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Abstract

We propose an iterative method for estimating rigid
transformations from point sets using adiabatic quantum
computation. Compared to existing quantum approaches,
our method relies on an adaptive scheme to solve the prob-
lem to high precision, and does not suffer from inconsistent
rotation matrices. Experimentally, our method performs ro-
bustly on several 2D and 3D datasets even with high outlier
ratio.

1. Introduction and Related Work
The advent of quantum computing (QC) offers a com-

pletely new computing paradigm taking advantage of prin-
ciples of quantum mechanisms, with the promise of expo-
nential acceleration of selected problems, as well as a con-
siderable reduction in resources such as data storage space
[12, 25, 31, 36]. Intuitively, leveraging the fact that quan-
tum systems can assume mixed states, essentially existing in
several pure states simultaneously, allows for computations
to act on all these states simultaneously. This effect, known
as quantum parallelism, sets quantum computers apart from
their classical analogues, which can only perform sequen-
tial calculations [28].

Adiabatic quantum computation (AQC), which is a sub-
field of QC, has emerged as a promising approach for
approximately solving notoriously difficult combinatorial
problems, say NP-hard on a classical computers [21, 22].
One of the problem classes generally addressed by AQC
optimization algorithms are the so-called quadratic uncon-
strained binary optimization (QUBO) problems, which have
the form

min
q∈{0,1}n

q⊤Wq + c⊤q, (1)

where W is a coupling matrix and c is a vector of bi-
ases. The encoding of practical optimization problems in
the form of a QUBO problem is generally the first and
the most crucial step for developing AQC-based algorithms.
This step is followed by the embedding of the problem into
the quantum hardware following techniques such as [8, 9].

(a) 2D (b) 3D

Figure 1. Results of our iterative quantum approach for transfor-
mation estimation (IQT) from (a) 2D point sets (MNIST [26] and
Lena [20]) and (b) 3D point sets (Stanford bunny [30] and com-
pletion3D [35]). Green points represent reference points and red
points represent template points. The initial alignment is shown
on the left and the result of the registration on the right.

The problem is subsequently solved on the quantum hard-
ware, the solution bit-string q is un-embedded, and the so-
lution of the original problem is decoded. QUBO-based al-
gorithms have already been developed for some computer
vision problems such as matching problems [2, 3, 5], that
naturally deal with binary variables. In this work, we will
focus on a related problem, the one of aligning point sets.

Determining the best rigid transformation that aligns two
coordinate systems based on corresponding landmarks is
known as transformation estimation (TE) [11, 15, 16]. It
finds practical application in computer vision fields such as
robotics and image processing. For instance, in image regis-
tration, one of the preparatory key steps consists in roughly
aligning the images to be registered based on correspond-
ing landmarks [23]. Certain properties are desirable from a
method for solving the TE problem. They include, among
others, the ability of the method to accurately model the
transformation that aligns the point sets, the ability to han-
dle high dimensional and size increasing data, and the ro-
bustness against real data challenges such as noise and out-
liers [11].

Whereas computer vision abounds with powerful clas-
sical algorithms to solve the TE problem, e.g., ICP [4, 37]
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and CPD [24], there are still very few methods available for
quantum computers. Golyanik and Theobalt [14] pioneered
a quantum approach (QA) for solving the 2D transformation
estimation problem based on approximating rotation ma-
trices by linear combinations of basis matrices, where the
linear coefficients are binary variables computed by AQC.
Among the limitations of QA are that its accuracy is fixed,
that it cannot handle noise, and that it is difficult to extend to
3D due to the increasing number of degrees of freedom and,
consequently, of required qubits. Moreover, the matrix that
it generates is usually not orthogonal and the algorithm does
not ensure that it is close to an orthogonal matrix, either.

In this work, we build on [14] to propose a new method
that can solve the transformation estimation problem on
point sets in 2D and 3D to any desired accuracy even in
the presence of noise, and whose matrix converges to an
orthogonal matrix as the accuracy increases.

The main contributions of this work are as follows:

• Based on a K-bit binary representation, we propose
an approximation scheme for the special orthogonal
group in order to estimate rotation matrices using adi-
abatic quantum computing (Section 3.1).

