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Abstract

We introduce a novel approach for generative 3D mod-
eling that explicitly encourages the physical and thus func-
tional consistency of the generated shapes. To this end, we
advocate the use of online physical simulation as part of
learning a generative model. Unlike previous related meth-
ods, our approach is trained end-to-end with a fully differ-
entiable physical simulator in the training loop. We accom-
plish this by leveraging recent advances in differentiable
programming, and introducing a fully differentiable point-
based physical simulation layer, which accurately evaluates
the shape’s stability when subjected to gravity. We then
incorporate this layer in a signed distance function (SDF)
shape decoder. By augmenting a conventional SDF decoder
with our simulation layer, we demonstrate through exten-
sive experiments that online physical simulation improves
the accuracy, visual plausibility and physical validity of the
resulting shapes, while requiring no additional data or an-
notation effort.

1. Introduction

Over the past several years, there has been a steady
stream of works aimed at developing deep neural networks
for 3D shape generation. A key challenge is to accommo-
date plausible and diverse content while preserving geomet-
ric and structural validity [1, 27, 42]. Though remarkable
progress has been made in this direction, state-of-the-art ap-
proaches focus primarily on geometric or visual plausibility,
while discarding a key purpose of 3D design: functional-
ity [23]. Indeed, a designed 3D shape is often meant to serve
a particular function in the real world. For instance, a chair
is expected to be stable when subjected to gravity. Ignoring
this crucial constraint leads the generated content to suffer
from severe functional artifacts such as lack of connectiv-
ity and physical instability [30], which severely hinders its
utility in real-world downstream tasks.

One way to address this challenge is by leveraging phys-
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Figure 1. Qualitative comparison of online simulation with the
SotA offline simulation [30] for the task of shape optimization.
From top to bottom: physically invalid shapes sampled from base-
line DeepSDF [32], results using [30] and our results. The opti-
mized shapes reflect the accuracy and efficiency of online simu-
lation compared to the offline setting in terms of physical quality
and geometric consistency.

ical simulation to guide generative models to produce func-
tionally valid shapes. Indeed, physical simulation is a com-
mon mechanism for verifying whether a candidate 3D shape
fulfills certain functionality [4, 22, 41]. Although physi-
cal simulation is a powerful tool that is applicable with-
out additional data annotation, incorporating it into genera-
tive modeling can be challenging, since it is typically non-
differentiable and can be both complex and costly to be used
at training time. Thus, existing approaches that attempt to
combine generative networks with physical simulation are
typically limited to offline simulation, which requires to ei-
ther iteratively filter and update the training data [36] or to
train a surrogate model that imitates the simulator while be-
ing suitable for learning [30]. While these works sidestep
the aforementioned challenges, they achieve this by sacrific-
ing the major benefits of end-to-end training. In particular,
using offline simulation and surrogate models can hurt the
generalization power of the trained networks and introduce
data biases, implicitly promoting the seen valid geometric
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patterns instead of tackling generic physical failures.
At the same time, recent advances in building differen-

tiable physical simulators [11,24,25] have opened the possi-
bility of learning neural networks with online physical sim-
ulation. So far, these approaches have not been leveraged in
3D generative networks, in part due to the difficulty of in-
tegrating physical simulation, while ensuring efficiency and
geometric accuracy in a single coherent framework.

In this paper, we make a first step towards this goal.
Specifically, we show how to endow a deep generative
network based on the DeepSDF decoder [32] with online
simulation-based physical supervision. We focus on the
generative modeling of man-made shapes that should nat-
urally be stable when subjected to gravity, and we set phys-
ical stability as our target functional constraint.

To achieve this, we first design a simulation layer
(SimL) based on a differentiable rigid body simulator that
we implement using the recent efficient DiffTaichi frame-
work [24]. The simulator computes rigid body dynamics
of 3D shapes subjected to gravity in the presence of the
ground plane. This allows to both accurately evaluate the
physical behavior of the shapes in the forward stage, and to
back-propagate simulation gradients for physical supervi-
sion during the backward stage. Then, we integrate SimL
into the implicit shape decoder DeepSDF [32] and show
how SDF-based generative modeling can be combined with
physical simulation in a single coherent end-to-end train-
able manner to create plausible and physically valid shapes.

