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Abstract

Obtaining accurate and diverse human motion predic-
tion is essential to many industrial applications, especially
robotics and autonomous driving. Recent research has ex-
plored several techniques to enhance diversity and maintain
the accuracy of human motion prediction at the same time.
However, most of them need to define a combined loss, such
as the weighted sum of accuracy loss and diversity loss,
and then decide their weights as hyperparameters before
training. In this work, we aim to design a prediction frame-
work that can balance the accuracy sampling and diversity
sampling during the testing phase. In order to achieve this
target, we propose a multi-objective conditional variational
inference prediction model. We also propose a short-term
oracle to encourage the prediction framework to explore
more diverse future motions. We evaluate the performance
of our proposed approach on two standard human motion
datasets. The experiment results show that our approach is
effective and on a par with state-of-the-art performance in
terms of accuracy and diversity.

1. Introduction
Human motion prediction plays a significant role in sev-

eral applications such as human-robot interaction [3,4], au-
tonomous driving [13, 14, 33, 39], and animation [45]. For
instance, an autonomous driving system can make a safe
planning strategy given an accurate motion prediction of
pedestrians. Moreover, robots can cooperate reasonably
with people when they have a good understanding of human
beings’ future plans. However, since diversity and uncer-
tainty are human future motion’s intrinsic properties, it be-
comes a challenging problem in the computer science com-
munity. Unlike the vehicle trajectory prediction scenarios
where we can get prior knowledge such as the traffic rules
and routing information [40, 41] to constrain the different
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Figure 1. Illustration of obtaining multi-modal pseudo future mo-
tions in a dataset. We can cluster the similar initial poses (purple
dashed circle) and share their future poses as the common ground
truth. The solid poses are the ground truth and the transparent ones
are the augmented poses. We argue that such an approach can be
applied recursively (orange dashed circle), which will lead to dis-
covering more different and realistic modes of motion in the data.

modes of trajectories, we can hardly get any prior knowl-
edge about what humans will do in the future. Thus, we can
only leverage the information from the given dataset, which
increases the difficulty of diverse human motion prediction.

There are two lines of research in this area. First, sev-
eral works attempt to get an accurate human motion predic-
tion without considering the diversity, such as [36] based
on graph neural network and [56] based on recurrent neu-
ral network. On the other line, some research investigates
how to increase the diversity of human motion prediction
based on deep generative models [2, 47, 60, 63] or diverse
sampling techniques [61]. Deep generative models such as
variational autoencoder and generative adversarial network
naturally capture the stochastic behaviors, while they may
suffer from mode collapse problems. Otherwise, even if we
assume that the generative models can capture the actual
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data distribution, the data distribution can still be very im-
balanced and skewed, which makes that sampling the minor
modes is challenging within a limited number of samples.
Several works [42, 61, 62] propose new losses to increase
diversity while keeping the prediction natural and accurate.
In [62], a multiple sampling function is designed to explic-
itly capture the different modes of the distribution based on
a pre-trained conditional variational autoencoder. By using
this pre-trained variational autoencoder, such methods can
control the likelihood of predicted motion with a training
hyperparameter. In [5, 32, 42], they proposed generative
models to learn the distribution implicitly. However, these
works still have to choose hyperparameters before training
to balance the likelihood and diversity sampling. It implies
that such approaches cannot be adjusted and controlled dur-
ing the testing phase. Considering the real-world applica-
tion such as pedestrian motion prediction in autonomous
driving, we not only need to know most of the different pos-
sible modes of motion but also need to know which modes
will most likely happen. It will be more practical if we can
decide the balance of accuracy sampling and diversity sam-
pling during the testing phase for the purpose of designing
the risk-averse or risk-seeking planner of autonomous vehi-
cles. Hence, we introduce a multi-objective variational in-
ference framework with two different priors. The proposed
structure makes it possible to adjust the ratio between accu-
racy and diversity sampling during the testing time.

