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Figure 1. Examples of the learning course of our Layer-wise Image Vectorization. The proposed method can reconstruct the image in a
layer-wise coarse-to-fine manner with only few paths. “N” indicates the path number.

Abstract

Image rasterization is a mature technique in computer
graphics, while image vectorization, the reverse path of
rasterization, remains a major challenge. Recent ad-
vanced deep learning-based models achieve vectorization
and semantic interpolation of vector graphs and demon-
strate a better topology of generating new figures. How-
ever, deep models cannot be easily generalized to out-of-
domain testing data. The generated SVGs also contain
complex and redundant shapes that are not quite conve-
nient for further editing. Specifically, the crucial layer-
wise topology and fundamental semantics in images are still
not well understood and thus not fully explored. In this
work, we propose Layer-wise Image Vectorization, namely
LIVE, to convert raster images to SVGs and simultane-
ously maintain its image topology. LIVE can generate com-
pact SVG forms with layer-wise structures that are seman-
tically consistent with human perspective. We progressively
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add new bézier paths and optimize these paths with the
layer-wise framework, newly designed loss functions, and
component-wise path initialization technique. Our experi-
ments demonstrate that LIVE presents more plausible vec-
torized forms than prior works and can be generalized to
new images. With the help of this newly learned topol-
ogy, LIVE initiates human editable SVGs for both design-
ers and other downstream applications. Codes are made
available at https://github.com/Picsart-AI-Research/LIVE-
Layerwise-Image-Vectorization.

1. Introduction
Scalable Vector Graphics (SVGs) [23], which describe

images with a collection of parametric shape primitives,
have recently attracted increasing attention due to the high
practical value in computer graphics. Compared with raster
images that present the visual concepts using ordered pix-
els, vector images enjoy many advantages, like compact file
size and resolution-independency. Most importantly, vector
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images provide layer-wise topological information, which
is crucial for image understanding and editing.

In the last few years, we have witnessed various achieve-
ments in image-to-vector translation [3, 7, 14, 16, 24, 29],
mainly due to advances in two technical directions: building
powerful generation models, and employing decent differ-
entiable rendering methods. These methods, despite their
promising vectorization and generation ability, have always
overlooked the topological information hidden behind the
raster images. The missing of such information always in-
curs inadequate learning of vectorization and requires su-
perfluous shape primitives to make up [14, 15, 38]. Some
methods attempt to resolve this dilemma by either focusing
on particular simple datasets [24, 25] or employing a seg-
mentation pre-processing method [7, 8], but each one has
its own drawbacks and subtleties. The first line of work
learns to explore the geometric information of fonts or emo-
jis but cannot be generalized to broad domains. The other
line that considers segmentation pre-processing method re-
quires heavy pre-processing operations and would segment
high-contrast texture into multiple small regions, resulting
in redundancy [8]. Hence, a simple yet effective method is
desired in the community to capture the layer-wise repre-
sentation for image-to-vector translation.

In this paper, we introduce a Layer-wise Image
VEctorization method, termed as LIVE, to translate a raster
image to vector graphics (i.e., SVG) with layer-wise rep-
resentation. Different from previous works [15, 24], LIVE
is model-free and requires no shape primitive labels. This
property helps us to escape the regime of particular do-
mains like fonts and emojis, and bypass the difficulty of
SVG dataset collection or generalization. Moreover, LIVE
enjoys an intuitive and succinct learning course. In each
step, we are in pursuit of maximizing the topology explo-
ration rather than only minimizing the pixel-wise differ-
ence. The key insight behind this idea is that simply min-
imizing the vectorization error (e.g., MSE loss between an
input raster image and rendered vector graphics) for opti-
mization would lead to a color mean error. We achieve this
by a component-wise path initialization method and a novel
Unsigned Distance guided Focal loss function (UDF loss).
Besides, to mitigate the self-interaction issue, which always
occurs in the optimization course [24], we present a novel
Self-Crossing loss (Xing loss) by adding constraints to the
control points optimization.

