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Figure 1. Glass segmentations obtained with the RGB-only method of Lin et al. [21] (GSD) and the monochromatic polarization method
of Kalra et al. [17] (P Mask R-CNN) compared to our glass segmentation network. The detected region is indicated by the orange masks.
Both prior methods fail to cleanly separate the non-glass regions with similar appearance. In contrast our method accurately segments the
glass region with the help of the spectral polarization cues.

Abstract

Transparent and semi-transparent materials pose sig-
nificant challenges for existing scene understanding and
segmentation algorithms due to their lack of RGB texture
which impedes the extraction of meaningful features. In
this work, we exploit that the light-matter interactions on
glass materials provide unique intensity-polarization cues
for each observed wavelength of light. We present a novel
learning-based glass segmentation network that leverages
both trichromatic (RGB) intensities as well as trichromatic
linear polarization cues from a single photograph captured
without making any assumption on the polarization state of
the illumination. Our novel network architecture dynami-
cally fuses and weights both the trichromatic color and po-
larization cues using a novel global-guidance and multi-
scale self-attention module, and leverages global cross-
domain contextual information to achieve robust segmen-
tation. We train and extensively validate our segmenta-
tion method on a new large-scale RGB-Polarization dataset
(RGBP-Glass), and demonstrate that our method outper-
forms state-of-the-art segmentation approaches by a signif-
icant margin.

⋆ Xin Yang (xinyang@dlut.edu.cn) and Xiaopeng Wei are the corre-
sponding authors. Xin Yang and Bo Dong lead this project.

1. Introduction

Autonomous robots, aerial drones, and self-driving ve-
hicles rely on an array of sophisticated sensors and algo-
rithms that enable them to sense and understand their en-
vironment. However, objects with transparent or semi-
transparent materials remain an open challenge for exist-
ing scene understanding methods. In contrast to opaque
materials, transparent materials typically lack texture, and
their complex dynamic appearance depends over various lo-
cal and global properties, ranging from light-matter interac-
tions (i.e., reflection, refraction, and transmission), object
shape, and background, resulting in out-of-distribution ob-
servations that are difficult to model.

The majority of existing segmentation methods for trans-
parent materials leverage either contextual information [27,
41] or rely on boundary detection [11, 40]. Both strategies
operate in the RGB domain where the interactions between
light waves and transparent materials only produce weak
cues. A few works have investigated leveraging richer rep-
resentations of light-matter interactions for transparent ma-
terial recognition, such as light fields [23,34,43] and polar-
ization [17,19,20,37,39]. However, these method also rely
on strong assumption on the target size and reflectivity, or
assume restricted capture conditions.

In this work, based on that glass materials often pro-
vide a distinctive spectral-polarimetric response, we lever-
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age both trichromatic intensity and trichromatic linear po-
larization cues from images captured in-the-wild to infer
rich contextual information for robust transparent material
segmentation. Linear polarization cues, described by the
degree of linear polarization (DoLP) and the angle of po-
larization (AoLP), can provide strong cues [17] for trans-
parent object segmentation (Figure 1) and can be thought of
as intrinsic object textures for transparent materials. How-
ever, depending on the view and lighting conditions, these
cues might not be equally informative over all three wave-
lengths, or even confound valid RGB intensity cues. To
address these challenges, we design a Polarization Glass
Segmentation Network, which we dub “PGSNet”, that uti-
lizes an Early Dynamic Attention (EDA) module to dynami-
cally estimate three global scaling weights for each channel
of the trichromatic DoLP and AoLP. The weighted DoLP
and AoLP, together with the RGB image features, are fed
into a Conformer [31] backbone network to extract robust
global and local features. The multi-modal local features
are then fused by a Dynamic Multimodal Feature Integra-
tion (DMFI) module guided by the global features, and
subsequently used by a Global Context Guided Decoder
(GCGD).

To train PGSNet, we introduce a large-scale RGB-
Polarization dataset, dubbed RGBP-Glass, which contains
4,511 manually annotated RGB intensity images and the
corresponding trichromatic (i.e., RGB) AoLP and DoLP
images. To ensure diversity, we capture the images in the
RGBP-Glass dataset from different real-world scenes that
have significant variations in location, type, shape, color
contrast, and light conditions.