• We use the approximation scheme to derive, first, a
QUBO formulation of the transformation estimation
problem (Section 3.2) and, second, an algorithm that
adapts the approximation in such a way that its error
vanishes in practice (Section 3.3).

• We experimentally validate the algorithm by register-
ing 2D and 3D data sets using the D-Wave quantum
annealer (Section 4). Some of the results are shown in
Fig. 1.

2. Mathematical Preliminaries

2.1. Transformation Estimation from Point Sets

Let N,D ∈ N. Given a reference set X = {xi}Ni=1 and
a template set Y = {yi}Ni=1 of D-dimensional points, the
purpose of transformation estimation (TE) is to determine a
rigid transformation f∗ : RD → RD that solves

min
f∈SE(D)

d(X , f(Y)), (RP)

where d is an appropriate similarity measure and SE(D)
is the D-dimensional special Euclidean group. The latter
is formed by combinations of rotations and translations; its
degrees of freedom are usually calculated as P = D(D +
1)/2. Any transformation f ∈ SE(D) can be represented
in the form f(y) = Ry + t, where R ∈ RD,D is a rotation
matrix and t ∈ RD is a translation vector. Choosing for d

the least-squares distance yields

d(X , f(Y)) =
N∑
i=1

∥xi − f(yi)∥22 =

N∑
i=1

∥xi −Ryi − t∥22 .

(2)
It is well-known [11, 16] that by introducing mass-point
centering X̃ = X − X̄ and Ỹ = Y − Ȳ , with X̄ and Ȳ
denoting the centroids of the original point sets, the rigid
registration problem reduces to finding the best rotation ma-
trix R∗, i.e., the solution of

min
R∈SO(D)

N∑
i=1

∥x̃i −Rỹi∥22 . (RPR)

This reduces the transformation space of the problem to the
D-dimensional special orthogonal group SO(D) with ex-
actly P = D(D − 1)/2 degrees of freedom. The optimal
translation t∗ is then deducted from R∗ by t∗ = X̄ −R∗Ȳ .

2.2. Adiabatic Quantum Computation

Adiabatic quantum computation (AQC) is an optimiza-
tion paradigm which relies on the adiabatic theorem [1, 17]
saying that the lowest-energy state, called ground state, of a
mechanical system is the solution of an optimization prob-
lem [18]. Theoretically, the evolution of a quantum system
of n ∈ N particles at a time t ∈ [0, T ], typically re-scaled to
s = t/T ∈ [0, 1], can be described by a Hamiltonian H(s)
on a Hilbert space H = C⊗2n , with the state of the system
given by a unit vector |ψ(s)⟩ ∈ H.

Qubits. A qubit (quantum-bit) |ψ⟩ is the fundamental unit
of quantum information [25, 31]. It is the state of a one-
particle quantum system expressed as a superposition of a
ground state |0⟩ and an excited state |1⟩ according to |ψ⟩ =
α |0⟩ + β |1⟩, with |α|2 + |β|2 = 1, α, β ∈ C. The states
|0⟩ = (1, 0)⊤ and |1⟩ = (0, 1)⊤ are the basis states of the
system called eigenstates or stationary states. The reason
for this is that the qubit |ψ⟩ irreversibly collapses to |0⟩ or
|1⟩ with probability |α|2 or |β|2 when it is measured. We
denote by |+⟩ the uniform superposition state, i.e., |+⟩ =
(|0⟩ + |1⟩)/

√
2. This definition of the state vector extends

to an n-particle quantum system by considering the tensor
product |ψ⟩ = ⊗n

i=1 |ψi⟩ of the n single-qubit-states. The
eigenstates of the system are then given by {|0⟩ , |1⟩}⊗n.

Transverse Field Ising Hamiltonian. Adiabatic quan-
tum algorithms for optimization usually use so-called
stochastic Hamiltonians [1]. In the computational basis
{|0⟩ , |1⟩}⊗n, a Hamiltonian H is stochastic if it fulfils the
condition

⟨q|H|q′⟩ ≤ 0 ∀q, q′ ∈ {0, 1}n with q ̸= q′. (3)
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The main idea behind AQC with stochastic Hamiltonians
consists in initializing the system with a Hamiltonian H0

proportional to the transverse field, i.e.,

H0 = −A

(
n∑

k=1

σx
k

)
, (4)

where σx
k denotes the Pauli matrix [25] in the x direction

acting on the kth particle of the system and A is a positive
constant. The ground state of H0 is the uniform superposi-
tion state |ψ(0)⟩ = |+⟩⊗n. Then, another Hamiltonian H1

based on the Ising energy function is prepared with cou-
pling strengths Wkl between particles k and l, and external
biases hk over the particles k as