We evaluate our proposed method for various tasks, in-
cluding image-to-vector translation and interpolation across
domains (e.g., cliparts, emojis, photos, and natural images)
to showcase the effectiveness of LIVE. Our main contribu-
tions in this work can be summarized as follows:

• We propose LIVE, a general image vectorization
pipeline that hierarchically optimizes the vector graph
in a layer-wise manner. Our rendering scheme is fully

differentiable and can generate layer-wise SVGs which
are largely consistent with human perception.

• Together with LIVE, we also introduce a general ini-
tialization method and novel loss functions, including
Self-Crossing loss (Xing loss) and Unsigned Distance
guided Focal loss (UDF loss). These methods improve
the generation of SVGs from raster images, reducing
curve intersection and minimizing the shape distortion.

• Comprehensive experiments demonstrate that LIVE
can generate precise and compact SVGs in various do-
mains. Our SVG results surpass the results from prior
works in terms of simplicity and layer-wise topology.

2. Related Work
In this section, we mainly summarize prior approaches

and introduce works that are closely related to our paper.

2.1. Rasterization and Vectorization

Rasterization and vectorization are dual problems in
computer graphics. In the past decades, many rasterization
works focused on either effective rendering [9, 11, 19, 20]
or anti-aliasing [2, 4, 6, 18]. Traditional vectorization meth-
ods [5, 13, 28, 32–34] pre-segmented images before vector-
ization. Among them, [28] and [5] utilized the empirical
two-stage algorithm to regress segmented components as
polygons and bezigons. Researchers also investigated other
approaches that were independent of segmentation, such
as diffusion curves [21, 35, 37] and gradient meshes [31].
The rise of deep learning motivated researchers to tackle
vectorization via differentiable rendering. Yang et al. [36]
proposed that bezigons can be directly optimized with self-
crafted loss functions by computing gradients using wavelet
rasterization [18]. Li et al. [14] found shape gradients
by differentiating the formula of Reynolds transport the-
orem [26] with Monta-Carlo edge sampling. Meanwhile,
combining differentiable rendering techniques with deep
learning models is a trending research direction. New net-
works that based on recurrent neural network [10], varia-
tional autoencoder [10, 17], and transformer [27] are intro-
duced to tackle vectorization and vector graph generation
problems. In [10], Ha et al. introduce SketchRNN, which
is the first RNN-based sketch generation network. In [17],
Lopes et al. introduce an SVG decoder and combine it with
a pixel VAE to generate novel font SVGs in latent space.
In [27], Rebeiro et al. propose Sketchformer, a transformer-
based network that recovers sketches from raster images.

2.2. Image Topology

A human editable SVG should be well-organized in ob-
jects and shapes. Prior works have explored such image
topology for both raster images and vectorized shapes. A
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prototype work was Photo2ClipArt [8], where images were
first split into segments which were later vectorized then
combined for visual hierarchy. Similar design repeatedly
occurs at other research works such as [29, 30]. Never-
theless, these methods were largely relied on the accuracy
of the segmentation step and were clumsy to recover im-
plicit shape geometry for complex scenes. Another research
branch designed end-to-end frameworks to generate or edit
image hierarchy through one forward pass. For example,
DeepSVG [3] used VAE as its primary structure where in-
put strokes are first represented via an encoder and later
replaced by resampled strokes via a decoder. However,
DeepSVG performed SVG to SVG translation, a relatively
simple task. Stylized Neural Painting [38] reconstructed
images progressively with stylized strokes. Their design
principle was to greedy-search for the best stroke to min-
imize the loss. Yet their main focus was on raster images,
not SVG. Lastly, Im2Vec [24] proposed the Encoder-RNN-
Rasterizer pipeline to vectorize an image and obtain its
topology simultaneously. However, the ordering of the gen-
erated shapes was not robust, and the method was domain-
specific. Different from aforementioned methods, our LIVE
requires no pre-segmentation and no deep models, but ex-
hibits gratifying ability to explore image topologies.

