifically, to mitigate pertur-
bation in each iteration, we first follow contrastive learn-
ing [7, 13, 15] to build two views of data x̂′ and x̂′′ with
independent data augmentation. These views are from the
same sample x̂ and should have robust features extracted by
the teacher fn−1

θ . However, due to the issue above, teacher
outputs features of two views fn−1

θ (x̂′) and fn−1
θ (x̂′′) with

divergence. To get more stable distilling effects, we average
the gradients from pair-wise distillation of two views. Be-
sides, x̂′ and x̂′′ are sampled from the same distribution
and form a congruent pair (x̂′, x̂′′). For better consistence
between views, we consider distilling across views symmet-
rically as illustrated in Fig. 3 (Left). The crisscross mecha-
nism provides guidance from at least four views of the same
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Figure 3. Left: Pipeline of our Augmented Geometric Distillation (AGD). Basic representation learning is conducted by DTN and
MT1:N−1 . When preserving the knowledge, distillation process is augmented to filter out noise in dreaming data. Middle: Illustration of
Geometric Distillation in Euclidean space that polyhedrons of classes built by feature points are encouraged to keep their similarity when
evolving with scale and translation transforms to approximate the similarity of their subspaces. The process is driven by dreaming memory
M, which is a set of images generated by features in Zn−1. Right: Geometry interpretation of fundamental AAA similarity criterion.
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Figure 4. Visualization of noisy distillation. Left: In this figure,
five dreaming exemplars of MSMT17 (Sec. 5.1) are augmented 20
times and features are visualized with t-SNE [42]. For compari-
son, a raw image of MSMT17 is processed with the same opera-
tions and much smaller divergence is observed. Points: features,
crosses: cluster centroids, circle radius: divergence. Right: Chain
reaction of noisy distillation in the typical pair-wise way.

observation to highlight the shared effective information in
views and reduce the noisy part. The objective is written as:

LAD(x̂
′, x̂′′;Lκ)

=
1

2

[
αLκ(x̂

′, x̂′) + (1− α)Lκ(x̂
′, x̂′′)

+ αLκ(x̂
′′, x̂′′) + (1− α)Lκ(x̂

′′, x̂′)
]
,

(3)

where Lκ(x̂
′, x̂′′) calculates the distillation loss term be-

tween teacher output fn−1
θ (x̂′) and student output fn

θ (x̂
′′).

Other three terms are formulated similarly. α is the weight
to balance pair-wise and cross-wise terms. Typically, Lκ(·)

could be in a form of KL divergence as iCaRL [33]:

Lkl(x̂) = KL
[
p(y|x̂, fn−1

θ ), p(y|x̂, fn
θ )

]
, (4)

or in a form of cos as LUCIR [19] for richer information in
features:

Lcos(z
n−1, zn) = 1− ⟨zn−1, zn⟩, (5)

where ⟨·, ·⟩ denotes cos(·, ·) operation and z stands for fea-
tures, i.e., zn−1 = fn−1

θ (x̂), zn = fn
θ (x̂).

4.2. Geometric Distillation

During incremental learning, feature space drift is in-
evitable and the arbitrary drift could roil the space structure
(Fig. 5). Despite the success of penalizing the drift (e.g.
Equ. 5), there exists a contradiction between preserving
preceding knowledge, which detests the drift, and learning
new knowledge, which leads to necessary drift. This issue
bothers ReID particularly due to open-set retrieval property.
To reach a compromise, we propose a brand-new solution,
where space drift is not penalized explicitly. Our intuition
is to maintain geometry structure of subspace of each class
when drifting and keep the most discriminative represen-
tations for ranking in retrieval task. Then our method has
the flexibility to fit new data and meanwhile preserves rich
information in relationships with a geometric approach.

Definition 1 Given a Euclidean space Z , if a bijection
g(x) = rAx+t∗ maps any two points x1 and x2 in Z into
a Euclidean space Z ′ and d(g(x1), g(x2)) = r ·d(x1,x2),
where d(·, ·) is the Euclidean distance, we call Z ′ a simi-
larity space to Z and r is the scale coefficient.