Meanwhile, since there is only one ground-truth future
motion poses given a historical observation, several works
[49, 59] propose to use a similarity cluster-based technique
to get the multi-modal pseudo-ground-truth future motions.
Similar initial poses are grouped, and their corresponding
future poses can be viewed as the pseudo possible future
motions for each initial pose in the group. We argue that
such logic can also be applied recursively. We can group
similar poses again at certain steps and get the shared fu-
tures. A demonstration is shown in Figure 1. This strat-
egy can boost the diversity of future motions. However, the
sampling number will exponentially increase due to the re-
cursive queries during training and make such direct imple-
mentation intractable. In order to solve this issue, we intro-
duce an oracle that provides several possible future motions
with a short-term horizon to instruct the predictor repeat-
edly. To summarize, our contributions are three folds:
• We propose a unified multi-objective conditional varia-
tional autoencoder based human motion prediction frame-
work, which can adjust the ratio of sample numbers of ac-
curacy and diversity sampling during testing.
• We propose to learn a short-term oracle system and dis-
till the oracle’s knowledge into the prediction framework to
increase the diversity of human future motions. In order to
achieve this goal, we propose a novel sample-based loss to
supervise the predictor during the training phase.

•We evaluate the performance of our proposed approach on
two human motion datasets. The experiments results show
that our methods can achieve state-of-the-art performance.

2. Related Work

Human motion prediction. Human motion prediction has
been investigated with many different approaches in the
computer vision community. At the early stage, several
methods [1,10,37,43,50,54,57] without deep learning tech-
niques are proposed such as Gaussian process [58], hid-
den Markov model [10], and latent variable models [54].
Such methods can achieve good performance for recurrent
human motion data. However, they may not be suitable
for more complicated irregular human motions. As sev-
eral promising deep learning models such as recurrent neu-
ral network (RNN) [6, 12, 18] and graph neural network
(GNN) [11, 30, 34, 35, 48] are proposed recently, there are
several research focusing on how to incorporate the models
above to enhance the deterministic human motion predic-
tion accuracy. Several works such as [21, 27, 44, 46, 64] are
based on RNN, and [36, 42] utilize graph neural network
(GNN) to capture both the temporal and spatial informa-
tion. In order to get more diverse human motion prediction,
several probabilistic models [2, 5, 7, 28, 29, 32, 38, 47, 63]
are applied to capture the uncertainty of human motion.
Deep generative models can be used to estimate the data
distribution. There are several approaches based on varia-
tional autoencoders [2,7,28,29], generative adversarial net-
works [5, 16, 32, 38] and normalizing flows [20, 47, 63].
Diverse forecasting. In [60], the authors propose an ap-
proach that can learn a representation for motion recon-
struction and transformation together. Also, GAN-like
models are utilized in [5, 32] to capture the diverse human
motion prediction. There are also some research using a dif-
ferent representation to improve the diversity [64]. In [61],
a diversity sampling function which is formulated as a de-
terminantal point process [22, 23, 31] is proposed. Espe-
cially in [62], the authors argue that even though the ex-
isted likelihood-based methods can have a good estimation
of the data, they can still be challenging to sample some mi-
nor modes given a fixed number of samples. Hence, they
propose to learn another diversity sampling function that
can generate diverse motions based on one pre-trained vari-
ational autoencoder model. However, the proposed model
needs to choose hyperparameters to balance the likelihood
and diversity before training. We investigate the diverse hu-
man motion prediction in an orthogonal direction with the
related work. We aim to get a unified model that can ad-
just the sample number ratio between accuracy and diversity
samples during the testing phase. Besides, we attempt to ex-
plore more diverse and natural modes by utilizing pseudo
future motions with a short-term oracle, and any models
mentioned above can be integrated.
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Figure 2. Overview of the proposed framework. Red lines indicate the pipeline, which are only used during training. Blue lines indicate the
pipeline used in both the training and testing phase. During training, several samples are generated from both accuracy prior function (red
diamond, Section 4.1.1) and diversity prior function (blue diamond, Section 4.1.2). The accuracy prior function will be only updated by
accuracy sampler loss defined in Section 4.1.1. The diversity prior function will be updated by the diversity sampler loss, which depends
on all the samples. The short-term oracle function is introduced in Section 4.2.