We demonstrate the effectiveness of our approach and
show the importance of multi-chromatic polarization cues
for glass segmentation. Our extensive experiments show
that our method significantly outperforms competing meth-
ods. We make the following contributions

• the first learning based method to exploit multi-
chromatic polarization cues for glass segmentation on
photographs taken in-the-wild;

• a novel attention-based glass segmentation network
that dynamically fuses RGB and multi-chromatic po-
larization cues; and

• a new and unique large-scale RGB-P glass segmenta-
tion dataset.

2. Background and Related Work
Polarization. Light is composed of transverse waves of
electric and magnetic fields, and its polarization state
describes the orientation of the transverse electric field.
Within a non-zero finite time of observation, this orienta-
tion can be randomly distributed (unpolarized), biased to-
ward a single direction (linearly polarized), or in between
the two extremes (partially linearly polarized). We focus

our discussion on linear polarization supported by emerg-
ing polarization-array CMOS sensors, and omit polarization
states such as circular and elliptical polarization. Typically,
these ‘polarization’ cameras record four linear polarization
states of light: I0◦ , I45◦ , I90◦ , and I135◦ , where Ix describes
the image captured by a linear polarizer at the angle x.

The polarization state of light can be described using a
Stokes vector S = [S0, S1, S2, S3], where S0 stands for
the total light intensity, S1 and S2 describe the ratio of the
0◦/45◦ linear polarization over its perpendicular counter-
part, and S3 is the circular polarization power. The Stokes
elements S0, S1, S2 can be computed from the measure-
ments I0◦ , I45◦ , I90◦ , and I135◦ as:

S0 = I0◦ + I90◦ = I45◦ + I135◦ ,
S1 = I0◦ − I90◦ ,
S2 = I45◦ − I135◦ .

(1)

The degree of linear polarization (DoLP) and angle of linear
polarization (AoLP) are then formally defined as:

DoLP =

√
S2
1 + S2

2

S0
, AoLP =

1

2
arctan

(
S2

S1

)
. (2)

The type and composition of materials are known to be
highly correlated to the DoLP and AoLP observations [4]
as illustrated for transparent glass materials in Figure 2.
However, this correlation is often challenging to analyti-
cally characterize for real-world scenes due to the many fac-
tors that contribute to the observations, and a key challenge
that we address through the various components that com-
prise PGSNet (section 4).

We are not the first to consider polarization cues. The use
of polarization cues has a rich history in computer vision
for a wide range of tasks such as estimating shape and/or
surface normals (e.g., [1–3, 6, 16, 33]), reflectance compo-
nent separation (e.g., [19, 20, 37]), and semantic segmenta-
tion (e.g., [17, 39]).
Transparent Object Segmentation. The majority of
glass object segmentation techniques work on regular RGB
images [11, 27, 40, 41, 46]. While these methods have
been able to achieve impressive results, RGB images only
provide weak glass segmentation cues and the efficacy of
these methods is reduced for cluttered scenes and print-out
spoofs [17]. To improve robustness, richer records of light-
matter interactions have been considered for transparent and
semi-transparent object segmentation, such as distortions
due to transparency in light-fields [23, 34, 43] and depth in-
formation [10, 32]. Despite the richer input sources, these
methods still rely on additional assumptions such as weak
specular reflections [23, 34, 43], limited object shapes [10],
or isolated objects [32], thereby limiting their generality.

Closest related to our work is the glass segmentation
network of Kalra et al. [17] that takes as input both in-
tensity image as well as polarization cues (i.e., AoLP and
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Figure 2. RGBP-Glass Examples. For each exemplar we show
two rows, with in the first column the RGB intensity (top) and ref-
erence glass segmentation (bottom), and in the last three columns
the polarization measurements for the red, green, and blue chan-
nels, respectively (top: AoLP, bottom: DoLP). The top exemplar
exhibits clear glass cues in both RGB and polarization. The mid-
dle exemplar features weak intensity cues, but a strong polariza-
tion cues in the red channel. The bottom exemplar does not show
strong cues in either RGB or polarization.