Combining these contributions, we introduce a new
model Phys-DeepSDF, which is the first end-to-end deep
generative model endowed with online physical simulation.
We illustrate the utility of our model on a range of challeng-
ing cases and demonstrate that it has significantly higher
generalization power compared to methods trained with of-
fline simulation, enabling several applications such as accu-
rate shape generation and optimization.

Contributions. Our main contributions are three-fold:
(1) We build a point based simulation layer SimL based on

a differentiable rigid-body simulator that can be incor-
porated into a 3D shape decoder.

(2) We show how our layer can be incorporated in a SDF-
based generative model with a novel stability loss and
accurate gradient back-propagation.

(3) We demonstrate the efficiency of 3D modeling with
online physical simulation, by improving the general-
ization power and quality of the produced content.

2. Related Work

2.1. 3D shape generation of implicit fields

There have been efforts in building generative networks
of 3D shapes based on a variety of representations such as

voxels [16, 18, 37, 42], octrees [35, 39], point clouds [1, 21],
surface meshes [15, 17, 38, 40], multi-view depth maps [2]
and part-based composition [45]. Recently, learning im-
plicit fields for generative shape modeling in the form of
binary occupancies [8, 28] and signed distances [13, 26, 32]
has been widely studied. Such implicit representations
proved to be computationally and memory efficient while
allowing high resolution geometry decoding. In our pa-
per, we focus on signed distance representation [32] since
it yields additional information compared to binary occu-
pancy, consisting of the distance to the shape surface as
well as surface normals. In fact, previous work [34] demon-
strated that 3D surface samples can be differentiated with
respect to the underlying deep signed distance field. This
enables us to combine deep generative networks of implicit
fields with simulation based control that requires explicit
representations. Differently from [34] that focused on la-
tent code optimization using offline simulation, we build a
novel differentiable online simulation layer, which ensures
efficient, accurate and class-agnostic physical supervision.
Finally, we show how online simulation can be integrated
into end-to-end training of generative models.

2.2. Physics Simulation in Deep Learning

There has been increasing interest in improving object
and scene understanding by exploiting physics supervision
[46]. Particularly, leveraging physics simulators for neural
network learning was envisaged for various topics including
scene reconstruction [12], object understanding [29], con-
tact points and physical forces inference [14] etc. Classi-
cal physics simulators such as PyBullet [10] are often non
differentiable and it is not straightforward to use them in
the context of neural networks learning. Consequently, em-
ploying gradient approximations [12,14,29] or replacing the
simulator by a differentiable surrogate model that imitates
the simulator output [3,34] prove necessary. Recently, there
have been some works in building differentiable physics
simulators [11, 24, 25] that provide gradients of simulation
to overcome these limitations and pave the way for future
work in this field.

The only prior deep generative approaches of 3D shapes
informed with physics simulation were the works in [30,
36]. However, these methods are limited to offline simu-
lation and require either training data update [36] or pre-
training a surrogate network [30] to inform the learning
network with the simulation feedback. In our paper, we
advocate the use of online simulation gradient to learn the
generative network by building a differentiable simulator.
This makes our work advantageous in two key aspects: the
physics supervision is class agnostic and does not require
any pre-training, and the generative network can be effi-
ciently optimized via end-to-end training.
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Figure 2. PhysDeepSDF overview. Our generative model consists of two modules a) shape auto-decoder that we design similarly to
DeepSDF [32] network, and which maps a latent code to the SDF-based shape; and b) our custom simulation layer SimL that in the
forward stage (Section 3.5.1) extracts the points from the shape’s surface, (cf Eq. (3)) and simulates its trajectory when subjected to gravity
(Section 3.4), and in the backward stage (Section 3.5.2) computes the simulation gradient with respect to the SDF parameters.