3. LIVE: Layer-wise Image Vectorization

3.1. Framework

We present a new method to progressively generate an
SVG that fits the raster image in a layer-wise fashion. Given
an arbitrary input image, LIVE recursively learns the visual
concepts by adding new optimizable closed bézier paths
and optimizing all these paths. While various shape primi-
tives are available to be appended to an SVG, we consider
the parametric closed bézier path as our fundamental shape
primitive, like the implementation in [14,24]. There are sev-
eral reasons behind this setting. First, this strategy would
greatly reduce the design space and significantly ease the
learning course of LIVE. Also, bézier paths are powerful
and easy to approximate diverse shapes, making it unneces-
sary to introduce various shape primitives. Last, it is con-
venient for us to control the shape complexity by varying
the number of segments s in each path. For complex visual
concepts, we can easily increase the segment number to bet-
ter reconstruct input, and vice versa. Note that the rendering
operation is usually non-differentiable, making it difficult to
directly optimize the path under the only supervision of the
target raster image. To grapple with this dilemma, we take
the advantage of a differentiable renderer from [14].

Algorithm. 1 shows the entire pipeline. Briefly, we first
introduce a component-wise initialization method that se-
lects the major components as the initialization points. Then
we run a recursive pipeline to progressively add n paths ac-

Algorithm 1: Algorithm of LIVE

P = [] ; // list of path control points
C = [] ; // list of path colors
w =1.0 ; // pixel-wise loss weight
α, β = 1.0, 0.01; // learning rate
for n in N do

// new points p ∈ Rn×4s×2

// new colors c ∈ Rn×4

p, c = init (n,w) ;
P = concat([P; p]);
C = concat([C; c]);
for j = 1 to t do

Î = render (P,C);

L = LUDF

(
I − Î

)
+ λLXing (P );

P = P − αdL(P)
dP ; // update points

C = C − β dL(C)
dC ; // update colors

end
w =

∥∥∥I − Î
∥∥∥
2

; // update w

end
Output: Scalable Vector Graphic SVG{P,C}.

cording to a path number scheduler sequence N. For each
step, we optimize the graph based on some newly proposed
objective functions, including an Unsigned Distance guided
Focal (UDF) loss and a Self-Crossing (Xing) loss for a bet-
ter optimization result regarding the reconstruction quality
and self-interaction problem. In addition to the layer-wise
representation ability, our method is able to reconstruct an
image using minimal number of bézier paths, significantly
reducing the SVG file size compared to other methods.
More details are covered in the following sections.

3.2. Component-wise Path Initialization

We find the initialization of bézier path is crucial in
LIVE. A bad initialization will lead to unsuccessful topo-
logical extraction and generate redundant shapes. To over-
come this defect, we introduce the component-wise path
initialization, which greatly helps the optimization course.

The design principle of the component-wise path initial-
ization is to identify the most suitable initial location of the
path based on the color and size of each component. One
component is one connected area that has a uniform-filled
color. As we mentioned earlier, LIVE is a progressive learn-
ing pipeline. Given the SVG output from previous stages,
we prioritize our next learning target so that the compo-
nent is both large and missing. We justify such component
via the following steps: a) We compute the l1 pixel-wise
color difference between the current rendered SVG and the
ground truth image. b) We reject color differences that are
smaller than a preset threshold cα. Empirically, cα = 0.1 in
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our paper. Pixel regions with color differences smaller than
cα are considered to be correctly rendered. c) For other
regions, we equally quantify all valid color difference val-
ues larger than cα into 200 bins. The quantization is ap-
proximately uniformly distributed. d) Finally, we identify
the largest connected component based on the quantization,
and we then use its center of mass as our next path ini-
tial location. If we want to add K more paths, then we
choose the top-K components for next-stage initialization.
Note that for each path, we consider the circle initialization
method that all control points are initialized uniformly on a
circle [24]. Empirically, this simple strategy helps to ease
the optimization course and is proved to be helpful.

The merit of our component-wise path initialization is
that it maintains a good balance between the color and
size of the missing region. Unlike DiffVG [14] and Neu-
ral Painting [38], in which the former randomly initializes
paths and the later initializes strokes based on MSE, our
approach focuses on semantic-influencing components that
are independent from its RGB value. While adding new
paths to the existing figures, our initialization methods can
always identify the largest missing components with similar
color, and fill in the major regions.