∗A is an orthogonal matrix and t is a translation vector.

7332



Accumulating
New

Knowledge

Figure 5. Visualization of arbitrary drift. When accumulating new
knowledge, new features are embedded into the feature space. To
adapt new knowledge, features in preceding feature spaces drift in
their own manners and damage their space structures.

Geometrically, the similarity of two spaces is defined as
Def. 1. Correspondingly, we expect the feature subspaces
of preceding classes to maintain their structure when evolv-
ing via keeping their similarity when drifting, i.e., fn

θ (x̂) =
g
(
fn−1
θ (x̂)

)
= rAfn−1

θ (x̂) + t, where x̂ is a sample of a
certain class and fn

θ (x̂) ∈ Zn, fn−1
θ (x̂) ∈ Zn−1. In prac-

tice, it is intractable to constrain all points in feature space.
However, with the dreaming dataset M, we can sample fea-
ture points in Zn−1. These points form polyhedrons of cor-
responding classes in Zn−1 and we approximate space sim-
ilarity via preserving geometric structure of polyhedrons, as
shown in Fig. 3 (Middle).

Starting from the basic form fn
θ (x̂) = rfn−1

θ (x̂), where
fn
θ (x̂) is the scaling of fn−1

θ (x̂), to achieve this, we model
the loss as:

Lr
G(Zn−1,Zn) = E

(x̂i,x̂j)∈P
[Lcos(z

n−1
i , zn

i ) + Lcos(z
n−1
j , zn

j )

+ Lcos(z
n−1
i − zn−1

j , zn
i − zn

j )
]
,

(6)
where P denotes the set of positive exemplar pairs and
Zn = {zn

i |zn
i = fn

θ (x̂i)},Zn−1 = {zn−1
i |zn−1

i =
fn−1
θ (x̂i)}. In this constrain, Lcos(·, ·) encourages two vec-

tors to be parallel with orientations. And three paralleled
sides in Equ. 6 fullfil the AAA criterion of triangle similar-
ity in its plane as demonstrated in Fig. 3 (Right). After enu-
merating all positive pairs and convergence, triangles are
chained with shared sides and polyhedrons in Zn−1 gradu-
ally scale into the polyhedrons in Zn. And since the scale
coefficient r is not defined in Equ. 6 explicitly, r is learnt
adaptively and independently in each subspace.

Based on discussion above, we now consider the trans-
lation vector t, which can be viewed as the drift of feature
distribution. To allow the drift and maintain the geomet-
ric structure simultaneously, given the bijection fn

θ (x̂) =
rfn−1

θ (x̂) + t and two samples x̂i, x̂j ,

∆zn
ij = zn

i − zn
j = fn

θ (x̂i)− fn
θ (x̂j)

= rfn−1
θ (x̂i)− rfn−1

θ (x̂j) = r∆zn−1
ij ,

(7)

where ∆zn
ij is the scale of ∆zn−1

ij , which is a similar prob-

lem to constraining fn
θ (x̂) = rfn−1

θ (x̂). Based on Equ. 6,
we formulate the constrain with feature drift as:

Lrt
G (Zn−1,Zn) = Lr

G(∆Zn−1,∆Zn), (8)

where ∆Zn = {∆zn
ij |i ̸= j, (x̂i, x̂j) ∈ P} and ∆Zn−1 =

{∆zn−1
ij |i ̸= j, (x̂i, x̂j) ∈ P}. Unlike Lcos only con-

straining orientations of individual features, in our Lrt
G , fea-

tures scale and drift in a consistent manner, which is of
great importance to maintain the relationship between intra-
exemplars. Meanwhile, the scale coefficient r and transla-
tion vector t endow impressive plasticity when compared
with much more critical criterion as Lℓ1 or Lℓ2 (MSE loss),
where subspaces are enforced to be congruent with the pre-
ceding ones, i.e., fn

θ (x̂) = fn−1
θ (x̂). Note that in the case

of Equ. 8, the orthogonal matrix A is an identity matrix
that no rotation and reflection are adopted for simplicity and
practicality (more details in Supp.).