H1 = −B

 n∑
k,l=1

Wklσ
z
k ⊗ σz

l +

n∑
k=1

ckσ
z
k

 , (5)

where again σz
k denotes the Pauli matrix in the z direc-

tion acting on the kth particle and B a positive constant.
If the parameters Wkl and ck are chosen as quadratic and
linear parameters of a QUBO problem as in Eq. (1), then
the ground state |ψ(1)⟩ of H1 encodes the solution of that
problem. As the time s evolves from 0 to 1, the initial
Hamiltonian H0 is transformed into H1, describing a time-
dependent stochastic system Hamiltonian

H(s) = (1− s)H0 + sH1. (6)

Quantum System Evolution. The evolution of the sys-
tem generated by H(s) over the time s ∈ [0, 1] is governed
by the Schrödinger equation

iℏ
∂ |ψ(s)⟩
T∂s

= H(s) |ψ(s)⟩ , (7)

whose solution defines a time-dependent unitary transfor-
mation U(s) of the initial state vector |ψ(0)⟩ [1]. If s sat-
isfies the condition of adiabacity, that is, if s varies suffi-
ciently slowly, then the adiabatic theorem states that U(s)
will map, with high probability, the ground state of H0 into
the ground state of H1, which is the solution of the opti-
mization problem [17].

D-Wave Quantum Annealing. D-Wave quantum com-
puters [34] are designed to solve QUBO optimization prob-
lems of the form (1) using transverse field Ising Hamiltoni-
ans in the form of Eq. (6). The quantum processor creates
a network of logical qubits according to the problem size,
which is then embedded in the quantum hardware. The net-
work starts at s = 0 in a global superposition over all pos-
sible eigenstates. In a process called quantum annealing, as
s → 1, the provided couplings and biases are changed into

magnetic fields that deform the state landscape, emphasiz-
ing the state that is most likely to be the solution of the op-
timization problem. D-Wave quantum annealers are made
available through the Leap quantum cloud service [32], and
the D-Wave quantum algorithms can be implemented in
Python using the Ocean software [33].

3. Iterative Quantum Transformation Estima-
tion (IQT)

Like many computer vision problems, (RPR) is intrin-
sically not a binary optimization problem and as such not
directly solvable on current quantum annealers. We show
that linearizing the rotation matrix and introducing binary
coefficients allows to approximate the least-squares regis-
tration problem by a QUBO problem. Since the 2D and 3D
cases are very similar, we present our method from a general
point of view and only switch to a case-by-case discussion
when necessary.

Unlike [14], our approach contains the number of qubits
K as a free parameter that can be chosen by the user.
Among others, this is critical to obtain an algorithmic
scheme that can be carried out on current quantum hard-
ware. Despite the fixed number of qubits, our algorithm
successively increases the approximation precision of the
rotation parameters, thereby enabling its computation to ar-
bitrary precision.

Another issue is that optimizing over the rotation group
SO(D) calls for an orthogonality constraint on the rota-
tion matrix R. One way to avoid this constraint, as already
introduced in [10, 19], is to leverage the one-to-one corre-
spondence between the Lie group SO(D) and its algebra
so(D). This allows to optimize (RPR) over the linear space
so(D), which is the set of skew-symmetric matrices M of
dimension D. Specifically, we will use the exponential map
R = exp(M) to associate to M ∈ so(D) the rotation ma-
trix R ∈ SO(D) [13].