3. Proposed approach

3.1. Overview and Motivation

Our main goal is to combine the benefits from two major
frameworks: implicit-based 3D shape modeling, as a pow-
erful learning-based generative model, and physical simu-
lation to guarantee the validity of the generated content be-
yond visual plausibility. Our architecture is depicted in Fig-
ure 2. It consists of an auto-decoder that learns the latent
space of shapes, and a simulation layer SimL that ensures
the physical stability of the generated content by inform-
ing the decoder with the supervisory physical signal. In this
work we focus on the physical stability of shapes when sub-
jected to gravity, with the ultimate goal that the generated
content should be able to maintain a stable equilibrium on
a ground plane. To this end, our simulation layer SimL per-
forms a differentiable simulation of a given 3D shape, when
dropped in the upright position from a small height above
the ground and subjected to gravity. We then evaluate the
shape orientation at the last simulation step to assess the
shape’s physical stability: it is stable if it maintains its up-
right position, and unstable otherwise. Figure 1 provides
examples of stable and unstable shapes.

We focus on physical stability among other possible
functional constraints since it is not only a common cause
of functional failures [30], but also because it represents a
shared functional requirement across different shape cate-
gories (chair, table, bench, etc). Moreover, physical stabil-
ity has proved beneficial for boosting many computer vision
tasks [12, 33, 43, 44] which broadens the potential scope of
our approach beyond generative modeling.

The key difference of our approach compared to exist-
ing physically-aware generative models [30, 36], is that we
use online simulation during the learning procedure, as part
of the neural network. As we demonstrate below, this has
several advantages. First, the physical module has no learn-

able parameters and is thus not tied to the training data, in
contrast to using surrogate model pretraining [30]. Second,
the online simulation gradient is accurate and allows to pre-
cisely and explicitly address physical failures without sac-
rificing the geometric diversity. This is in contrast to data-
driven methods based on surrogate model pre-training [30]
or training data filtering [36] that naturally inherit data bi-
ases and are likely to push towards the known valid ge-
ometries. As a result, the efficiency and accuracy of online
simulation enables the training of a shape decoder without
affecting its expressive power, whereas previous methods
are limited to learning a mapping network [30] or updating
training data [36].

Given these goals, two key challenges emerge: (1) build-
ing a scalable and time efficient physical simulator, and (2)
combining explicit (point-based) physical simulation with
an implicit function-based decoder. To address these, we
first build an efficient differentiable sparse point cloud sim-
ulator, and then show how it can be incorporated in a gen-
erative model based on the signed distance function (SDF)
representation [32], while enabling accurate gradient back-
propagation between explicit and implicit representations.

The rest of this section is organized as follows: we start
by introducing the SDF and the decoder architecture in Sec-
tions 3.2 and 3.3 respectively. Then, Sections 3.4 and 3.5
describe our differentiable physical simulator and our sim-
ulation layer SimL respectively. After that, we propose a
novel physical stability objective function in Section 3.6,
and discuss the generalization power of our approach in
Section 3.7. Finally, we describe our training scheme along
with target applications in Section 3.8.

3.2. Signed Distance Function SDF.

In this work, we represent a closed shape S with SDF
fS : R3 → R that attributes to each point x ∈ R3 its signed
distance fS(x) to the closest surface point. fS(x) is positive
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if x is outside the shape and negative if it is inside. Com-
pared to binary inside/outside implicit function representa-
tion [9], SDF yields additional information consisting of the
distance to the surface fS(x) and also the direction for pro-
jecting x onto the surface−∇xfS(x). This additional infor-
mation is not only useful to generate a high quality surface,
but it is also important to ensure the differentiability of the
explicit shape representation, required for physical simula-
tion, with respect to the implicit representation decoded by
the network, as explained in Section 3.5.

3.3. Decoder architecture.

We design our shape decoder fθ similarly to DeepSDF
[32] where θ denotes the learnable parameters. We give a
brief overview of fθ and refer the reader to [32] for more de-
tails. Given a set ofN training shapes {Si} paired with a set
of points {Xi = {xji}} sampled around each shape, fθ at-
tempts to approximate SDF values fθ(x

j
i , zi) = fSi(xj) =

sji for all xji ∈ Xi where zi ∈ Rd is a learnable latent repre-
sentation of Si. The loss function is defined by the L1-norm
between the predicted and ground truth SDF values:

L(fθ(xj , zi), s
j
i ) = |clampδ(fθ(xji , zi))− clampδ(s

j
i )|, (1)

where clampδ(x) = min(δ,max(−δ, x)) clamps SDF val-
ues with δ = 0.1.