3.3. Loss Function

3.3.1 UDF Loss for Reconstruction

In previous work [14, 24, 25], a commonly used loss func-
tion to minimize the error between target image I ∈
Rw×h×3 and rendered output Î ∈ Rw×h×3 is the mean

square error (MSE)
∥∥∥I − Î

∥∥∥2
2
, where 3 represents RGB and

w × h represents image size. MSE loss is simple yet ef-
ficient for image comparison, but it will bias towards the
mean color of the entire target image, as shown in Figure 2.
This phenomenon is because MSE are computed using all
available pixels, while not all pixels are related to the op-
timizing path. Hence, we are encouraged to only focus on
valid pixels and ignore the unrelated ones.

To resolve this problem, we introduce the Unsigned Dis-
tance guided Focal (UDF) loss, which treats each pixel dif-
ferently based on the distance to the shape contour. Intu-
itively speaking, UDF loss emphasizes the differences close
to the contour and suppresses differences in other locations.
By doing so, LIVE protects itself from MSE’s mean color
issue and therefore maintains accuracy color reconstruction.

Without losing generality, we formulate our UDF loss
assuming the case with a single path. We render the path
and compute each pixel’s signed distance to the path repre-
sented by di, i ∈ {1, ..., h × w}. We then threshold, flip,
and normalize the unsigned distance |di| by:

d′i =
ReLU(τ − |di|))∑w×h

j=1 ReLU(τ − |dj |))
, (1)

RGB(244,196,72) RGB(93,134,194) RGB(86,132,194)RGB(225,179,83) RGB(244,197,87) RGB(108,126,152)
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Figure 2. Top line shows the differences between UDF loss and
MSE loss when learning the first path. MSE loss is biased towards
the mean color of the target image, while our UDF loss preserves
the color of the target shape. Best viewed in color. Bottom block
presents an example of UDF loss optimization course for the first
path. We normalize all values to the range of [0, 1] for better visu-
alization. Darker color (gray or red) means a higher value.

where both i and j are indices of pixels and τ is a distance
threshold. We set τ equals to 10 by default. Next, we for-
mulate our Unsigned Distance guided Focal loss as

LUDF =
1

3

w×h∑
i=1

di
′

3∑
c=1

(
Ii,c − Îi,c

)2

, (2)

where i indexes the pixel in I and c indexes the RGB chan-
nel. With the help of UDF loss, we are able to pay close
attention to the path contour and to avoid the effect from
inner or distant regions. Figure 2 shows the learning course
of Unsigned Distance guided Focal loss. To support mul-
tiple paths in our LIVE framework, we can easily extend
Equation 2 by averaging d′i over all paths.

3.3.2 Xing Loss for Self-Interaction Problem

We notice that it is possible for some bézier paths to become
self-interacted during the course of optimization, leading to
detrimental artifacts and improper topology [24, 36]. While
it might be expected that additional paths can cover the ar-
tifacts, we emphasize this would complicate the generated
SVG and cannot effectively explore the underlying topo-
logical information. To this end, we introduce the self-
interaction (Xing) loss to mitigate this problem.

Assuming all the bézier curves in our paper are third-
order, by analyzing a number of optimized shapes, we found
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Figure 3. Illustration of self-interaction problem. Top left pair
shows a circle with self-interactions and the lines between its ad-
jacent control points. Top right pair shows a shape without self-
interaction. Bottom line illustrates our Xing loss. In a cubic bézier
path, we encourage the angle (θ) between the first (A⃗B) and the
last (C⃗D) control points connections greater than 180◦.

that a self-interacted path always intersects the lines of its
control points, and vice versa. Figure 3 shows the exam-
ples. This suggests that instead of optimizing the bézier
path, one potential solution would be adding a constraint
on the control points. Assume the control points of a cubic
bézier path are A,B,C, and D in sequence, we add a con-
straint that the angle between

−−→
AB and

−−→
CD (θ in the figure)

should be greater than 180◦. We first determine the charac-
teristic (acute angle or obtuse angle) of ∠ABC as D1 and
the value of sin (θ) as D2 by