DoLP). However, Kalra et al. focus on robotic bin picking
and train their network on a proprietary training set of 1,600
monochromatic images of small transparent objects, ignor-
ing potential wavelength dependent cues embedded in the
AoLP and the DoLP. The lack of a large-scale dataset con-
taining in-the-wild transparent objects such as glass walls
and windows precludes the exploitation of polarization cues
for more general application scenarios . While we also
exploit polarization cues, our glass segmentation network
(PGSNet) differs in two critical aspects from the method of
Kalra et al. First, we use trichromatic polarization cues and
introduce a publicly-available large-scale RGB-P dataset of
in-the-wild transparent objects. Second, whereas Kalra et
al. only leverage local contextual attention, our method is
guided by both global and local contextual attention.

3. RGB-P Glass Segmentation Dataset
We collected a large-scale polarization glass segmen-

tation dataset, named RGBP-Glass using a trichromatic
polarizer-array camera (LUCID PHX050S) that records
four different linear-polarization directions (0◦, 45◦, 90◦,

Whole Dataset

Training Set

Testing Set

1

0

Whole Dataset

Training Set

Testing Set

1

0

(a) glass location distribution (b) glass instance/area log distr.

Figure 3. The RGBP-Glass dataset has a wide variation in (a) glass
location and (b) number of glass instances and relative size.

Datasets Segmentation Modality Total Num.Num.
task Color Pol. Images Train Test

GDD [27] Glass RGB × 3916 2980 936
Trans10K-Stuff [40, 41] Glass RGB × 4226 2455 1771

GSD [21] Glass RGB × 4102 3202 810
ZJU-RGB-P [39] Semantic RGB Tri 394 344 50

Polarized Monochrome [17] Glass Gray Mono 1600 1000 600
RGBP-Glass (Ours) Glass RGB Tri 4511 3207 1304

Table 1. Comparison of existing glass segmentation datasets.

and 135◦) for each color channel (i.e., R, G, and B) at a
612 × 512 resolution per polarization direction. RGBP-
Glass contains 4,511 RGB intensity and corresponding
pixel-aligned trichromatic AoLP and DoLP images with
manually annotated pixel-level accurate reference glass-
masks and associated bounding-boxes. Each image in
RGBP-Glass contains at least one in-the-wild glass object.
To ensure diversity of scenes, we capture the dataset from
different locations, view angles, lighting conditions, types
of glass, and shapes of glass. The polarization filter mask of
the camera reduces the light efficiency of the sensor, and we
compensate for this by using a f/1.6 aperture and manually
adjust the exposure time. Table 1 compares RGBP-Glass to
other similar datasets, and Figure 2 provides representative
examples. To avoid overfitting to glass location, object size
or number of glass instances, we ensure RGBP-Glass covers
a wide distribution of glass locations (Figure 3(a)), ratio of
glass area (Figure 3(b)), and number of glass instances per
image (Figure 3(b)). To the best of our knowledge, RGBP-
Glass is the most extensive publicly-available RGB-P-based
dataset for glass-like object segmentation tasks.

4. Spectral-Polarimetric Glass Segmentation
The three selected examples in Figure 2 show that po-

larization measurements can provide strong additional cues
for glass segmentation. However, naively including these
measurements in existing glass segmentation networks does
not necessarily yield the expected improvement in perfor-
mance. In typical cases, both RGB and polarization ob-
servations provide meaningful cues for glass segmentation
(e.g., Figure 2(a)). However, under certain light conditions
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Figure 4. Overview of PGSNet (a) and the three main building blocks: (b) the Dynamic Multimodal Feature Integration (DMFI) module,
(c) the Global Context Generation (GCG) module, and (d) an Attention Enhancement (AE) module.

and/or view angles, the polarization cues may be weak or
even non-existent, providing no meaningful cues for seg-
mentation (e.g., Figure 2(c)). Similarly, under adverse con-
ditions (e.g., fog), RGB intensities might not provide mean-
ingful cues either. Furthermore, even within a modality, the
cues provided by the different color channels might not be
equally important (e.g., Figure 3(b)), or even provide con-
tradictory cues. Effectively and dynamically fusing between
and within the multimodal cues is essential for robust mul-
timodal glass segmentation.