At training time, Ztrain = {zi} are randomly initialized
from N (0, 0.012) and are optimized along with parameters
θ via the following reconstruction loss:

Lr(zi, θ;Xi) =
∑
j L(fθ(x

j
i , zi), s

j
i ) + 1

σ2 ‖zi‖22, (2)

where σ = 10−2 is a regularization parameter. Note that,
although we fix the decoder architecture for fθ, our method
is generalizable and can use any shape decoder based on
signed distance functions.

3.4. Physical simulator Ψ.

We aim to build a differentiable physical simulator that
can record the gradient over the simulation steps, and re-
play them in a reversed order during the backward pass.
To this end, we use the DiffTaichi [24] framework tailored
for high-performance differentiable physical programming.
For instance, a differentiable elastic object simulator writ-
ten in DiffTaichi has been shown to be 188× faster than its
counterpart TensorFlow implementation [24].

To assess the physical stability of a generated shape by
fθ, we implement a differentiable impulse-based rigid body
simulator [5] detailed in Algorithm 1. Concisely, our simu-
lator, denoted by Ψ, takes a shape represented by its surface
points C along with the mass, center of mass and inertia
matrix, and outputs its dropping trajectory from a height h
simulated for T time steps: Ψ(C) = {(pt, rt); t ∈ [1, T ]},
where pt and rt are, respectively, the position of the cen-
ter of mass and orientation at time step t. This is made

Algorithm 1 Physical simulator Ψ

Variables Point cloud shape C, Gravitational force
Fg = mg, Position p0, Velocity v0, Inertia tensor I0,
Rotation r0, Quaternion q0, Angular velocity w0, Angu-
lar momentum L0

end Variables
for t→ 1 to T do

Ccolt ← {p ∈ C; p reaches the ground }
procedure Collision Handling

for p ∈ Ccolt do
Compute impulse Jp

end for
Jt ←

∑
p∈Ccolt

Jp

max(1,|Ccolt |)

τJt ←
∑
p∈Ccolt

(p−xt)×Jp
max(1,|Ccolt |)

end procedure
procedure Linear Dynamics

vt ← vt−1 + 1
m (∆t Fg + Jt)

pt ← pt−1 + ∆t vt
end procedure
procedure Rotational Dynamics

Lt ← Lt−1 + ∆t τ
Fg
t + τJt

I−1
t ← rt−1 I

−1
0 rᵀt−1

ωt ← I−1
t Lt

q̂t ← qt−1 + ∆t
2 (qt−1.ωt)quat

qt ← q̂t
‖q̂t‖2

rt ← convert qt to rotation matrix
end procedure

end for
return {pt, rt}1≤t≤T

computationally tractable thanks to our parallel implemen-
tation of the procedure Collision Handling in Algorithm 1
to compute physical impulses Jp following equation (8-18)
in [5]. Here, (.)quat denotes quaternion product as in [5].
Note that we introduce small perturbations into the simu-
lation process to penalize shapes in unstable equilibria by
setting r0 along the horizontal axes to random small values.

We highlight that Ψ contains no learnable parameters
and that, by definition, Ψ is differentiable and∇CΨ is well-
defined. We set the dropping height h equal to 0.1 times
shape height and consider uniform and equal volumetric
mass density for all shapes. The other hyperparameters in-
cluding time steps T , simulation step ∆t and initial simula-
tion settings are determined empirically to optimize simula-
tion accuracy and time efficiency. We provide more details
and a comparison to PyBullet [10] in the supplementary.

Note that although we focus on physical stability, which
applies to many shape categories, our simulator can also be
employed to promote other functional constraints as long as
they operate on the simulated shape trajectory.
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3.5. Simulation Layer SimL.

We implement a custom PyTorch layer SimL that takes
as input SDF point-value pairs associated with a 3D shape
and computes its dropping simulation trajectory using Ψ.
Ultimately this allows SimL to be plugged on top of fθ to
assess the physical quality of the generated shapes.