D1 = I
(
A⃗B × B⃗C

)
, D2 =

A⃗B × C⃗D∥∥∥A⃗B
∥∥∥ ∥∥∥C⃗D

∥∥∥ , (3)

where I (·) is a sign function that returns 1 (if D1 > 0 ) or 0
(if D1 ≤ 0), × is vector production that returns a real value.
We then formulate our Xing loss as

LXing = D1 (ReLU (−D2)) + (1−D1) (ReLU (D2)) . (4)

The basic idea of Equation 4 is that we only optimize the
case when θ < 180◦ (achieved by ReLU (±D2)). The first
term is designed for case D1 = 1 and the second term is
designed for case D1 = 0. Combining both UDF loss and
Xing loss, our final loss function L is given by

L = LUDF + λLXing, (5)

where λ is set to 0.01 empirically to balance the two losses.

3.4. Datasets

Existing vector graphics datasets [3,16] mainly focus on
the generation of either fonts or icons, but a broader domain
of images is not explored. Also, there is no testing set that

Em
oj
i

Pi
cs

Figure 4. Exemplars from Emoji dataset and Pics dataset.

can serve as a benchmark for evaluation. In this paper, we
test our model on two datasets, an Emoji dataset that mainly
collects a subset of emojis from [1], and a Pics dataset that
collects images from different domains. Figure 4 showcases
some examples from Emoji and Pics datasets.

Emoji Dataset. We collect 134 emojis with various
shapes, colors, and combinations from the NotoEmoji
project [1]. While various fonts and icons are given in this
project, we mainly collect the smiling face images, and re-
size all collected images to a resolution of 240×240. Com-
pared with the emojis used in [24], our Emoji dataset in-
cludes more images and presents more diversity. Since im-
ages in [1] are relatively simple and present clear topolog-
ical information, we mainly use this dataset to evaluate the
exploration of layer-wise representation.

Pics Dataset Besides the Emoji dataset, we also intro-
duce Pics dataset, which contains 153 images, including
fonts, icons, and complex clipart images. Compared with
the Emoji dataset, the Pics dataset is more complex and
challenging for image vectorization. Moreover, some im-
ages in the Pics dataset are with various backgrounds, fur-
ther increasing the vectorization difficulty. We mainly use
this dataset to examine the layer-wise modeling and com-
pact SVG with fewer paths.

Note that our LIVE is a model-free method, both datasets
are only used to evaluation. Besides the two datasets, we
also evaluate LIVE on some realistic photos.

3.5. Implementation Details

We implement LIVE in PyTorch [22] and optimize it us-
ing Adam optimizer [12], with a learning rate of 1 and 0.01
for points and colors optimization, respectively. By default,
we use four segments for each path in our experiments. The
circle radius is set to 5 pixels for circle initialization. For
each optimization step, all the parameters are trained for
500 iterations. Since our method progressively adds new
paths to the canvas, the number of new paths in each step is
flexible. Considering both the efficiency and vectorization
quality, we set the path number in ith optimization step to be
min

(
2i−1, 32

)
. Other number setting strategies also work,

like adding one path each time or a customized setting.
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Figure 5. Qualitative reconstruction comparison. We compare
LIVE with Im2Vec and DiffVG using a different number of paths.
We select four paths (the number of components in each image)
and 20 paths (default value in Im2Vec) for comparison. Intuitively,
LIVE can achieve perfect results using only four paths, and more
paths would not degrade the performance.

4. Experiments

4.1. Vectorization Quality

We first evaluate LIVE’s vectorization quality with both
quantitative and qualitative analysis, measuring the differ-
ences between input targets and SVG rendered images.

Qualitative Comparisons. Figure 5 shows the visual
comparisons with previous state-of-the-art methods includ-
ing DiffVG [14] and Im2Vec [24]. For fairness, we set the
number of path to 4 (the number of components in these
emojis) and 20 (the default setting in Im2Vec) for evalua-
tion. Clearly, our LIVE achieve a more faithful reconstruc-
tion with better component shapes and colors, while oth-
ers may still have other artifacts. Therefore, the proposed
LIVE better decouples the geometry of different compo-
nents. More results are in the supplementary materials.