Fixed-Point Representation. In order to represent the so-
lutions with increasing accuracy, we use K bits to approxi-
mate a point x in an interval [a, b] according to

x = a+
b− a
s

K−1∑
k=0

qk2
k, (8)

with binary variables qk ∈ {0, 1} and scaling factor s =
2K − 1. Apparently, x belongs to the grid that results from
the discretization of the interval [a, b] using s bins. We refer
the reader to [27, 29] for alternative approaches for fixed-
and floating-point representations on quantum annealers.
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3.1. Approximation of Rotation Matrices

Rotation Matrix in 2D. In 2D, the only possible skew
symmetric matrix M ∈ so(2) is the one-parameter matrix

M(θ) = θS = θ ·
(
0 −1
1 0

)
, (9)

where θ ∈ R represents the rotation angle. The associated
rotation matrix R is

R = eM(θ) = (cos θ)I + (sin θ)S, (10)

and any 2D rotation matrix can be written in this way [13].
In [14] the authors proposed to treat cos θ and sin θ as in-

dependent variables (say ω1, ω2) and to then optimize with
respect to both. This has the disadvantage that the resulting
matrix R = ω1I + ω2S may be not a rotation matrix, as
this requires ω2

1 +ω2
2 = 1. To obtain a QUBO problem that

avoids this issue, we regard R as a nonlinear function of θ
and determine the optimal θ in a multi-step process. Given
a current angle θc, we linearize R around θc:

R(θ) = g(θ)I + h(θ)S ≈
[
g(θc) + g′(θc)(θ − θc)

]
I

+
[
h(θc) + h′(θc)(θ − θc)

]
S,

(11)

where g(θ) = cos θ and h(θ) = sin θ.
To obtain a QUBO problem, we quantize θ according to

Eq. (8): For a fixed search window size ∆ > 0, we express
θ ∈ [θc − ∆, θc + ∆] by θ = θc − ∆ + 2∆

s

∑K−1
k=0 qk2

k.
Inserting this representation into Eq. (11) and using v̂ :=
2∆
s

∑K−1
k=0 qk2

k, we obtain the approximation

R(v̂) ≈ Rc +
(
g′(θc)I + h′(θc)S

)
v̂, (12)

where Rc := [g(θc) − g′(θc)∆]I + [h(θc) − h′(θc)∆]S is
a term that depends on θc and ∆, but is independent of the
unknown v̂ and hence of the optimization variables qk ∈
{0, 1}, k = 0, . . . ,K − 1.

For any of the mass-centered points ỹi, i = 1, . . . , N , as
in (RPR), we thus find

Rỹi ≈ Rcỹi +Riv̂, (13)

where

Ri :=
(
g′(θc)I + h′(θc)S

)
ỹi (14)

is independent of v̂ and hence of the unknowns qk. The
approximation (13) is at the heart of the QUBO problem
that we solve.

Rotation Matrix in 3D. In the 3D case, the complete
rotation parameters can be recorded in a vector v =
(v1, v2, v3)

⊤ ∈ R3 encoding the rotation angle θ = ∥v∥2
and the rotation axis x = v/ ∥v∥2 = (x1, x2, x3)

⊤. The
skew-symmetric matrix M ∈ so(3) has the form

M(v) = θ ·

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , (15)

and the exponential map associates to M(v) the rotation
matrix

R = eM(v) = I +
sin θ

θ
M(v) +

1− cos θ

θ2
M2(v), (16)

where θ = θ(v) = ∥v∥2, see [13]. For convenience,
we introduce the functions g(v) = (sin ∥v∥2)/ ∥v∥2 and
h(v) = (1 − cos ∥v∥2)/ ∥v∥

2
2 for v ̸= 0 and g(0) = 1,

h(0) = 1/2, g′(0) = h′(0) = 0.
Since M(v) is linear in v, we have M ′(vc)(w) =M(w)

for any vc, w ∈ R3. Hence, linearization of R around the
current vector vc yields

R(v) = I + g(v)M(v) + h(v)M2(v)

≈ I +
[
g(vc) + g′(vc)(v − vc)

]
Mc + g(vc)M(v − vc)

+
[
h(vc) + h′(vc)(v − vc)

]
M2

c

+ h(vc)
[
M(v − vc)Mc +McM(v − vc)

]
,

(17)

where we used Mc := M(vc). Assuming that the com-
ponents vj , j = 1, 2, 3 are in the search window [(vc)j −
∆, (vc)j + ∆] for some ∆ > 0, we make use of the
discretization vj = (vc)j − ∆ + 2∆

s

∑K−1
k=0 q

(j)
k 2k from

Eq. (8). Introducing qk := (q
(1)
k , q

(2)
k , q

(3)
k )⊤ and v̂ :=

2∆
s

∑K−1
k=0 qk2

k we can, in slight abuse of notation, rewrite
this as v = vc−∆+v̂. Thus, we arrive at the approximation