4.3. Overall Objective and Algorithm

The overview of our AGD framework to conduct incre-
mental learning is illustrated as Fig. 3. Due to the universal
property of our AD mechanism, it is easy to integrate Lrt

G
into it. The overall objective is formulated as:

LAGD(x, x̂) = Lrep([x∥x̂]) + λLAD(x̂;Lrt
G ), (9)

and optimization procedures are summarized below.

Algorithm 1 Augmented Geometric Distillation (n-th task)
Input: Incremental dataset DTn and fixed base model fn−1

θ .
Output: Converged evolving model fn

θ .
1: Generate dreaming memory MT1:n−1 with fn−1

θ .
2: Initialize the evolving model fn

θ with fn−1
θ .

3: while not converged do
4: Sample and augment x ⊂ DTn → x.
5: Sample and augment twice x̂ ⊂ MT1:n−1 → x̂′, x̂′′.
6: Calculate Lrep (Equ. 1) with fn

θ (x), f
n
θ (x̂

′) and fn
θ (x̂

′′).
7: Calculate LAD(·;Lrt

G ) (Equ. 3 and Equ. 8) between
fn−1
θ (x̂′), fn−1

θ (x̂′′) and fn
θ (x̂

′), fn
θ (x̂

′′).
8: Calculate LAGD (Equ. 9) and backward.
9: Update θ in fn

θ .
10: end while
11: Fix the evolving model fn

θ for the next step as base model.

5. Experiments
5.1. Datasets and Evaluation Protocol

Market-1501 [51] contains 32,668 annotated images of
1,501 identities collected from 6 cameras totally. 12,936
images of 751 identities and 19,732 gallery images are used
for training and test respectively.

PersonX [38] is a dataset generated by Unity under con-
trollable cameras and environment. It has 9,840 images /
410 IDs for training and 35,952 images / 856 IDs for test.
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Motivation Method
MSMT17 → Market (M-to-M) MSMT17 → PersonX (M-to-P)

MSMT17 Market AVG MSMT17 PersonX AVG
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Oracle Base Dataset 45.7 71.5 21.8 45.0 33.7 58.3 45.8 71.4 28.0 54.2 36.9 62.8
Incremental Dataset 2.8 9.2 78.1 90.3 40.5 49.8 1.2 3.6 83.6 93.3 42.4 48.5

Finetune origin lr 4.8 14.2 81.2 91.8 43.0 53.0 3.1 9.2 83.9 94.1 43.5 51.7
1/10 lr 11.0 27.7 78.1 90.9 44.5 59.3 8.3 22.1 81.5 92.9 44.9 57.5

Regularization EWC [23] 23.2 48.1 66.0 84.1 44.6 66.1 20.9 44.8 61.7 82.0 41.3 63.4
MAS [2] 22.4 46.7 67.7 85.0 45.1 65.9 22.2 46.6 62.2 82.0 42.2 64.3

D
is

til
la

tio
n

LwF [24] 9.6 23.4 69.9 85.6 39.7 54.5 5.5 14.2 71.4 83.5 38.5 48.8
AKA [32] 11.3 27.8 79.5 91.6 45.4 59.7 12.0 18.3 81.6 92.0 46.8 55.2

R
ep

la
y

[4
7]

iCaRL [33] 27.6 50.7 82.8 92.8 55.2 71.8 29.8 53.6 83.4 93.2 56.6 73.4
ABD [37] 38.5 63.5 79.7 92.0 59.1 77.7 38.9 64.5 79.2 91.3 59.0 77.9

LUCIR (w/ cos) [19] 37.4 62.4 80.4 92.0 58.9 77.2 38.8 64.0 80.9 91.9 59.8 77.9
LUCIR (w/ ℓ1) [19] 39.7 65.3 77.8 90.8 58.8 78.1 40.8 66.0 75.7 89.7 58.2 77.9
LUCIR (w/ ℓ2) [19] 37.9 63.0 80.2 91.9 59.0 77.5 38.9 64.1 80.5 91.8 59.7 78.0

PODNet [10] 40.8 66.6 78.3 90.9 59.6 78.7 41.6 67.0 77.7 90.1 59.6 78.6
GeoDL [36] 38.3 63.7 79.0 91.5 58.7 77.6 39.4 64.6 79.0 91.4 59.2 78.0