We introduce a novel Polarization Glass Segmentation
Network (PGSNet) that aims to dynamically fuse multi-
modal intensity and polarization measurements for robust
segmentation by leveraging both local and global contex-
tual information. PGSNet follows an encoder-decoder ar-
chitecture, summarized in Figure 4(a). During encoding,
an early dynamic attention module (EDA; subsection 4.1)
estimates global scaling weights for balancing the different
color channels within each of the trichromatic AoLP and
DoLP. Next, the weighted trichromatic AoLP and DoLP
along with the RGB intensity image are passed into three
separate Conformer [31] branches for feature extraction.
The goal of the Conformer stage is to balance differences
between glass and non-glass objects within each of the dif-
ferent sources. For example, if there is no or little polar-
ization observed on glass-like objects, then PGSNet should
leverage any potential global and local contextual informa-
tion between glass and non-glass objects in the polariza-
tion cues. In the final encoding step, we employ a novel

Dynamic Multimodal Feature Integration (DMFI) module
(subsection 4.2) to dynamically fuse together the extracted
local features from the three input sources (i.e., RGB, AoLP,
and DoLP) guided by the global features.

During decoding, we rely on the global contextual cues
to avoid over-segmentation. To avoid diluting global con-
text features with subsequent steps in the decoding pipeline,
we introduce a novel Global Context Guided Decoder
(GCGD; subsection 4.3) that employs an Attention En-
hancement (AE) module to dynamically provide global
guidance based on the multimodal global features from the
three Conformer branches.

4.1. Early Dynamic Attention (EDA)

The purpose of the EDA module is to estimate global
weight factors to balance the color channels in the AoLP
and DoLP measurements. We employ a ResNet-18 [13]
(with shared weights between color channels) followed by
a fully connected layer and a SoftMax operator to estimate
appropriate weights for each of the color channels. For-
mally, the EDA module can be denoted as:

wr, wg, wb = σ(⟨G(pr), G(pg), G(pb)⟩),
P = [wrpr, wgpg, wbpb], (3)

where p{r,g,b} are the red, green, or blue polarization mea-
surements (AoLP or DoLP) with weights w{r,g,b} respec-
tively; [·, ·, ·] indicates the concatenation operation over the
channel dimension; σ is the SoftMax function; ⟨·, ·, ·⟩ de-
notes a vector; and G is the weight estimation network.
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4.2. Dynamic Multimodal Feature Integration
(DMFI)

The importance of the cues gathered from the different
modalities (i.e., RGB intensity, AoLP, and DoLP), is scene-
dependent (cf. Figure 2). A naive combination of these cues
can dilute the impact of strong cues with weak signals, or
even amplify adverse effects of confounding cues . A Dy-
namic Multimodal Feature Integration (DMFI) addresses
the robust fusing of features from the three input domains by
leveraging global and local information. The DMFI mod-
ule, illustrated in Figure 4(b), consists of two blocks: a Dy-
namic Fusion (DF) block and a Multi-Scale Dependency
Perception (MSDP) block.
Dynamic Fusion (DF). The DF block first generates three
spatial attention maps on the three sequences of token em-
beddings provided by three Conformers [31] for each of the
three input modalities (see the supplemental material for de-
tails on Conformers). The extracted convolution features
are subsequently weighted by the attention maps and fused
(summer) together:

M4
I ,M

4
ϕ,M

4
ρ = σ(⟨Ω(T 4

I ),Ω(T
4
ϕ),Ω(T

4
ρ )⟩),

FDF =M4
I ⊗ C4

I +M4
ϕ ⊗ C4

ϕ +M4
ρ ⊗ C4

ρ , (4)

whereM are the attention maps generated from I , ϕ, and ρ,
the RGB intensity, AoLP, and DoLP input respectively, and
Ω is a function that first reduces the dimensions of every
token embedding to one via a fully connected layer, and
then subsequently reshapes the resulting embedding to a
2D map. C and T are the convolution features and token
embeddings generated by the conv and the trans branch in
the Conformer [31], respectively, where the superscript de-
notes the index of Conformer’s internal block, and ⊗ is the
element-wise multiplication.
Multi-Scale Dependency Perception (MSDP). To re-
duce the impact of shape variations and locations of the
glass objects, the MSDP block enhances the global de-
pendencies for locating glass objects in the dynamically
fused feature FDF using a specially designed multi-scale
self-attention mechanism. By varying the perceptive scales,
the MSDP block can effectively detect correlations between
regions at different scales. Formally:

FV = ψbr
3 (FDF ),

Fn
DP = ℑn(FV ) = FV + α ∗ U(N (An(FV ))),

FMSDP = [FDF , F
5
DP , F

7
DP , F

9
DP , F

11
DP ], (5)

where ψbr
k is a k × k convolution layer followed by a

Batch Normalization (BN) and ReLU activation function.
An is an adaptive average pooling with target size n ×
n, U is a bilinear upsampling, and α is a learnable pa-
rameter. N (x) is the self-attention operation defined as

V(x)(σ(K(x)TQ(x))); Q, K, and V are three learnable lin-
ear embedding functions, implemented as three fully con-
nected layers. Our MSDP block is similar to existing at-
tention schemes (e.g., PPM [47], ASPP [5] non-local atten-
tion [35]). We refer to the supplementary material for addi-
tional experiments validating that MSDP outperforms prior
schemes.

The final output of the DMFI block applies an additional
3×3 convolution to the output features of the MSDP block:
FDMFI = ψbr

3 (FMSDP ).

4.3. Global Context Guided Decoder (GCGD)

Global contextual cues are essential to avoid over-
segmentation during the decoding phase. Typically, these
global contextual cues are injected in the decoder via the
high-level features. However, as the decoding process pro-
ceeds to lower-level features, the influence of the global
contextual features dilutes. To retain the global contextual
information during the decoding process, we introduce a
novel Global Context Guided Decoder (GCGD) that con-
sists of a Global Context Generation (GCG) module (Fig-
ure 4(c)) that forms global guidance cues across the three
input domains, and an Attention Enhancement (AE) mod-
ule (Figure 4(d)) that leverages these global guidance cues
to enhance the low-level features.
Global Context Generation (GCG). Key to the GCG is
the observation that the token embeddings T 4

I , T 4
ϕ , and T 4

ρ

from the Conformers [31] are inherently global-aware char-
acteristics. We leverage these token embeddings by first
computing a set of cross-correlation features:

Fxy = X (T 4
x , T

4
y ),

= T 4
x +Υ(T 4

x , T
4
y ),

= T 4
x + ς(Q(T 4

y )K(T 4
x )

T /
√
d)V(T 4

x ), (6)

where xy ∈ {Iϕ, Iρ, ϕI, ϕρ, ρI, ρϕ}, ς is the sigmoid func-
tion, and d denotes the length of a token embedding. These
cross-correlation features are then combined via a linear
projection Γ, implemented by a fully connected layer:

T = Γ([FIϕ, FIρ, FϕI , Fϕρ, FρI , Fρϕ]). (7)

Attention Enhancement (AE). The AE utilizes the com-
bined features from the GCG module to enhance the input
features by computing and combining a spatial enhance-
ment map E and channel features e. In the GCGD, we de-
ploy four AE blocks, and the decoder features go through
the 4th AE block first. Mathematically, the j-th AE block is
defined as:

ej = R(F j) ∗ R(Tg)

Ej = PC(F
j ′) ∗ PT (ts, Tg),

F j ′′ = F j ′ ∗ Ej + F j ′, F j ′ = F j ∗ ej + F j ,

F j
AE = ψbr

3 (F j ′′) j ∈ [1, 4], (8)
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where F 4 = FDMFI and F i = F i
BD = ψbr

3 (Ci
I +

U(ψbr
3 (F i+1

AE ))), i ∈ [1, 3]. R(x) is the channel feature
generator defined as ς(ψ1(ψ

br
1 (A1(x)))); PC(x) is a spa-

tial map generator based on convolution features, defined as
ς(ψ7(x)); and PT (x, y) is also a spatial map generator but
based on token embeddings, defined as ς(Ω(y +Υ(x, y))).
Tg and ts are n glass and segmentation tokens in T .

4.4. Loss Function

We supervise both the encoder and decoder during train-
ing. For the encoder, we follow the training process for
Conformers [31], and apply two loss functions, LC

m and LT
m,

for the conv and the trans-branches:

LE = Σm(LC
m + LT

m),m ∈ {I, ϕ, ρ}, (9)

where LC
m and LT

m are both the sum of a binary cross-
entropy (BCE) loss ℓbce and a IoU loss ℓiou [25].