R(v̂) ≈ Rc +
[
g(vc) + h(vc)Mc

]
M(v̂)

+ h(vc)M(v̂)Mc +Mcg
′(vc)v̂ +M2

c h
′(vc)v̂,

(18)

where again the term Rc depends on vc and ∆, but not on
the optimization variables qk ∈ {0, 1}3, k = 0, . . . ,K − 1.
It is straightforward to check that M(v̂)w = −M(w)v̂ for
any w ∈ R3, so we deduce

Rỹi ≈ Rcỹi +Riv̂, (19)

where the matrices Ri are given for i = 1, . . . , N by

Ri =Mcỹig
′(vc) +M2

c ỹih
′(vc)

− h(vc)M(Mcỹi)−
[
g(vc) + h(vc)Mc

]
M(ỹi),

(20)
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and are independent of v̂. As final step, we introduce

q =


q0
q1
...

qK−1

 ∈ {0, 1}KP and

U =
2∆

s

(
D0 D1 . . . DK−1

)
∈ RP,PK ,

(21)

where for k = 0, . . . ,K−1 the diagonal matrixDk ∈ RP,P

has the entries 2k. This notation allow us to rewrite v̂ = Uq,
so Riv̂ = RiUq, both in 2D and in 3D.

Note that in both cases, the number K of qubits used
for quantizing v̂ can be chosen by the user, for instance
based on the available hardware. In particular, as quantum
computers become more powerful, larger values for K than
those currently feasible can be used, which is likely to de-
crease the required wall-clock time of our method.

3.2. QUBO Formulation

By design, we have Rỹi ≈ Rcỹi + Riv̂ by Eq. (13) and
Eq. (19). Crucially, v̂ and thus q appear linearly in this ap-
proximation, so ∥x̃i −Rỹi∥22 is quadratic in q. By ignoring
the q-independent terms, we find that (RPR) can be approx-
imated in terms of v̂ by

min
q∈{0,1}KP

N∑
i=1

(
∥Riv̂∥22 + 2 ⟨Rcỹi − x̃i, Riv̂⟩

)
. (22)

As derived in Eq. (21), we have v̂ = Uq. Therefore, we
propose the following QUBO to approximate (RPR):

min
q∈{0,1}KP

q⊤Wq + c⊤q, (QUBO)

where, with the notation ŷi = Rcỹi − x̃i,

W = U⊤

(
N∑
i=1

R⊤
i Ri

)
U and c = 2U⊤

N∑
i=1

R⊤
i ŷi.

(23)
To solve (QUBO) on the quantum annealer, we only need to
pass the coupling parameters W ∈ RKP,KP and the biases
c ∈ RKP . Note that the dimensions of W and c do not de-
pend on the number of pointsN . At the end of the annealing
procedure, the measured bit-string q is used to compute the
rotation parameter according to

θ = θc −∆+ Uq, resp., v = vc −∆+ Uq. (24)

3.3. Quantum Transformation Estimation

Our iterative quantum transformation estimation strat-
egy (IQT), described in Algorithm 1, consists in solving
(QUBO) for different Taylor approximation points θc (2D

case) or vc (3D case). We start by making an initial guess
for the rotation parameter such as θc = 0 ∈ R in 2D, re-
spectively, vc = 0 ∈ R3 in 3D. For the search interval, we
use an initial radius of ∆ = π. After assembling the ma-
trices W and c, (QUBO) is solved. The solution q provides
the next iterate θ or v via Eq. (24).

An important part of our algorithm is that we treat ∆ as
an adaptive parameter; we aim to decrease ∆ whenever pos-
sible, which results in an increasingly better approximation
of the solution and the associated rotation matrix. We de-
crease ∆ when the error between the current and the previ-
ous rotation parameter becomes smaller than some thresh-
old function of the binning size 2∆/s, which we view as
an indicator that the best solution within the current K-bits
interval discretization of [vc−∆, vc+∆] has been reached.

Algorithm 1: Iterative quantum approach for the transfor-
mation estimation problem (IQT) from point sets.