AGD 41.9 67.5 80.5 91.9 61.2 79.7 41.8 67.4 81.0 92.1 61.4 79.9
Oracle Joint 48.7 73.7 82.3 92.2 65.5 83.0 46.1 71.6 82.0 92.6 64.0 82.1

Table 1. Comparison with mainstream families of methods in CIL. iCaRL [33] and LUCIR [19]: baseline solutions with Equ. 2 κ = kl
(Equ. 4) and κ = cos (Equ. 5) respectively. Oracle: training with supervision on according dataset(s). Note that all results are obtained
on joint gallery (detailed in Sec. 5.1). For fair comparison, based on the basic representation loss in ReID, we only reproduced distillation
parts of Distillation-based methods and tuned hyper-parameters for best performance. Bold and underline: best and second-best results.

MSMT17 [43] consists of 126,441 bounding boxes of
4,101 identities, of which 32,621 images of 1,041 identities
form training set and the remaining form test set.

Evaluation Protocol. After learning incrementally, we
denote all test sets of seen tasks as T = {(Qi, Gi)}, where
(Qi, Gi) is the query set and gallery set of the i-th task. To
evaluate the performance of model in all domains, we define
the joint gallery as the intersection of all individual gallery
sets, i.e., G = ∪(Qi,Gi)∈TGi, and evaluate each query set
in G. Finally, we take average performance as the overall
results, i.e., AVG = 1/|T|

∑
(Qi,Gi)∈T eval(Qi,G), where

eval(·, ·) outputs mean Average Precision (mAP) and Cu-
mulated Matching Characteristics (CMC) curve as metrics.

5.2. Implementation Details

Following the baseline BoT [27] in ReID, we employ
ResNet50 [16], initialized with parameters pre-trained on
ImageNet [35], as our backbone. REA [52] (sh=0.4),
BNNeck [27] are adopted in all training process. Note that
stride trick [27] is abandoned for fast training and inference.
During inference stage, features after BNNeck will be ex-
tracted for final ranking. SGD with learning rate of 0.01 is
leveraged to update the parameters. We train the first base
model f1

θ(·) for 90 epochs with warmup and decay learn-
ing rate at epoch 61. For incremental tasks, optimization
lasts 80 epochs and decay occurs at epoch 41. We generate
the dreaming memory until all classes have 40 exemplars or
|M| reaches 40960. When learning incrementally, batch-
size is 128, 64 (16 identities × 4 samples) from DTn

and
MT1:n−1

respectively. Settings of hyper-parameters are de-
tailed in Sec. 5.4.

5.3. Comparison with Other Methods

After replacing the memory built by real preceding data
with dreaming data, we adapt typical methods in CIL to
ReID for comparison as summarized in Tab. 1. We will
analyze results mainly on MSMT17 → Market (M-to-M)
and take AVG as overall performance.

Oracle: All results in “Oracle” family are achieved
under supervised training protocol. As expected, both
base and incremental tasks achieve satisfactory results af-
ter “Joint” training.

Finetune: Similar to results in CIL and AKA [32], fine-
tuning directly induces catastrophic forgetting in base task.
A vanilla approach to alleviate it is decreasing the finetun-
ing learning rate. Despite the sacrifice of performance on
incremental dataset, “1/10 lr” still yields better overall per-
formance (1.5% mAP / 6.3% R@1) over “origin lr”.

Regularization: EWC [23] and MAS [2] constrain up-
dating important parameters explicitly to balance knowl-
edge learning and retaining. The results demonstrate its
effectiveness in mitigating forgetting. On the other side,
the explicit penalization of parameter updating disturbs the
fitting on incremental dataset dramatically (10.4+% mAP /
5.9+% R@1 compared with “Finetune”).