Quantitative Results. Next, we quantize the vectoriza-
tion results on the Emoji and Pics datasets. For a fair com-
parison, the number of segments is set to 4 as the default
setting in DiffVG. To showcase that LIVE can reconstruct
one image with a minimal number of paths, we vary the path
number from 8 to 64 for the simple Emoji dataset and from
32 to 256 for the complex Pics dataset. For comparison, we
calculate the MSE of each image for the entire dataset.

The results on Emoji and Pics benchmarks are reported
in Figure 6. Clearly, LIVE shows a much lower MSE than
DiffVG, especially when the path number is small. When
only a few paths are employed, LIVE is able to fit the de-
sired shapes, leading to a better result. Increasing excessive
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MSE on Pics
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Figure 6. MSE vs. path number on Emoji dataset and Pics dataset.
Our LIVE achieves much better reconstruction results than Dif-
fVG, especially when the path number is smaller.

Figure 7. Illustration of the layer-wise representation on emoji and
clipart images. When the visual clues are easy to model, LIVE can
directly model each individual component, presenting a reasonable
and clear layer-wise representation.

paths would saturate the vectorization performance.

4.2. Layer-wise Representation

Besides the vectorization quality and efficiency, the main
objective of LIVE is to build a Layer-wise representation.
Empirically, LIVE is able to explicitly vectorize each indi-
vidual visual concept and explore the layer-wise represen-
tation for simple images like emojis and simple cliparts. We
demonstrate the layer-wise representation ability of LIVE in
Figure 7. As shown in the figure, each component is clearly
learned as a single bézier path. Different from the vector-
ization methods that leverage segmentation pre-processing
or use abundant paths, we can learn each component as an
unbroken shape. In Figure 9, we compare the vectorization
results of LIVE and DiffVG on the Emoji benchmark.

For complex images like photos and natural images, the
topological clues are relatively hard to model. However,
LIVE still exhibits a gratifying ability of the “coarse-to-
fine” learning style, as shown in Figure 8. LIVE is more
likely to achieve better reconstruction performance under
the same number of paths. Moreover, we notice that LIVE
models the local information much better than others, as
shown in the red boxes. This may be explained by our
progressive learning and the initialization method. In each
step, LIVE encourages the new paths to fit the local details.
While previous paths have successfully reconstructed the
main context, the newly added path will only focus on ini-
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Figure 8. We showcase the results of DiffVG [14], Neural Painting [38] and our LIVE under different number of paths/strokes. The two
images are taken from the Pics dataset and testing images from [38], respectively. Note that Neural Painting is not only designed for
reconstruction. We still visually compare with it because of its progressive learning fashion, which is similar to our LIVE. We use red boxes
to emphasize the differences. Please zoom in to see the details. More results will be presented in the supplementary materials.
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Figure 9. Vectorization results of DiffVG and LIVE. LIVE explic-
itly vectorized each visual concept, without any redundancy and
artifacts. Blue boxes indicate when LIVE vectorized all concepts,
and adding more paths will not damage the results.

tialized local regions with the enforcement of UDF loss. A
comprehensive user study also demonstrated the superiority
of LIVE (please refer to the supplementary).

4.3. Interpolation

Among existing vectorization methods, some VAE-
based methods explored the application of interpolation [3,
16, 24]. Even our LIVE is not based on the VAE model, we

Figure 10. Two examples of interpolation. Top tow rows show-
case the results of linear interpolating the bézier control points be-
tween two generated SVGs. Bottom two rows show the results
of combining LIVE and a simple VAE. Gray boxes mark the input
raster images. Intermediate images indicate the interpolations.

showcase that it is easy to achieve interpolation by integrat-
ing with vanilla raster image-based VAE model.