3.5.1 Forward Stage:

SimL takes as input a decoded SDF-based shape for a given
latent vector z evaluated on a regular grid G of resolution
RG: {fθ(x, z);x ∈ G}, and outputs its physical behav-
ior using Ψ. For this, we start with computing the coarse-
grained surface C required for the simulation module as fol-
lows:

Cfθ(G,z) = {x− fθ(x, z).∇xfθ(x, z);x ∈ G, |fθ(x, z)| < δ} .
(3)

Cfθ(G,z) consists of a set of points x that are sufficiently
close to the shape surface (δ = 4/RG), and that are pro-
jected onto the surface using the signed distance value
fθ(x, z) and the surface normal vector∇xfθ(x, z). Cfθ(G,z)

is then fed to our simulator Ψ to compute its dropping tra-
jectory Ψ(Cfθ(G,z)) = {(pt, rt); t ∈ [1, T ]}.

3.5.2 Backward Stage:

To ensure gradient back-propagation up to the shape de-
coder weights, we need to compute the following gradient:

∇fθ(.,z)Ψ =

(
∂Ψ

∂fθ
(x)

)
x∈G

. (4)

We define ∇fθ(.,z)Ψ as follows:

∇fθ(.,z)Ψ =

{
∂Ψ
∂x

∂x
∂fθ

if x ∈ Cfθ(G,z)

0 if x ∈ G \ Cfθ(G,z).

Note that ∂Ψ
∂x for x ∈ Cfθ(G,z) is well defined since Ψ is

differentiable by definition. It remains to compute ∂x
∂fθ

. Fol-
lowing Theorem 1 from [34], one can prove that

∂x

∂fθ
= −n(x) = −∇xfθ, (5)

where n denotes the surface normal. These two observa-
tions together provide the simulation gradient with respect
to the decoded SDF-based shape.

To give an intuition about the physical gradient, for each
x ∈ Cfθ(G,z), the SDF values gradient direction −∂Ψ

∂x∇xfθ
is pushing fθ(x, z) towards negative values if the inner
product of the simulation gradient and normal vector is pos-
itive (tends to expand the shape), and towards positive val-
ues (tends to shrink the shape) otherwise. We visually illus-
trate this in our supplementary.

To summarize, our simulation layer is built as follows:

SimL Forward : fθ(., z) → Ψ(Cfθ(.,z))

SimL Backward : ∂Ls
∂Ψ → ∂Ls

∂Ψ .∇fθ(.,z)Ψ,

where Ls is the stability loss defined as a function of
Ψ(Cfθ(.,z)) in the section below, and ∂Ls

∂Ψ is the upstream
loss gradient.

3.6. Stability loss.

We are now ready to formulate our stability loss, which
penalizes the physical instability of each decoded shape
fθ(., z) for a given latent vector z. Provided that all shapes
are aligned in the upright orientation and assuming rigid-
body motion (distances between points within the shape re-
main constant), enforcing physical stability boils down to
having a null horizontal orientation at t = T . Observe that
the 3rd column and row of rotation matrix rt denoted by
r3,3
t is a function of orientations βt and γt along the hori-

zontal y and x axis respectively:

r3,3
t = cos(βt)cos(γt). (6)

This implies that a shape is physically stable if r3,3
T =

1. Consequently, we propose a stability loss that controls
shape horizontal orientation at the final simulation step:

Ls(z, θ;G) = 1− r3,3T . (7)

In fact, we expect the shape to maintain its upright position
during the dropping simulation.

3.7. Generalization to other shape representations.

Note that, even though we develop an approach that ben-
efits from implicit shape representation as the current SotA
method for generating high-quality geometry [7], our simu-
lation layer can be also combined with other 3D shape rep-
resentations. Specifically, our approach can be used directly
with any 3D decoder fθ if and only if, one can compute
∂x
∂fθ

at the simulated Cfθ , regardless of the architecture of
fθ. Note that computing ∂x

∂fθ
amounts to assessing how the

simulation gradient modifies the shape’s geometry.
For demonstration, we provide additional detailed expla-

nations along with examples for Point Cloud [31], Mesh
[17] and Primitive [20] decoders, in the supplementary.