Distillation and Ours: Distillation-based methods in-
tend to transfer knowledge from the base model to the
evolving model to combat forgetting. This family of meth-
ods acts as the mainstream and leads the SOTAs in CIL.
LwF [24] and iCaRL [33] focus on the distribution on pre-
ceding classes. With dreaming data as memory, iCaRL
outperforms LwF greatly (15.5% mAP / 17.3% R@1).
AKA [32] leverages a graph to manage knowledge. How-
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Method
MSMT17 → Market (M-to-M)

MSMT17 Market AVG
mAP R@1 mAP R@1 mAP R@1

iCaRL [33] 27.6 50.7 82.8 92.8 55.2 +0.0 71.8 +0.0
LUCIR [19] 37.4 62.4 80.4 92.0 58.9 +0.0 77.2 +0.0

w/ AD 30.4 54.3 83.5 92.7 57.0 +1.8 73.5 +1.7
w/ AD 39.1 64.6 80.4 91.7 59.7 +0.8 78.2 +1.0
w/ Lr

G 39.0 64.8 79.8 91.7 59.4 +0.5 78.3 +1.1
w/ Lrt

G 39.8 65.5 80.4 91.6 60.1 +1.2 78.5 +1.3
w/o M 23.5 46.0 40.6 67.0 32.0 -26.9 56.5 -20.7

w/ Lrt
G (bs x2) 41.2 66.8 78.7 90.6 60.0 +1.1 78.7 +1.5

w/ Lrt
G (ep x2) 38.5 64.9 81.7 92.2 60.1 +1.2 78.6 +1.4

w/ Lrt
G (re /2) 40.5 66.2 80.3 91.9 60.4 +1.5 79.1 +1.9

AGD 41.9 67.5 80.5 91.9 61.2 +6.0
+2.3

79.7 +7.9
+2.5

Table 2. Ablation studies. iCaRL (Equ. 2 κ = kl) and LU-
CIR (Equ. 2 κ = cos) serve as baselines. “bs x2”: with larger
batch size, i.e., 256(=128+128). “ep x2”: train longer, i.e., 160
epochs. “re /2”: erasing less area of dreaming data (weak aug-
mentation). Comparisons are marked in colors (blue: comparisons
with iCaRL, green: comparisons with LUCIR).

ever, absence of memory inhibits its performance. In replay
family, LUCIR [19] and ABD [37] demonstrate advantage
of distillation on features with the improvements of 3.6+%
mAP / 5.4+% R@1 over iCaRL. And PODNet [10] addi-
tionally penalizes the drift of intermediate attention maps,
which brings another 0.7% mAP / 1.5% R@1 gain. At-
tempting to transfer more knowledge, GeoDL [36] pro-
poses to distill geodesic flow and achieves 0.4% R@1 boost
over LUCIR. Our method relies on augmented distillation
to enhance effectiveness of low quality dreaming memory.
Besides, geometric distillation memorizes relative informa-
tion, which is critical for retrieval task and meanwhile keeps
flexible and plastic for incremental tasks. Combined, ours
yields results of 61.2% mAP / 79.7% R@1, which surpasses
other methods by a margin on AVG performance (1.6+%
mAP / 1.0+% R@1). It is noteworthy that without attention
maps, our method only puts constrain on the final features,
which indicates its great advance in effectiveness.

5.4. Ablation Studies and Parameter Analysis

In this section, we perform ablation studies and param-
eter analysis to investigate the contribution of each compo-
nent in AGD to the final performance gain and evaluations
on different settings. Results are shown in Tab. 2.

Effectiveness of Augmented Distillation. Augmented
distillation aims at mitigating “noisy distillation”, particu-
larly when driven by dreaming exemplars. Based on both
baselines iCaRL and LUCIR, which transfer knowledge
from two different perspectives (detailed in Equ. 4 and
Equ. 5 in Sec. 4.1), our proposal brings gain of 1.8% mAP /
1.7% R@1 and 0.8% mAP / 1.0% R@1 respectively. When
incorporated into our Lrt

G , “AGD” outperforms “w/ Lrt
G ”

with a margin of 1.1% mAP and 1.2% R@1. The consis-
tent improvements demonstrate its generalization on differ-

ent distillation terms. To further investigate the rationale
of AD mechanism, we train the networks with larger batch
size, longer period and weak augmentation for dreaming
data, which are the empirical approaches to stabilize train-
ing. However, “w/ Lrt

G (bs x2)” and “w/ Lrt
G (ep x2)” both

fail to surpass “w/ Lrt
G ”. “w/ Lrt

G (re /2)” achieves marginal
gain but is not capable to defeat “AGD”. The fact indicates
that different from increasing batch size or training longer
directly, AD mechanism digs more information in noisy ex-
emplars effectively without hurting knowledge learning in
incremental domain. And this is of great advances for such
data-limited scenario as incremental learning.