Data: X̃ , Ỹ : Point sets to register
maxit : maximal number of iterations
θc or vc : initial rotation parameter
∆ : radius of the search interval
κ : threshold for decrease of ∆
K : number of qubits

j ← 0, Initialise Rc, and let τ = κ∆
2K−1

.
while j < maxit do

Construct Ri, U and ŷi for i = 1, . . . , N .
Compute W and c according to Eq. (23).
Solve (QUBO) and measure solution q.
Compute θ, resp., v according to Eq. (24).
if |θ − θc| < τ , resp., ∥v − vc∥2 < τ then

∆← ∆/2.
τ ← τ/2.

end
θc ← θ, resp., vc ← v.
Rc ← Rc(θc,∆), resp., Rc ← Rc(vc,∆) .
j ← j + 1.

end
return Current parameter θc, resp., vc, and
associated R (via Eq. (11), resp., Eq. (17)).

3.4. Classical Transformation Estimation

In Section 4 we compare the IQT algorithm with its clas-
sical relaxed version named iterative classical transforma-
tion estimation (ICT) that results from replacing the QUBO
problem by a classical unconstrained quadratic program-
ming (QP) problem. Specifically, with Rỹi = Rcỹi + Riv
from Eq. (13), resp., Eq. (19), and continuous variables
v ∈ RP , we construct the QP problem

min
v∈RP

v⊤Wv + c⊤v, (25)
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QPU/Topology 2000Q Advantage 1.1

No. of Qubits K 3 5 10 3 5 10

2D

Synthetic
|θ − θ∗| 2.42e− 5 1.06e− 10 1.66e− 14 2.28e− 4 1.13e− 8 2.58e− 12

∥R−R∗∥F 3.42e− 5 2.26e− 10 2.24e− 14 4.00e− 4 1.06e− 8 3.65e− 12
Avg. chain break 0 0 0 0 0 0

MNIST
|θ − θ∗| 1.71e− 4 1.35e− 8 2.55e− 15 4.70e− 5 1.00e− 8 2.65e− 9

∥R−R∗∥F 1.28e− 4 1.91e− 8 4.71e− 15 6.65e− 5 1.41e− 8 3.74e− 9
Avg. chain break 0 0 0 0 0 0

Lena
|θ − θ∗| 2.53e− 4 7.94e− 9 5.32e− 15 2.08e− 4 1.44e− 9 6.33e− 12

∥R−R∗∥F 3.58e− 4 1.12e− 8 7.25e− 15 2.95e− 4 2.03e− 9 8.95e− 12
Avg. chain break 0 0 0 0 0 0

3D

Synthetic
∥v − v∗∥2 4.20e− 4 4.00e− 6 8.76e− 1 9.70e− 5 6.71e− 7 0.80e− 2
∥R−R∗∥F 3.80e− 4 1.63e− 6 6.39e− 1 1.73e− 4 1.45e− 6 1.96e− 1

Avg. chain break 0 0 0.01 0 0 0.002

Bunny
∥v − v∗∥2 1.37e− 5 3.61e− 7 1.25e− 1 3.11e− 4 9.52e− 8 1.45e− 1
∥R−R∗∥F 2.30e− 4 1.51e− 6 1.82e− 1 3.70e− 4 1.20e− 7 3.12e− 1

Avg. chain break 0 0 0.01 0 0 0.001

Completion
∥v − v∗∥2 9.58e− 5 8.59e− 8 5.54e− 1 7.75e− 5 6.89e− 5 5.24e− 1
∥R−R∗∥F 1.28e− 4 1.12e− 7 7.15e− 1 1.22e− 4 9.53e− 5 4.85e− 1

Avg. chain break 0 0 0.01 0 0.004 0.03

Table 2. Distance of the reconstructed rotation parameters θ resp. v and matrices R of IQT to the ground truth (θ∗ resp. v∗, R∗) for
different numbers of qubits K on two D-Wave graph topologies (2000Q and Advantage 1.1). The results are reported after 15 optimization
steps of the same problem in both the 2D and the 3D case. In addition, the chain breaks fraction averaged over the 15 iterations are
provided. Smallest errors are observed using K = 10 qubits in the 2D case and K = 5 in 3D. For 3D problems, larger topologies lead to
chain breakage, which degrades the optimization process.

with W =
∑N

i=1R
⊤
i Ri and c = 2

∑N
i=1R

⊤
i ŷi. The solu-

tion of this QP problem is equivalent to that of the system
of linear equations 2Wv = −c.