3. Problem Formulation
Our goal is to predict the possible future human mo-

tions given a dataset D. We denote the human motion
with time horizon T = Th + Tf as Xt−Th+1:t+Tf =

[Xt−Th+1, . . . ,Xt+Tf ], where Xt ∈ Rd is the human
joints Cartesian coordinates at time step t. Th and Tf are the
historical horizon and future horizon respectively. Given an
observation C = Xt−Th+1:t, we intend to get the future
motion distribution P (Xt+1:t+Tf |C, ρ). Since such condi-
tional probabilistic distribution may have several dominant
modes, it is difficult to sample the other modes given a fixed
sampling number. In contrast, if we focus on increasing the
diversity of the samples, the prediction accuracy will be un-
dermined. In this work, we introduce a variable ρ ∈ [0, 1] to
control the degree of diversity of prediction, i.e., we intend
to get M samples Xi

t+1:t+Tf
∼ P (Xt+1:t+Tf |C, ρ), i =

1, . . . ,M . The larger ρ is, the more diverse samples will be
generated and focuses on the rare cases, and the smaller ρ
is, the prediction will focus more on the most likely modes.
For simplicity, we use X represent Xt+1:t+Tf in the case
that the time step index is not necessary.

4. Methodology
We first introduce the multi-objective generative predic-

tion framework based on conditional variational inference.
Then we introduce the proposed short-term oracle, which
provides multi-modal supervision to the prediction frame-
work. Finally, we introduce our proposed approach’s train-
ing strategy and testing procedure. The overall framework
is illustrated in Figure 2.

4.1. Multi-Objective Predictor

In general, we can represent a probabilistic distribution
via a latent variable model:

P (X|C;Q) = EZ∼Q(Z|C)[P (X|C,Z)], (1)

where Q(Z|C) is the conditional prior distribution of la-
tent variable Z ∈ Rdz whose dimension is dz . P (X|C,Z)
is defined as the conditional likelihood given the observa-
tion information C and latent variable Z. We can vary the
prior distribution Q to achieve different distributions of X
given the same observation C. In our proposed approach,
we introduce two different prior distributions Qacc(Z|C)
and Qdiv(Z|C). We intend to estimate the data distribu-
tion PD using P (X|C;Q) with prior Qacc(Z|C), and get
the most diverse distribution which mainly focuses on the
minor modes by sampling from Qdiv(Z|C). The overall
framework is illustrated in Figure 2. Similar to [62], we
define the historical observation encoder eh(C) and future
information encoder ef (X) as

eh(C) = [MLP ◦ RNN](C)

ef (X) = [MLP ◦ RNN](X),
(2)

where we first encode the temporal information of trajecto-
ries by using a recurrent neural network (RNN) and then use
a forward neural network to map the states of RNN to the
feature embedding space. Based on the historical embed-
ding eh(C) and latent variable Z, We denote the decoder
function dθ(X|C,Z) as:

dθ(X|C,Z) = [MLP ◦ RNN](eh(C)||Z), (3)

where θ is the parameter of the decoder. In general, the
outputs of the decoder are the parameters of a probabilis-
tic distribution, e.g., the mean and variance of a Gaussian
distribution. In this work, we use a deterministic decoder,
and the output of the decoder is the predicted poses. For
convenience, the output of the decoder is also denoted by
Equation 3. The randomness of the decoder is only depen-
dent on Z. “||” represents the concatenate operator of two
vectors. We use a similar neural network structure for the
decoder with the encoders. The details of the operator ◦ are
in the supplementary material.
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4.1.1 Accuracy Sampler

The first objective is to infer the accuracy prior distribution
Qacc(Z|C). We intend to approximate the data distribution
by sampling from the accuracy prior distribution. Hence,
we apply the variational inference to maximize the evidence
lower bound (ELBO) of the log-likelihood:

LELBO = EQψ(Z|X,C)[logPθ(X|Z,C)]

−DKL[Qψ(Z|X,C)||Qacc(Z|C)],
(4)

where Qψ(Z|X,C) is the posterior distribution of latent
variable Z given the historical observation and future in-
formation. There are some works [8, 52, 55, 65] investigat-
ing the collapse problems for conditional variational infer-
ence. Those works argue that using a universal prior distri-
bution, i.e., an independent isotropic Gaussian distribution,
may not be a good choice for conditional distribution esti-
mation [8, 52]. It is difficult to capture complex conditional
multi-modal data and introduce strong model bias resulting
in missing modes [53, 55, 65]. Hence, instead of using an
isotropic Gaussian distribution N (0, I) which is indepen-
dent of C, we model Qacc(Z|C) as a Gaussian distribution
N (µφacc(C),Σφacc(C)). The DKL[Qψ||Qacc] is:

1

2
[log
|Σφacc |
|Σψ|

− nz + Tr(Σ−1
φacc

Σψ) + ||µφacc − µψ||2Σ−1
φacc

],

(5)
which can be calculated analytically. Since we have no con-
trol of the distribution Qacc(Z|C), it could be arbitrarily
distribution and it will increase the difficulty of training. In
order to constrain the prior distribution, we use the best-of-
many loss as the regularization of the prior model:

Racc = min
i
‖X̂i −X‖2

zi ∼ Q(Z|C)

X̂i = dθ(X|C, zi), i = 1, . . . , nacc,

(6)

where nacc is the number of samples. Then the overall loss
for the accuracy sampler is:

LA(θ, ψ) = −λELBOLELBO + λaccRacc, (7)

where λelbo and λacc are used to balance two losses.

4.1.2 Diversity Sampler

In order to explore the different modes of possible fu-
ture poses, we propose to learn another prior distribution
Qdiv(Z|C) with parameter φdiv. We utilize a common di-
versity loss definition:

DIV(X ,Y) =
1

NxNy

∑
i,j

e−d(Xi,Y j)

Xi,Y j ∈ X ,Y, i = 1, . . . , Nx, j = 1, . . . , Ny,

(8)

where X and Y represent two sets of samples with size Nx
and Ny . d(·, ·) is a metric defined in the Euclidean space.
We define the metric as d(x, y) = η||x − y||2, where η
is a parameter to determine the sensitivity of the distance
between two samples. We denote the set of the samples
which are generated by the accuracy sampler asXacc and the
set of samples generated by the diversity sampler as Xdiv.
Then we define the diversity loss as:

Ldiv = αdivDIV(Xdiv,Xdiv) + (1− αdiv)DIV(Xdiv,Xacc),
(9)

where DIV(Xdiv,Xdiv) represents the diversity of samples
generated by the diversity sampler. DIV(Xdiv,Xacc) rep-
resents the average pairwise distance between the samples
from accuracy and diversity sampler. In the previous works,
when the weight of diversity loss is large, it will have a neg-
ative influence on the accuracy sampler to approximate the
data distribution. Since we intend to disentangle the accu-
racy objective and diversity objective, we only increase the
pairwise distances between samples from the diversity sam-
pler by using the first term in Equation 9 , and we make the
samples from the diversity sampler dissimilar to the sam-
ples from the accuracy sampler by using the second term
in Equation 9. We can determine the relative importance of
the two items in 9 by a weight αdiv. A larger αdiv means that
we focus on making the samples from Qdiv more different.

Only using the diversity loss is not enough to get a re-
alistic prediction since it is possible to increase diversity in
the wrong way. For instance, one model can generate ran-
dom noises or arbitrary invalid poses. Hence, we need to
use human motion in the data to constrain the prediction. In
order to constrain each generated poses from the diversity
sampler, we assume that there exists an oracle:

X̃t+1:t+τ ∼ O(Xt, τ), (10)

where O(Xt, τ) is the probabilistic distribution of future
poses with horizon τ given the current initial pose Xt. The
oracle O can be seen as a teacher to distill the “knowledge”
of the future poses into the predictor. Based on the oracle,
we define a sample-based loss:

Lref(τ) =
1

ndiv

∑
i,s

min
j
‖X̂i

sτ+1:(s+1)τ − X̃j
sτ+1:(s+1)τ)‖

2,

s.t.zi ∼ Qdiv(Z|C), X̂i
1:T = dθ(X|C, zi),

X̃j
sτ+1:(s+1)τ ∼ O(X̂sτ , τ),

i = 1, . . . , ndiv, j = 1, . . . , no, s = 0, . . . , T/τ − 1,
(11)

where τ represents the time interval of predicted poses from
the oracle. ndiv is the number of samples generated from di-
versity prior, and no is the number of samples which the
oracle provides. W.l.o.g, we assume that the current time
step is 0, and the prediction horizon is T . Given one sam-
ple X̂i