Before implementing the VAE interpolation, we first
conduct an interesting interpolation experiment: given two
semantically similar SVGs generated by LIVE, we directly
interpolate the control points of each ordered path linearly.
Normally, two SVGs are hard to be interpolated due to the

716320



Circle Initialization Random Initialization

Figure 11. Examples of different initialization methods. For each
triplet, we show the initialization (first column), output(second
column), and the detail (third column). Zoom in to see better.

disorder of both shapes and control points. In contrast, our
LIVE will not suffer from this issue because of the ordered
topology structures after optimization. Empirically, even
with the simple interpolation of linear control points, LIVE
still presents a reasonable result as shown in Figure 10.

Next, we integrate our method with the VAE model. We
train a simple VAE model on the MNIST dataset. Next,
two random images are selected, we linearly interpolate the
two latent vectors to obtain the interpolated images and use
our LIVE to vectorize the resulted images sequence. To
form a continuous sequence, we treat the previous result as
the initialization of the next sample. Results in Figure 10
demonstrate that combing with a vanilla VAE model, our
method works for interpolation as well. Given the efficient
optimization method and great generalization ability, LIVE
can be more practical to achieve the interpolation goal when
combined with a powerful image generation model.

4.4. Ablation study

Circle Initialization. We first investigate the effective-
ness of control point initialization. Figure 11 compares the
circle initialization and random initialization. Clearly, the
circle initialization significantly reduces the artifacts com-
pared with random initialization. Moreover, we notice that
circle initialization is more likely to achieve better vector-
ization results, as shown in the first row. The reason is that
with a circle initialization of control points, the close path is
enforced to be convex, and gets a finer optimization result.

Xing Loss. To understand the effectiveness of the pro-
posed Xing loss, we conduct an ablation study to investigate
the impact of Xing loss through visualization in Figure 12.
With the help of Xing loss, we clearly mitigate the problem
of self-interaction under the same optimization conditions.
The circle shape tends to not intersect, given the constraints
on the control points. It shows the proposed Xing loss is
an intuitive, simple but effective objective function for miti-
gating the self-intersection issues. More results will be pre-
sented in the supplementary materials.

Without Xing loss With Xing loss

Figure 12. Illustration of the effectiveness of Xing loss. Each
triplet shows the generated SVG, details, and the stroke of the face.
By adding Xing loss, we greatly mitigate the self-interaction prob-
lem. Please zoom in to see the details.

4.5. Discussion

Limitations and Future Works. LIVE presents a layer-
wise vectorization result, which can be used for further cli-
part creation or other applications. However, there are still
some issues that we can discuss. First, the layer-wise oper-
ation is not efficient as the single-pass optimization. Some
other methods also suffer from this issue [38]. An interest-
ing research direction would be how we can combine the
highly-efficient inference of deep models with the gener-
alization ability of the optimization-based methods. Sec-
ond, introducing gradient color and adaptively choosing the
segment numbers and color type for each segment will be
worth exploring. Third, for more complicated images like
landscape or human photos, combining layer-wise vector-
ization with deep amodal segmentation in pixel space will
be an interesting topic. We leave those for future works.

Potential Negative Impact. Image to vector technolo-
gies can be misused by illegally converting and copying
vector graph resources online, especially for easily reused
and modified font or other images. To mitigate these is-
sues, one can protect the copyright of the graph by using
watermarks on raster images. Besides, though our paper
achieves reasonable layer-wise modeling of the images, re-
sults converted from raster images can still be differenti-
ated by checking whether each component is intact enough.
Those actions will avoid the abuse of similar algorithms.

5. Conclusion
In this work, we present Layer-wise Image VEctoriza-

tion (LIVE), a framework to equip image vectorization with
layer-wise representation. LIVE progressively infers the in-
put raster image with the help of component-wise path ini-
tialization and new loss functions: an UDF loss for vec-
torization and a Xing loss to mitigate the self-interaction
problem. With LIVE, we can explicitly vectorize individual
components for a simple emoji or clipart, and investigate
the “coarse-to-fine” representation for complex natural im-
ages. To ease the evaluation of image vectorization, we also
present two datasets, Emoji, and Pics. Besides image vec-
torization, LIVE can also be integrated with other methods
to explore other applications like interpolation.
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