4. Experimental Results
In this section, we experimentally evaluate accuracy, ro-

bustness and run times of a hybrid quantum-classical imple-
mentation of the IQT algorithm. The coupling parameters
W and biases c are prepared in Python 3.9.2 on an Intel i7-
7700K CPU machine with 16 GB RAM and the QUBO is
subsequently solved on a D-Wave quantum annealer with
the default annealing time of 20µs and 100 reads per op-
timization iteration. The best solution at each iteration is
chosen to be the lowest energy eigenstate of the system.

The data sets used in the experiments are listed in Tab. 1.
They include synthetic point sets in addition to the point sets
shown in Fig. 1, namely the MNIST [26] and Lena edges
[20] point sets in 2D, and the Stanford bunny [30] and the
completion3D [35] point sets in 3D. The number of points
varies from 150 for the synthetic point sets to 4845 in Lena.

Ablation Study on K. Design choices of our method in-
clude the number of qubits K used for the numerical repre-

Data set name Number of points

2D
Synthetic points 150 (variable)

MNIST [26] 150
Lena edges [20] 4845

3D
Synthetic points 150 (variable)

Stanford bunny [30] 500
completion3D [35] 2048

Table 1. Data sets used in the experiments with the number of
points contained in the reference set.

sentation of the unknown variables and the D-Wave graph
topology. We evaluate the precision of the reconstructed ro-
tation parameter and matrix for K ∈ {3, 5, 10} on the 2D
and 3D point sets for 15 iterations. Recall that in total KP
qubits are necessary to encode the QUBO problem, where
P = 1 in 2D and P = 3 in 3D. We run the experiment
on the D-Wave 2000Q QPU which uses the Chimera topol-
ogy [7] and on the D-Wave Advantage 1.1 QPU which uses
the Pegasus topology [6]. We compare the computed ro-
tation parameters and matrices with the respective ground
truths. The results are displayed in Tab. 2. We observe that
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a greater number of qubits does not necessarily increase the
precision. As an example, the error for K = 10 qubits in
the 3D case is much larger than the errors for K = 3 and
K = 5. This discrepancy is related to the average chain
break fraction, implying that more qubits translate into a
noisier system, thereby increasing the amount of miscalcu-
lations. In the subsequent experiments, we use K = 10 in
2D and K = 5 in 3D, and execute the algorithm on the D-
Wave 2000Q QPU, which seems to be the best configuration
for the task at hand.

Sensitivity To Outliers. In order to verify the robustness
of our method against outliers, we randomly add noise to a
fraction of the template points; said fraction is called the
outlier ratio. To measure the accuracy of the proposed
method, we adopt two metrics proposed by [14]:

eR :=
∥∥I −R⊤R

∥∥
F

(consistency error)

and eA :=
∥X̃ −RỸ∥F
∥X̃ ∥F

(alignment error),

where ∥·∥F is the Frobenius norm. While the consistency
error measures the orthonormality of the reconstructed ro-
tation matrix, the alignment error expresses how accurately
the template points are mapped to the reference points. We
remark that if R∗ is the optimal solution of (RPR) obtained
for v∗ and if vc → v∗ for vc generated by Algorithm 1, then
the approximation of the rotation matrix given by the right-
hand side in Eq. (12), respectively, Eq. (18) converges toR∗

with error order O(∥θc − θ∗∥22), resp., O(∥vc − v∗∥22).
In Fig. 2 we display the registration errors of IQT and its

classical counterpart ICT as a function of the outlier ratio.
We plot the errors for the 5th, 10th, and 15th iterations of
IQT on 2D and 3D synthetic point sets. The errors in 2D
are compared with those of the QA approach from [14] with
the complete data sets as interaction points, i.e., K = N in
the sense of QA. As expected, both IQT and ICT converge
to an orthogonal matrix while reducing the alignment error,
with the consistency error being virtually independent of the
outlier ratio. In contrast, the benchmark method QA [14] is
more susceptible to producing non-orthogonal matrices as
the outlier ratio increases.

Next, we highlight the resemblance between the conver-
gence and the robustness of IQT and ICT, thus justifying
the usefulness of the K-bits binary discretization, as well
as the ability of the quantum computer to approximate real
numbers by such a discretization.