1:T , the oracle provides several possible short-term
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Figure 3. The procedure of short-term oracle supervision. During training, we can get several predicted human motions. For each sample
(indicated by the blue arrow), the poses will be fed to the oracle after each τ time steps. The oracle will provide several possible future
poses as options. The predicted human motions only need to be similar to one of the options in each short time horizon.

futures X̃j
sτ+1:(s+1)τ given the current predicted pose X̂i

sτ

recursively. We enforce the short-term predicted sequence
X̂i
sτ+1:(s+1)τ to be similar with one of the provided futures

X̃j
sτ+1:(s+1)τ . Notice that the diversity loss Ldiv defined in

Equation 9 will encourage the predictor to choose one of the
provided future human motions which is useful to increase
the diversity. The illustration of the oracle supervision pro-
cedure is shown in Figure 3.

We also adopt several widely-used physical feasibility
losses [42, 62, 63] such as the limbs’ constraint Llimb and
the velocity constraint Lvel as Lphy:

Lphy = λvelLvel + Llimb. (12)

The details of each item in Equation 12 are provided in
the supplementary material. Therefore, the overall loss for
the diversity sampler is:

LD = λrefLref + λdivLdiv + Lphy, (13)

where λref and λdiv decide the importance of losses. Be-
sides, we use a low-pass filter to smooth the predicted poses
generated by the diversity sampler after training. Please see
the details in the supplementary material.

4.2. Short-term Oracle Design

We introduce an oracle to supervise the predictor in Sec-
tion 4.1.2. In this section, we discuss how to obtain the
oracle. We propose to learn a short-term oracleO(X, τ) by
using another conditional variational autoencoder to capture
the pseudo-ground-truth multi-modality. In order to achieve
such goal, several works utilize the similarity search tech-
niques [59]. This method is also used in [61, 62] as the
multi-modality evaluation metrics. In our work, we define:

Ω(Xt) = S(Xo; τ,K)

Xo = {X1
t+1:t+τ . . .X

|Xo|
t+1:t+τ}

d(Xj
t ,Xt) ≤ δ, ∀j = 1, . . . , |Xo|,

(14)

where Xo represents the set of all the future poses whose
corresponding initial poses Xj

t are in a ball with radius δ
which centered at the given initial pose Xt. The ball is
defined by metric d(·, ·). Ω(Xt) represents the set of K
selected future poses which has time horizon τ given the
initial pose Xt. Since there can be many similar poses to
the given initial poses and most of the corresponding future
poses are very similar, we need to select a proper fixed num-
ber of future poses in Xo in order to capture the different
modes. Here we use the k-determinantal point process (k-
DPP) as the selection strategy S to choose the future poses.

4.2.1 k-Determinantal Point Process

k-determinantal point process [31] is widely used to sample
the diverse points given a fixed number of samples. Given
a set X = {X1, X2, . . . , Xn}, a k-determinantal point pro-
cess defined on X is a probability measure on 2X :

Pr(S) =
det(LS)1(|S| = k)∑
S⊂[n],|S|=k det(LS)

, (15)

where we denote S as a subset of X and LS ∈ R|S|×|S| as
the similarity matrix:

{LS}ij = e−d(Xit+1:t+τ ,X
j
t+1:t+τ ). (16)

We preprocess the training data to augment each case
with K futures poses. Several sampling algorithms [17, 25]
for the determinantal point process can be used directly.

4.2.2 Short-term Oracle Model

The short-term oracle can be trained with any approach pro-
posed in Section 2. In our experiments, we use a condi-
tional variational autoencoder similar to the likelihood sam-
pler defined above after getting the augmented data with the
prediction horizon τ . Now, we can provide more diverse fu-
tures given the exact same historical observation. Since the
augmented data is balanced by the k-determinantal point
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process, there will be fewer extremely minor modes and
hence mitigate the trouble of rare-case sampling. The de-
tails of the short-term oracle neural network structure are
provided in the supplementary material.