Effectiveness of Geometric Distillation. Casting the
distillation term on features is verified to be crucial as afore-
mentioned. To further investigate the necessity of geometric
distillation, we adopt Lcos, Lℓ1 and Lℓ2 (MSE loss) to con-
duct extensive experiments. Lcos requires input pair-wise
features to have the same orientations, while Lℓ1 and Lℓ2

enforce the features to remain unchanged, i.e., the preced-
ing feature space is congruent after evolving (the bijection
function is fn

θ (x) = fn−1
θ (x)). After tuning weighting pa-

rameter λ, Lcos, Lℓ1 and Lℓ2 all yield the satisfactory per-
formance on M-to-M task (Tab. 1). But when compared
with Lr

G (Tab. 2), 0.5% mAP / 1.1% R@1 decreases are
shown. When we allow more necessary drift, Lrt

G achieves
another 0.7% mAP / 0.2% R@1 improvements and sur-
passes LUCIR with advances of 1.2% mAP / 1.3% R@1.
The gain justifies the superiority of geometric distillation,
which makes our framework flexible yet retentive.

Effectiveness of Dreaming Memory. In our frame-
work, the distillation term is completely driven by dream-
ing memory M. In addition to the privacy issue, it plays
a central role in building the similarity feature subspaces.
In Tab. 1, replay-based family of methods surpasses oth-
ers with a huge margin, which validates the necessity of
dreaming memory. To further measure its contribution, we
remove M and cast the distillation term (Lcos) directly on
incremental dataset DTn . An serious degradation of 26.9%
mAP / 20.7% R@1 is observed in Tab. 2, especially in in-
cremental domain, which completely ruins the results. This
shows that M decouples the objectives of learning and re-
viewing, avoiding the potential interference.

Evaluation on α. α determines the weight of cross part
in AD (Equ. 3). According to the curve in Fig. 6, “α = 0.9”
performs best, which demonstrates necessity of multi-view
guidance for robust feature distillation.

Evaluation on λ. λ is the weight factor of overall dis-
tillation term. Larger weight leads to less forget and less
flexibility. Relatively, our framework is not sensitive to λ
and “λ = 3” yields the best results.

Evaluation on peers. peers, i.e., number of views in
each distillation iteration, is fixed to 2 by default. A larger
peers will provides guidance from more views and stronger
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Figure 6. Evaluations on different settings (MSMT17 → Market).
Top Left: Evaluation on α. Top Right: Evaluation on λ. Bottom
Left: Evaluation on peers. Bottom Right: Evaluation on exem-
plars per ID. Typically, α = 0.9, λ = 3, peers = 2 and n ≈ 40.

Method
MSMT17 → Market → PersonX (M-to-M-to-P)

MSMT17 Market PersonX AVG
mAP R@1 mAP R@1 mAP R@1 mAP R@1

Oracle-Joint 48.0 73.1 82.3 93.2 83.9 93.4 71.4 86.6
Finetune 1.5 4.9 15.0 36.8 85.0 93.8 33.8 45.2

iCaRL [33] 16.4 35.2 66.0 83.5 84.9 93.3 55.7 70.6
LUCIR [19] 28.3 52.5 68.5 85.8 82.6 93.0 59.8 77.1

AGD 36.5 62.4 71.9 87.3 83.6 93.5 64.0 81.0

Method
MSMT17 → PersonX → Market (M-to-P-to-M)

MSMT17 PersonX Market AVG
mAP R@1 mAP R@1 mAP R@1 mAP R@1

Oracle-Joint 48.0 73.1 83.9 93.4 82.3 93.2 71.4 86.6
Finetune 2.7 8.1 24.8 48.3 81.7 92.5 36.4 49.6

iCaRL [33] 16.7 35.1 59.3 75.7 82.6 92.3 52.9 67.7
LUCIR [19] 27.2 50.7 62.9 80.1 79.5 91.6 56.5 74.1

AGD 36.4 61.9 67.4 83.4 80.5 91.6 61.4 78.9

Table 3. Extensive experiments under more tasks settings.

regularization. However, as shown in Fig. 6 (Bottom Left),
no extra gain is observed and we think it is because that
average of guidances from too many views weakens the di-
versity in each view and over-regularizes the distillation.