Fig. 3 presents registration results of IQT for the com-
pletion3D data set [35]. We illustratively display the results
for point pairs without noise and with 50% outlier ratio. We
observe that IQT finds a good transformation even in the
presence of strong noise, with accuracy comparable to clas-
sical computation (ICT) while generating consistent (i.e.,
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Figure 2. Robustness of the IQT method (ours, green) and its
classical version ICT (ours, red) against outliers. Shown are the
alignment error eA (left) and the consistency error eR (right, note
logarithmic scale) as function of the outlier ratio for the 5th, 10th,
15th iteration on the synthetic 2D (top row) and 3D (bottom row)
point sets. The proposed IQT method consistently achieves the
same accuracy as the classical ICT method while avoiding consis-
tency errors introduced by the QA method (blue) from [14].

almost orthogonal) rotation matrices, none of which holds
for the existing QA method.

Computational Costs and Timing. The most computa-
tionally expensive operation of our method is, as in [14],
the preparation of the couplings and biases at each iteration.
Preparing the matricesW and c requiresO(Nξ2K2P 4) and
O(Nξξ′KP 2) operations, where ξ and ξ′ represent the cost
for computing Ri and Rcỹi − x̃i. Tab. 3 compares the to-
tal run time in milliseconds of the QPU access time of IQT
and the CPU access time for ICT for solving the QP for var-
ious parameter configurations, averaged over 10 problem
instances and for one iteration. For both IQT and ICT, we
provide the time for the matrix preparations as well. We ob-
serve that both the QPU and CPU access times remain rel-
atively constant with respect to the different combinations.
On the contrary, the matrix preparation time grows with the
number of points N and exceeds the QPU and CPU access
time for moderate N .

Limitations. IQT should be seen as a first step towards ef-
ficient transformation estimation and ultimately point cloud
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(a) Perfect data. (b) Data corrupted with outliers.

Figure 3. Performance of IQT in registering (a) perfect point sets pairs and (b) reference point sets to template point sets with an outlier
ratio of 50%. The point sets used are from the completion3D data set [35]. Green points represent reference points and red points represent
template points. The initial alignment is shown on the left and the result of the registration on the right. Even with strong noise, the IQT
algorithm provides a robust transformation estimation.

No. of Qubits K IQT: Matrix preparation / QPU access time (ms) ICT: Matrix preparation / CPU access time (ms)

N 150 1500 20000 150 1500 20000

2D
K = 10 2.50/34.67 23.20/34.67 311.25/34.69

6.99/0.10 55.56/0.08 334.7/0.06K = 20 2.51/35.32 23.00/34.79 305.19/35.26
K = 40 2.65/35.42 23.14/35.39 306.12/35.38

3D
K = 5 3.43/35.04 32.07/34.92 425.56/34.96

6.58/0.01 34.84/0.01 421.77/0.01K = 10 3.50/35.23 32.16/35.23 420.18/35.24
K = 15 3.43/35.39 31.68/35.44 419.02/35.40

Table 3. Runtime comparison for solving the quadratic problem (QUBO) on synthetic data using our quantum formulation (IQT, left) and
its classical counterpart (ICT, right). All values are averaged over 10 instances for each problem size N . Experimentally, IQT runtime is
independent of the number of qubits K. Matrix preparation dominates the QPU/CPU access time for solving the system.

registration on quantum hardware. Currently, the run time is
dominated by preparation of the matrices both in the quan-
tum as in the classical case. Limited availability of quan-
tum hardware currently introduces additional time penalties
for transfer to quantum computing service providers. Ulti-
mately, it would be beneficial to have an intrinsical (circuit-
model) quantum formulation that does not rely on AQC,
which we leave for future work.

5. Conclusion

We investigated an adiabatic quantum formulation for
transformation estimation from point sets and proposed an
iterative quantum approach to optimally align point sets.
Our method uses a flexibleK-bits discretization for approx-
imating the rotation matrices with refinement for improved
accuracy. The resulting QUBO problem can be deployed
and run on the D-Wave quantum annealer. Compared to
the reference method QA [14], our approach robustly gen-
erates accurate rotation matrices which do not suffer from
non-orthogonality even in the presence of strong noise.
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