3.8. Training and Applications
Learning the latent space of shapes. Given a set of 3D
shapes S paired with the ground truth SDF, we train our
network using the reconstruction and our physical stability
losses defined in Equations (2) and (7) respectively:

L(zi, θ) = Lr(zi, θ;Xi) + αsLs(zi + εη, θ;G), (8)

with zi ∈ Ztrain a learnable training vector, αs a weighting
factor and εη a d-dimensional noise depending on Ztrain
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distribution. While Lr guarantees geometric relevance of
the produced shapes, Ls aims not only to physically regular-
ize training shapes (‖εη‖2 = 0), but also to make new real-
istic shapes’ patterns appear in the latent space (‖εη‖2 > 0).
To make sure that zi + εη ∼ Ztrain + εη is relevant and lies
within the latent space of shapes, we control εη norm con-
sistently with Ztrain vectors pairwise distances’ norms. To
this end, we use εη randomly sampled as follows:

εη ∼ U(0, η).
N
‖N‖2

.1u∼U(0,1)<0.1

Here 1 is the indicator function, η equals 90% quantile of
the Ztrain vectors pairwise L2 distances, and U and N are
respectively the uniform and the d-dimensional standard
normal distributions with d being the dimension of Ztrain
vectors. Please refer to our supplementary for more details.

Shape optimization. As a first application, we consider
the task of single shape optimization to illustrate the func-
tioning of our simulation layer SimL. We randomly sample
zin ∼ Ztrain+εη and keep the zin associated with unstable
shapes. Our goal is to compute the optimal shape in terms of
physical quality while incurring minimal shape variations to
preserve the input shape structure. Formally, we compute:

ẑ = arg min
z
‖z − zin‖2 + αsLs(z; θ,G). (9)

Shape reconstruction. We demonstrate that our physical
loss preserves the latent space quality for the task of shape
reconstruction thanks to our accurate and bias-free simula-
tion gradient. For this, given a test shape S represented by
its SDF points-values pairs {Xi, fS(Xi)}, we compute:

ẑ = arg min
z
Lr(z; θ,Xi). (10)

In addition, we assess the impact of our physical module at
the inference stage only, by considering the following re-
construction task:

ẑ = arg min
z
Lr(z; θ0, Xi) + αsLs(z; θ0, G), (11)

where θ0 denotes the baseline DeepSDF [32] decoder pa-
rameters, learned as in Equation 8 with αs = 0. Note
that, in Equation 11, ẑ is first computed with αs = 0 then
finetuned using Ls with αs > 0. As such, if the shape is
deemed stable by the physical module, then it remains un-
changed.

4. Experiments
Data Preparation. To train the decoder fθ, we use the 2563

voxelized and flood-filled 3D models from ShapeNet Core
dataset (v1) [6] provided in [19]. We start with converting
shapes into meshes using Marching cubes from which we
extract the ground truth SDF using the library proposed in

[26]. Our motivation to start from voxeliezd shapes is to ob-
tain watertight meshes that are convenient for SDF extrac-
tion. We consider the Chair, Bench and Table categories and
use the train/validation/test splits similarly to [19]. Please
refer to our supplementary for more statistics on the dataset.

Evaluation Metrics. All evaluations are conducted on
meshes obtained by decoding shapes at a resolution of 2563

and using Marching Cubes to recover the surface mesh. To
evaluate the physical quality of the generated content, we
report the Stability Ratio (SR) defined for a given set of
shapes as the number of shapes that are physically stable
divided by the total number of shapes. The stability assess-
ment is performed using dropping simulation via the Bullet
Physics Engine [10] to avoid bias in favor of our method.
We provide more details on our evaluation procedure in our
supplementary.

4.1. Shape optimization

We first compare our approach to several baselines for
the task of shape optimization. As mentioned above, given a
potentially unstable shape, our goal is to improve its stabil-
ity while remaining close to the input geometry to preserve
its structure.

As baselines, first we use DeepSDF+Ls, which
uses a fixed latent space pre-trained with the standard
DeepSDF [32] and performs physical optimization using
our differentiable simulator. Second, we also evaluate
DeepSDF+ [30], introduced in [30], which uses a surro-
gate model to perform physical simulation, instead of our
differentiable simulator. Finally, we evaluate our method,
Phys-DeepSDF, that uses the latent space learned with our
physical loss, and further exploits our differentiable simula-
tor for shape optimization.