5. Training and Testing Process
The training procedure is summarized in Algorithm 1.

We generate the same number of samples from both accu-
racy prior and diversity prior for training. Notice that the
diversity loss Ldiv does not backpropagate to the accuracy
prior Qacc(Z|C) since we do not want the diversity loss
influence the accuracy prior. After we get the optimized

Algorithm 1: Training Procedure
Input: N : number of epoches. nacc: number of

samples for accuracy sampler Qacc. ndiv:
number of samples for diversity sampler
Qdiv. no: number of samples generated from
oracle O.

Output: θ, φacc, φdiv
Data: Training dataset Dtrain

1 while epoch ≤ N do
2 Sample B = {Xi,Ci}i ∼ Dtrain
3 foreach X,C ∈ B do
4 Generate nacc samples:
5 X̂i

acc = d(X|C, zi), zi ∼ Qacc(Z|C)
6 Generate ndiv samples:
7 X̂i

div = d(X|C, zi), zi ∼ Qdiv(Z|C)
8 for s = 0, . . . , Tf/τ − 1 do
9 Generate no samples:

10 X̃j
t+sτ+1:t+(s+1)τ ∼ O(X̂div,t+sτ , τ)

11 Update θ, ψ, φacc with LA
12 Update θ, φdiv with LD

model, we can decide the ratio of diverse samples, which
mainly focus on the most different modes compared with
the major modes by adjusting the ratio number ρ. The test-
ing procedure is summarized in Algorithm 2.

Algorithm 2: Testing Procedure
Input: ρ: The proportion of samples from Qdiv in

the total samples , M : the total number of
samples

Output: X̂ , The predicted poses
Data: Testing Dataset Dtest

1 foreach X,C ∈ Dtest do
2 Generate (1− ρ)M samples from Qacc
3 Generate ρM samples from Qdiv

6. Experiments
In this section, we introduce the datasets and evaluation

metrics first. Then the quantitative, qualitative analysis, and
ablation analysis are provided. Implementation details, ad-
ditional results, limitations, and future work are provided in
the supplementary material.

6.1. Datasets

We evaluate our method on Human3.6M [26] and
HumanEva-I dataset [51] and use identical settings with the
other baselines. Human3.6M dataset consists of 11 subjects
and 3.6 million video frames. There are 15 actions for each
subject. The human motion is recorded at 50Hz. We adopt
a 17-joint skeleton representation in our work. We use five
subjects (S1, S5, S6, S7, S8) for training and testing with the
other two subjects (S9 and S11). The predicted future mo-
tion horizon is 2 seconds (100 time steps), and the historical
motion horizon is 0.5 seconds (25 time steps). HumanEva-
I dataset includes three subjects. The record rate of human
motion is 60Hz. We choose to use the 15-joint skeleton rep-
resentation. We use the same training and testing datasets
which are provided by the official website. We predict fu-
ture motion for 1 second (60 time steps) with 0.25 seconds
(15 time steps) observation.

6.2. Evaluation Metrics

The following metrics are used to evaluate the perfor-
mance of methods. For accuracy, we use Average Dis-
placement Error (ADE) which is defined as the average Eu-
clidean distance over the prediction time steps between the
ground truth motion Xt+1:t+Tf and the closest sample [62],
and Final Displacement Error (FDE), which is the Eu-
clidean distance between the final ground truth pose and the
final predicted pose, i.e., mini ‖X̂i

t+Tf
−Xt+Tf ‖. For di-

versity, we use Average Pairwise Distance (APD), which is
the L2 distance between all pairs of motion samples, which
is computed as 1

K(K−1)

∑
i6=j ‖X̂i

t+1:t+Tf
− X̂j

t+1:t+Tf
‖.

6.3. Quantitative Analysis

We compare our approach with several baselines in Ta-
ble 1. The baselines include deterministic methods such as
acLSTM [37] and ERD [21], probabilistic approaches such
as MT-VAE [60] and Dlow [62], etc. We use 50 samples
to evaluate the prediction performance for all methods. We
directly use the results of baselines from [62] and [64].