For the decoder, we apply supervision on the features
generated by the deepest three AE modules and the features
generated by the GCG module:

LD = Σ4
i=2(Li

AE) + LGCG, (10)

where the losses on the AE modules and the GCG module
are computed again as: ℓbce + ℓiou. Finally, we combine
the losses for both the encoder LE and decoder LD with the
BCE and IoU loss on the final output mask. To promote
clear mask boundaries, we also add an edge loss ℓedge [48]
(weighted by ω = 10 empirically determined):

L = LE + LD + ℓbce + ℓiou + ωℓedge, (11)

5. Assessment
We implemented PGSNet in PyTorch [30] and train our

network for 180 epochs with a batch size of 18 using
stochastic gradient descent with a momentum of 0.9 and
a weight decay of 5 × 10−4. We employ the poly strat-
egy [22] and set the initial learning rate and power to 0.001
and 0.9, respectively. We initialize PGSNet randomly, ex-
cept EDA which is initialized with ResNet-18 [13] and the
Conformer-B model [31] which is initialized with a model
pre-trained on ImageNet. All input images are resized to
416× 416 for both training and testing, and the final output
is bilinearly resized back to the original input resolution.

We use four metrics for validation and ablation: inter-
section over union (IoU ), weighted F-measure (Fw

β ) [24],
mean absolute error (MAE), and balance error rate
(BER) [28]. For IoU and Fw

β , higher is better, while for
MAE and BER, lower is better. We refer to the supple-
mentary materials for a formal definition of each metric.

5.1. Qualitative and Quantitative Evaluation

We extensively compare the effectiveness of our method
to 22 state-of-the-art methods across different related tasks

Methods IoU↑ Fw
β ↑ MAE↓ BER↓

Mask R-CNN◦ [12] 63.59 0.677 0.224 22.62
PSPNet◦ [47] 74.49 0.786 0.128 14.76
DenseASPP◦ [44] 75.18 0.793 0.119 14.28
DANet◦ [9] 75.64 0.793 0.121 14.15
CCNet◦ [15] 76.52 0.799 0.117 13.44
SETR◦ [49] 77.60 0.817 0.114 11.46
SegFormer◦ [42] 78.42 0.815 0.121 13.03
DSS△ [14] 69.32 0.707 0.183 17.33
CPD△ [38] 75.60 0.790 0.127 13.25
F3Net△ [36] 73.03 0.764 0.146 14.92
MINet-R△ [29] 70.56 0.746 0.147 15.92
PFNet▽ [26] 76.26 0.790 0.130 12.83
SINet-V2▽ [7] 76.86 0.796 0.126 12.76
PraNet§ [8] 75.45 0.781 0.133 13.80
BDRAR•† [50] 69.13 0.732 0.173 18.68
MirrorNet⋊† [45] 76.49 0.796 0.126 13.52
GDNet* [27] 77.64 0.807 0.119 11.79
TransLab* [40] 73.59 0.772 0.148 15.73
Trans2Seg* [41] 75.21 0.799 0.122 13.23
GSD*† [21] 78.11 0.806 0.122 12.61
EAFNet⋄ [39] 53.86 0.611 0.237 24.65
P Mask R-CNN⋆ [17] 66.03 0.714 0.178 18.92
PGSNet (Ours) 81.08 0.842 0.091 9.63
PGSNet ([39] data) 77.70 0.839 0.007 6.92

Table 2. Quantitative comparison against state-of-the-art: in-
stance/semantic segmentation methods (marked by the ◦ sym-
bol), salient object detection methods (△), camouflaged object
segmentation methods (▽), medical image segmentation method
(§), shadow detection method (•), mirror segmentation method
(⋊), RGB glass segmentation methods (*), RGB+P semantic seg-
mentation method (⋄), monochromatic intensity, and polarization-
based glass segmentation methods (⋆). All methods are retrained
and tested on the RGBP-Glass dataset (excl. the last row which
demonstrates that PGSNet generalize to other datasets). Meth-
ods that require an additional CRF [18] post-processing step are
marked with the † symbol. The first, second, and third best results
are highlighted in red, green, and blue, respectively.