To train a surrogate model, we follow the approach in
[30], and train a voxel-based neural stability predictor for
each shape category to predict the physical stability of an
input shape. To this end, we use the pre-trained baseline
DeepSDF [32] to randomly sample N shapes following the
distribution Ztrain + εη . Then, we annotate each generated
shape by stable {1} or unstable {0} using PyBullet [10].
The annotated dataset is used to train a surrogate model h
(binary classifier) to predict the stability probability p. The
baseline stability loss is hence Lbases = max(0.5 − p, 0)
(we preserve stable shapes with p > 0.5 as in [30]). Please
refer to our supplementary for more details.

It is important to highlight that, in contrast to the surro-
gate model h, our SimL has no learnable parameters, and
can therefore generalize to different shape categories with
no annotation or pre-training effort.

To conduct our experiments, we create a test set Tin of
N=500 shapes by randomly sampling zin ∼ Ztrain + εη
associated with non stable shapes (SR=0, cf Figure 1 first
row). Note that we create an independent Tin for the
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DeepSDF [32] and Phys-DeepSDF based experiments. We
denote the optimized shapes by Tf and the training shapes
corresponding to Ztrain by Ttrain. For evaluation, we use
the Chamfer Distance CD (30K points) and Latent Dis-
tance LD defined as the mean L2 distance of latent codes,
to measure the proximity of the produced shapes Tf to the
input ones Tin. We also compute the minimum matching
distance [1] with respect to the training set using Cham-
fer distance MMD(Tf ,Ttrain) to capture the novelty of the
optimized content and to make sure that the optimization
process leads to discover new shapes rather than to overfit
to training examples. We report the MMD results divided
by MMD(Tin,Ttrain) since Tin and Ttrain are different for
DeepSDF [32] and Phys-DeepSDF based experiments. Fi-
nally, we compute SR values for the physical stability as-
sessment.

We report quantitative results in Table 1. First observe
that the SimL based experiment DeepSDF + Ls beats the
baseline DeepSDF + [30] for nearly all metrics across the
different shape categories. This validates that SimL leads to
superior physical quality (high SR) with superior geomet-
ric consistency (low CD and LD), while proposing novel
and more diverse shapes than the training examples (high
MMD). Moreover, visual examination in Figure 1 reveals
that SimL produces more plausible and accurate shape vari-
ations than its h counterpart. This is primarily due to the
accurate simulation gradient, compared to the h model gra-
dient that is heavily biased by the learning data patterns (cf
Figure 3). Added to this is the fact that h approximates sim-
ulator behavior and is still prone to errors, whereas SimL ac-
curately detects instabilities. Second, Phys-DeepSDF based
experiments further improve the numerical results. We at-
tribute this to the fact that Phys-DeepSDF latent space ac-
commodates superior patterns of plausible shapes compared
to the baseline DeepSDF [32].

Qualitative results in Figure 4 support the relevance of
Phys-DeepSDF in improving physical stability and geo-
metric consistency. Our approach not only delivers shapes
with sufficient physical quality, but it also produces visually
plausible solutions. We provide more qualitative illustra-
tions in our supplementary along with a comparison to the
train shapes.

4.2. Shape reconstruction

We use the Chamfer Distance to measure the recon-
struction quality by randomly sampling 30K points from
shapes’ surfaces. Table 2 and Figure 5 provide quantita-
tive and qualitative evaluations respectively. Our approach
yields sufficient performance in terms of CD for all shape
categories. Particularly, although it induces only a slight
improvement over baseline DeepSDF [32], note that our
method overcomes the limitation of surrogate model-based
approach, which degrades the reconstruction quality, thanks

h
Si

m
L

h
Si

m
L

h
Si

m
L

Figure 3. Visualization of shape optimization using our simulation
layer SimL (bottom row of each example) and surrogate model h
(top row of each example). We display normalized gradient values
for intermediate iteration steps. We set gradients computed by h
in voxels that remain outside the shape surface to 0 to avoid blur.
Both approaches optimize the given examples. However, while
SimL provides accurate gradient for relevant shape variations, h
gradient is noisy and entails more severe shape changes.