In Table 1 we can conclude that our method with ρ =
0.46 can achieve a better performance compared with the
other baselines in terms of all the metrics. In general,
probabilistic methods such as Best-of-Many and GMVAE
can achieve better accuracy and diversity than deterministic
ones such as acLSTM and ERD. We can observe that most
of the methods will have worse ADE and FDE if the APD
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Human3.6M

ERD [21] acLSTM [37] Pose-Knows [56] MT-VAE [60] HP-GAN [5] BoM [9] GMVAE [19] DeLiGAN [24] DSF [61] Dlow [62] DCT5/DCT20 [64] Ours

APD ↑ 0 0 6.723 0.403 7.214 6.265 6.769 6.509 9.330 11.74 12.579/15.920 14.24

ADE ↓ 0.722 0.789 0.461 0.457 0.858 0.448 0.461 0.483 0.493 0.425 0.412/0.416 0.414

FDE ↓ 0.969 1.126 0.560 0.595 0.867 0.533 0.555 0.534 0.592 0.518 0.514/0.522 0.516

HumanEva-I

ERD [21] acLSTM [37] Pose-Knows [56] MT-VAE [60] HP-GAN [5] BoM [9] GMVAE [19] DeLiGAN [24] DSF [61] Dlow [62] DCT5/DCT20 [64] Ours

APD ↑ 0 0 2.308 0.021 1.139 2.846 2.443 2.177 4.538 4.855 4.181/6.266 5.786

ADE ↓ 0.382 0.429 0.269 0.345 0.772 0.271 0.305 0.306 0.273 0.251 0.234/0.239 0.228

FDE ↓ 0.461 0.541 0.296 0.403 0.749 0.279 0.345 0.322 0.290 0.268 0.244/0.253 0.236

Table 1. Quantitative results on Human3.6M and HumanEva-I dataset. Our results and the best results of baselines are highlighted.
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(b) Predicted end poses on HumanEva-I dataset.
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(c) Predicted human motion on Human3.6M dataset.
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(d) Predicted human motion on HumanEva-I dataset.

Figure 4. Visualization of prediction results on Human3.6M and HumanEva-I dataset. Figure 4a and Figure 4b illustrate ten predicted end
poses generated from both accuracy prior (first row) and diversity prior (second row). Figure 4c and Figure 4d show the predicted time
sequences. The sequence in the first row is the ground truth motion. The sequence in the second row is one of the samples generated from
accuracy prior and the sequence in the third row is one of the samples generated from diversity prior.

is larger in general. It is because there exists a trade-off be-
tween diversity and accuracy. Compared with DLow, our
approach improve the performance on both Human3.6M
and HumanEva-I datasets. We also compare our results with
DCT5 and DCT20 in [64], which use the frequency repre-
sentation with the CVAE framework. Our results are on a
par with their performance on both datasets.

6.4. Qualitative Analysis

We illustrate 10 end poses of random samples generated
from both accuracy prior function and diversity function in
Figure 4a and 4b. The first row shows the samples from the
accuracy prior function. We notice that most samples are
similar to the ground truth, which represents that the accu-
racy sampler can generate the predicted future human mo-
tions with high accuracy. The second row shows the sam-
ples from the diversity sampler. We notice that the predicted
poses from the diversity sampler have more different modes
and are not similar to the samples generated from the accu-
racy sampler. It can be attributed to the second item in the
diversity loss Ldiv in Equation 9, where we encourage our
diversity prior to generating dissimilar samples to the ones

generated from the accuracy sampler. We also illustrate two
samples of predicted human motion from both accuracy and
diversity sampler for both datasets in Figure 4c and Figure
4d. We notice that the predicted time sequences are smooth.
The samples from the accuracy sampler can be very accu-
rate compared with the ground truth. More visualization
results are provided in the supplementary material.

6.5. Different Sampling Ratio

In Figure 5, we illustrate the different metrics values with
respect to the number of samples nacc generated from the ac-
curacy sampler during testing. When nacc equals 0, it means
that we only sample from the diversity prior distribution.
We can see that ADE and FDE increase since the diversity
sampler is designed to focus on exploring more different
possible modes instead of matching the likelihood of data.
Hence, we observe that APD can achieve around 18 when
nacc = 0. When nacc increases, we observe that both the ac-
curacy metrics (ADE and FDE) and diversity metric (APD)
decrease. The accuracy metrics decrease slowly when the
nacc is large enough. When nacc = 50, which means that all
the samples are generated from the accuracy sampler, we
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observe that APD decreases to around 6 and the accuracy
metrics achieve the best performance.