Evaluation on exemplars. In general, more exemplars
report better performance due to the more diversity of mem-
ory. In our framework, “≈ 40 exemplar” (40960 in total /
1041 IDs in MSMT17) outperforms other settings. But it
is noteworthy that much less exemplars only result in about
0.5% degradation, which confirms the effectiveness of our
method from the other side.

5.5. Further Discussion

Learning More Tasks. When learning incrementally
with more tasks, “Finetune” performs similarly that encoun-
ters catastrophic forgetting. Dreaming memory alleviates
such forgetting to a great extent, which brings iCaRL [33]
and LUCIR [19] the huge gain. Furthermore, our AGD
makes more advantage of M and yields compelling im-
provements of 25.0+% mAP / 29.3+% R@1 over “Fine-
tune” on both tasks settings.

Method
CIFAR100 (20 exemplars per class in M)

50 steps 25 steps 10 steps 5 steps
Inc Acc Inc Acc Inc Acc Inc Acc

LUCIR [19] 54.6 +0.0 61.3 +0.0 63.4 +0.0 65.1 +0.0
w/ Lrt

G 59.2 +4.6 62.1 +0.8 64.1 +0.7 65.3 +0.2
w/ AGD 60.7 +6.1 62.6 +1.3 64.6 +1.2 65.5 +0.4

PODNet [10] 61.5 +0.0 63.3 +0.0 64.4 +0.0 65.3 +0.0
w/ Lrt

G 62.5 +1.0 64.2 +0.9 65.0 +0.6 65.6 +0.3
w/ AGD 62.9 +1.4 64.3 +1.0 65.3 +0.9 65.7 +0.4

Table 4. Extensive experiments on CIL (CIFAR100). 50 classes
for pre-training and 50 classes for incremental tasks.

Class Incremental Learning with NME. To investigate
whether CIL could benefit from our AGD, we execute ex-
tensive experiments on CIFAR100. The nearest-mean-of-
exemplars (NME) [33] rule is adopted as classifier to better
meet the scenario of retrieval task and Average Incremen-
tal Accuracy is the evaluation metric (detailed in Supp.).
Combined with LUCIR [19], both parts of our AGD im-
prove the accuracy, especially in “50 steps” setting, 6.1%
acc gain is shown. Even incorporated with a stronger so-
lution (one of the SOTAs) PODNet [10], AGD performs
well and achieves 62.9% acc in the most challenging “50
steps” setting. The results suggest that in CIL, preserving
the structure of feature space when evolving could be ben-
eficial, despite the fact that CIL aims at classification, not
ranking. Another impressive thing is that in experiments,
M stores 20 exemplars each class for replaying and these
exemplars are in real image distribution exactly. And we
believe AD mechanism works here mainly because that ar-
tificial image augmentations introduce some noise into geo-
metric distillation, which focuses on the residual vectors of
features and is more sensitive to the noise in features.

6. Conclusion
In this work, we have developed the AGD framework,

which is an incremental framework tailored-made for ReID.
It replays preceding knowledge via dreaming memory with-
out privacy issue, and augments the “noisy distillation” in a
novel crisscross pattern, uncovering the potential informa-
tion in dreaming memory from noise. Moreover, we have
stricken a better balance between learning and memorizing
in a geometric way, where semantic drift is allowed to adapt
new knowledge and preceding knowledge is preserved via
maintaining space structure when drifting. Finally, superi-
ority to typical solutions in CIL validates its promising po-
tential when adopted in ReID, open-set incremental tasks
and even more conventional CIL.
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