Net CD↓ LD↓ SR↑ MMD↑

C
ha

ir DeepSDF + [30] 1.40 0.45 59.8% 0.84
DeepSDF + Ls 0.69 0.34 62.8% 0.87
Phys-DeepSDF (ours) 0.68 0.10 71.8% 0.91

B
en

ch

DeepSDF + [30] 1.27 0.18 52.4% 0.91
DeepSDF + Ls 1.21 0.12 68.4% 0.88
Phys-DeepSDF (ours) 0.70 0.13 69.0% 0.86

Ta
bl

e DeepSDF + [30] 6.40 0.35 67.0% 0.80
DeepSDF + Ls 1.72 0.09 55.6% 0.82
Phys-DeepSDF (ours) 1.46 0.10 68.6% 0.86

Table 1. Quantitative evaluation for shape optimization. Our phys-
ical module improves the quality of the latent space and delivers
plausible solutions. CD is multiplied by 102.

to our accurate and bias-free physical gradient illustrated in
Figure 3. Besides, we observe that Phys-DeepSDF yields
a particular accuracy improvement for the Bench category.
We attribute this to the fact that the latter has a limited train-
ing set compared to Chair and Table (1K compared to about
5K). The physical supervision helps to address this data lim-
itation by endowing the network with physical insights con-
cerning the space of plausible geometric configurations.

4.3. Shape interpolation

Finally, we examine the relevance of our approach in the
task of linear interpolation between training shapes. We
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Figure 4. Visual results for 3D shape optimization using Phys-
DeepSDF. Top row: initial shape. Bottom row: optimized shapes.
We demonstrate the relevance of our approach on challenging ex-
amples randomly sampled from the Phys-DeepSDF latent space.

Metric Net Chair Bench Table

CD

DeepSDF 1.72 5.09 2.54
DeepSDF + [30] 1.94 5.97 3.90
DeepSDF + Ls 1.73 5.44 2.59
Phys-DeepSDF (ours) 1.68 4.74 2.48

Table 2. Quantitative evaluation for shape reconstruction. Given
the stochastic nature of shape reconstruction (shapes are recon-
structed via gradient descent with a random initialization), the
reported values are the result of performing two reconstructions
of each shape and keeping the one with the lowest CD. Our
physically-aware latent space allows to efficiently recover unseen
shapes. CD is multiplied by 103.

G
T

D
S

D
S

+
[3

0]
D

S
+
L
s

O
ur

s

Figure 5. Qualitative results for 3D shape reconstruction. DS
refers to baseline DeepSDF [32] and GT to ground truth. Our
approach preserves geometric and physical plausibility.

select a challenging interpolation example from baseline
DeepSDF [32] that we compare with its Phys-DeepSDF
counterpart coupled with test time optimization using our

Figure 6. Qualitative results for 3D shape interpolation. We select
a challenging interpolation example from baseline DeepSDF [32]
(top row). Then, we visualize its counterpart using our Phys-
DeepSDF coupled with optimization using SimL (bottom row).

physical loss Ls based on SimL. Figure 6 shows that physi-
cal regularization proves beneficial to ensure the validity of
the generated content and the discovery of novel shapes.

5. Conclusion, Limitations & Future Work

We introduced a novel end-to-end trainable generative
model with online differentiable physical simulation, which
combines implicit generative modeling with explicit (point
based) simulation. By using a differentiable simulator as
part of training a generative model, and thus avoiding a sur-
rogate model, our method helps to achieve better perfor-
mance in terms of physical validity compared to baselines,
while producing geometrically accurate and diverse shapes.

Our approach still has several limitations. First, although
the rigid-body simulation is beneficial for the efficiency of
our approach, the instabilities caused by disconnected parts
are not addressed, since the simulator assumes that the dis-
tance between each two shape points is constant. For com-
pleteness, we give several illustrations in our supplemen-
tary and show how this limitation can be addressed by us-
ing a few iterations of topological regularization as post-
processing. Second, we restrict the sampling resolution for
physical evaluation to RG = 32, which may mislead the
physical evaluation. We address this limitation to a signifi-
cant extent by using the projection step onto shape surface
in Equation (3). Note that this limitation also applies to the
discussed surrogate model-based approach.

In the future, it will be useful to extend our approach to
other physical properties by exploiting differentiable simu-
lation. It will also be interesting to exploit our approach in
other applications, such as single-image 3D reconstruction,
with limited training data. For completeness we provide a
discussion of the societal impact in our supplementary.
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