Figure 5. APD, ADE and FDE with respect to nacc on Human3.6M
dataset. Red and brown bars indicate the accuracy metrics ADE
and FDE. The blue bar indicates the APD.
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(a) Samples from the predictor with τ = 25.
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(b) Samples from the predictor with τ = 100.

Figure 6. Visualization of predicted end poses of motions on Hu-
man3.6M dataset with different oracles. Figure 6a illustrates the
performance of the predictor with oracle (τ = 25). Figure 6b il-
lustrates the performance of the predictor with oracle (τ = 100).
In each figure, the first row are the samples generated from ac-
curacy prior function. The second row are the samples generated
from the diversity prior function.

6.6. Ablation Analysis

Using Short-term Oracle Prediction Horizon τ In order
to investigate whether dividing the prediction horizon into
several short-term ones can help the predictor discover more
possible modes, we evaluate our models with the oracles
which have different prediction horizon length τ . We com-
pare our framework supervised by a short-term oracle with
τ = 25 and our framework supervised by the one with the
full-length of prediction horizon, i.e., the prediction is not
divided into short-term subsequences. We show the results
of Human3.6M dataset in Figure 6. We can see that when

τ = 25, short-term

nacc 0 7 14 21 28 35 42 50

ADE ↓ 0.941 0.459 0.433 0.421 0.413 0.411 0.407 0.404
FDE ↓ 1.170 0.598 0.551 0.529 0.515 0.510 0.504 0.501
APD ↑ 18.79 18.16 17.14 15.73 14.04 12.02 9.265 5.927

τ = 100, non-short-term

nacc 0 7 14 21 28 35 42 50

ADE ↓ 0.504 0.431 0.417 0.409 0.406 0.402 0.401 0.402
FDE ↓ 0.580 0.523 0.505 0.495 0.491 0.486 0.488 0.497
APD ↑ 7.346 7.397 7.360 7.234 6.997 6.683 6.255 5.651

Table 2. The comparison with different τ on Human3.6M dataset.

using the oracle with τ = 100, i.e., the prediction horizon
of the oracle is not short-term and the horizon is the same
as the target prediction horizon, and the diversity is lower
than the one which has τ = 25. It shows that the oracle
with a short prediction horizon indeed increases the diver-
sity. We also compare the different metrics of two models
with different τ , and the results are summarized in Table
2. We notice that ADE and FDE with nacc = 50 of both
models with τ = 100 and τ = 25 are similar since all the
samples are from the accuracy samplers. However, when
nacc decreases, we observe that the diversity of the model
supervised by the oracle with τ = 100 does not increase so
much. We also observed that ADE and FDE of the model
supervised with oracle (τ=100) does not change too much
when nacc is greater than 28 and APD does not change too
much when nacc is smaller than 14. It is reasonable since
the model supervised by the oracle with τ = 100 only ex-
plores limited and less possible diverse modes than the one
supervised by the oracle with τ = 25. It also supports our
suggestion that the short-term oracle indeed helps the pre-
dictor discover more possible future motions meanwhile the
accuracy of prediction is maintained.

7. Conclusion
In this work, we propose a multi-objective diverse hu-

man motion prediction framework, which can enable ad-
justable sampling during the testing time. In order to en-
hance the diversity of predicted poses, we introduce a short-
term oracle to instruct the predictor to discover more diverse
possible modes of future poses. Such a framework over-
comes the trade-off between likelihood sampling and di-
versity sampling. Thanks to both the multi-objective struc-
ture and short-term oracle, Our proposed approach achieves
state-of-the-art performance in terms of accuracy and diver-
sity. The experiment results and ablation studies demon-
strate the effectiveness of the proposed method. Several fu-
ture directions could be investigated. First, since our pro-
posed approach is a general framework, more complicated
structures such as graph neural network and transformer can
be incorporated. Second, we currently assume that the hori-
zon of short-term oracle is fixed. How to dynamically de-
cide the short-term horizon will be the future work.
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