such as instance/semantic, salient/camouflaged objects,
shadow/mirror segmentation, and glass region/instance seg-
mentation (Table 2). For a fair comparison, all methods
are re-trained and tested on the RGB-P Glass segmenta-
tion dataset. Of the compared methods, EAFNet [39] and P
Mask R-CNN [17] are the only two that also leverage polar-
ization cues. GDNet [27], TransLab [40], Trans2Seg [41],
and GSD [21] are in-the-wild glass segmentation methods,
but only rely on RGB intensity input. From Table 2 we
can see that the proposed method offers the best perfor-
mance for all four metrics, outperforming the other compet-
ing methods by a significant margin. The two polarization-
based approaches, P Mask R-CNN [17] and EAFNet [39],
do not perform well. P Mask R-CNN [17] extends Mask R-
CNN [12] with a cross-domain attention scheme. Mask R-
CNN work well on small objects, as is the case for Kalra et
al.’s intended task of robotic bin picking, but its perfor-
mance suffers when segmenting larger objects, even when
including polarization cues. Furthermore, P Mask R-CNN
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Figure 5. Qualitative comparison of PGSNet against state-of-the-art glass segmentation methods retrained on the RGBP-Glass dataset.

only uses monochromatic cues for both intensity and po-
larization, which is less effective than using trichromatic
cues. While EAFNet [39] also explored multichromatic
DoLP and AoLP, Xiang et al. concluded that EAF-A (i.e.,
RGB+AoLP) performs best for semantic segmentation with
EAFNet, and in our comparisons we follow this approach.
However, as our ablation study will show (subsection 5.2),
the DoLP is more informative than AoLP for glass segmen-
tation. The lower accuracy of EAFNet is partially because
it is designed to solve a more general problem (semantic
vs. glass segmentation) and partially because it places a
higher emphasis on performance than PGSNet. We refer to
the supplemental material for a performance comparison.
Finally, we also trained and tested PGSNet on the smaller
ZJU-RGB-P dataset (last row of Table 2), demonstrating
that PGSNet generalizes well to other datasets with similar
performance gains. Figure 5 further qualitatively demon-
strates the benefits of our method:

1. The reflections in the glass in the bathroom scene
share the same texture as the wall. Only our method is
able to accurately segment the glass. The monochro-
matic polarization information leveraged by P Mask
R-CNN as well as the employed fusion scheme are not
powerful enough to successfully segment the glass.

2. Glass in metal door-frame: all methods except
PGSNet and Trans2Seg confuse the metal material for
glass. Trans2Seg’s glass segmentation is less accu-
rate than our method’s result which leverages both the
strong polarization cues as well as global contextual
information to achieve the best performance.

3. In the 3rd and 4th example, even though the glass is in-
visible in the RGB intensity image, we still observe
strong AoLP and DoLP cues. Despite also leveraging
polarization cues, P Mask R-CNN fails on the 4th ex-
ample. In contrast, our method succeeds thanks to our
dynamic context-aware attention-based fusion.

5.2. Ablation Study

Next, we investigate (a) the impact of spectral polariza-
tion cues and (b) influence of each component in PGSNet.
For each experiment we fully retrain each model.
Impact of Spectral Polarization Cues. We conduct a
series of ablation experiments to demonstrate the effects
of spectral polarization cues on glass segmentation Ta-
ble 3: (A) PGSNet baseline; (B ) with RGB intensity
cues only; (C ) with AoLP, but without DoLP; (D) with
DoLP, but without AoLP; (E ) monochromatic intensity plus
monochromatic polarization cues; and (F ) RGB intensity
cues with monochromatic polarization cues. Comparing B
(RGB only) with C , D , or F , we can see that adding any
form of polarization cues to the RGB intensity cues im-
proves the segmentation accuracy. Furthermore, we observe
that DoLP cues (D) have a greater impact than AoLP cues
(C ). In contrast to the findings by Kalra et al. [17], the
differences between E and F indicate that spectral RGB
intensity information has a major impact. Finally, the dif-
ferences between our baseline (A) and (F ) further demon-
strates that spectral polarization cues are more informative
than monochromatic polarization cues. Figure 6 visually
supports the above quantitative observations.
Influence of Early Dynamic Attention (EDA). The
EDA module balances the different spectral components
in both the DoLP and AoLP. Comparing Table 3 A (with
EDA) versus G (without EDA) shows significant perfor-
mance gain when including EDA, validating the dynami-
cally balancing the contributions of each wavelength.

Influence of PGSNet Components. We demonstrate the
influence and importance of each of the components that
comprise PGSNet by gradually removing different compo-
nents. First, we ablate the decoder by removing the GCG
from the GCGD (Table 3 H ) which results in a reduction in
performance compared to the baseline (Table 3 A). Next,
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Figure 6. Qualitative comparison of different PGSNet ablatives.

Networks RGBP-Glass Testing Set
IoU↑ Fw

β ↑ MAE↓ BER↓
A PGSNet (original) 81.08 0.842 0.091 9.63
B Input RGB only 76.11 0.797 0.126 13.08
C Input RGB + trichromatic AoLP 77.23 0.807 0.117 12.04
D Input RGB + trichromatic DoLP 79.73 0.826 0.105 10.46
E Input Gray + Mono AoLP + Mono DoLP 75.99 0.793 0.123 12.75
F Input RGB + Mono AoLP + Mono DoLP 79.01 0.819 0.105 11.06
G PGSNet w/o EDA 80.23 0.833 0.097 10.04
H B + DMFI + GCGD w/o GCG 79.64 0.826 0.102 10.35
I B + DMFI + BD 79.18 0.824 0.103 10.73
J B + DMFI w/o MSDP + BD 78.65 0.819 0.106 11.09
K B + BI + GCGD 79.03 0.821 0.104 10.82
L B + BI + BD 77.24 0.809 0.111 11.35

Table 3. Quantitative ablation comparisons showing that: a) spec-
tral and polarization cues promote more robust glass segmenta-
tion, and b) all component of PGSNet contributes to the overall
performance. We denote the backbone network (EDA + Con-
former) with ‘B’, where ‘EDA’ is the Early Dynamic Attention
module. ‘BI’ denotes a basic integration unit (i.e., element-wise
addition), used for ablating the Dynamic Multimodal Feature In-
tegraion (DMFI) module, and ‘BD’ denotes a Basic Decoder used
to ablate the Global Context Generation (‘GCG’) module.

we remove the four AE blocks and replace the GCGD by
a basic decoder (BD) further reducing performance (I ).
On the encoder side, we then simplify the DMFI mod-
ule by removing the MSDP block (J ). Adding back the
full GCGD, but exchanging the DMFI by a basic integra-
tion module (BI) that sets all values in the attention map
M4

x , x ∈ {I, ϕ, ρ} to 1 in Equation 4, yields an improve-
ment (K vs. J ), but is still slightly below the full integra-
tion module with a basic decoder (I ). This shows that both
components (GCGD and DMFI) contribute to the overall
performance of PGSNet. Comparing I (2nd best) versus
J (2nd worst) demonstrates the importance of using multi-
scale dependencies. Finally, we replace all components by
their basic counterpart, yielding a worst performance (L),
illustrating the importance of each component in PGSNet.

5.3. Limitations

When polarization only provides weak or no cues, the
effectiveness of our method decreases; Figure 7 demon-
strates such a case. However, even without polarization

RGB Image

P Mask R-CNN GSD

PGSNet (Ours) GTDegree of Linear Polarization

Angle of Linear Polarization

AoLP_R AoLP_G AoLP_B

DoLP_R DoLP_G DoLP_B

Figure 7. PGSNet’s effectiveness is reduced for scenes with weak
polarization cues.

cues, our method (Table 3 B ) still performs well compared
to prior glass segmentation methods. Even with RGB only
input, our method still outperforms existing glass segmen-
tation methods that leverage polarization cues. In addition,
PGSNet expects at least one glass object in the photograph,
and it fails when no such object is present. Note that this
can be resolved by training on RGBP-Glass augmented with
images without glass objects from ZJU-RGB-P [39].

6. Conclusion
In this paper we presented a robust glass segmentation

network, PGSNet, to dynamically fuse trichromatic inten-
sity and polarization cues recorded in-the-wild. The pro-
posed network includes several novel modules. On the en-
coder side, a DMFI module integrates multimodal trichro-
matic measurements by leveraging multi-scale pixel-wise
dependencies to dynamically enhance local contextual cues.
On the decoder side, a novel GCGD leverages cross-modal
global contextual information to provide robust segmenta-
tion. To promote polarization as a valuable cue for vision
tasks, we also introduce a large-scale RGBP-Glass dataset
that we also use to train PGSNet. Our validation and ab-
lations demonstrate the value of trichromatic polarization
cues as well as the effectiveness and robustness of PGSNet.
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