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Abstract

This paper develops the MUFIN technique for extreme
classification (XC) tasks with millions of labels where data-
points and labels are endowed with visual and textual de-
scriptors. Applications of MUFIN to product-to-product
recommendation and bid query prediction over several mil-
lions of products are presented. Contemporary multi-modal
methods frequently rely on purely embedding-based meth-
ods. On the other hand, XC methods utilize classifier ar-
chitectures to offer superior accuracies than embedding-
only methods but mostly focus on text-based categorization
tasks. MUFIN bridges this gap by reformulating multi-
modal categorization as an XC problem with several mil-
lions of labels. This presents the twin challenges of devel-
oping multi-modal architectures that can offer embeddings
sufficiently expressive to allow accurate categorization over
millions of labels; and training and inference routines that
scale logarithmically in the number of labels. MUFIN de-
velops an architecture based on cross-modal attention and
trains it in a modular fashion using pre-training and posi-
tive and negative mining. A novel product-to-product rec-
ommendation dataset MM-AmazonTitles-300K containing
over 300K products was curated from publicly available
amazon.com listings with each product endowed with a title
and multiple images. On the MM-AmazonTitles-300K and
Polyvore datasets, and a dataset with over 4 million labels
curated from click logs of the Bing search engine, MUFIN
offered at least 3% higher accuracy than leading text-based,
image-based and multi-modal techniques.

*Equal contribution. Author names appear in alphabetical order.
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Figure 1. Predictions on the MM-AmazonTitles-300K product-
to-product recommendation task illustrate the need for accurate
multi-modal retrieval. For a decorative motorcycle-shaped alarm
clock as the query product, multi-modal retrieval using MUFIN
was able to retrieve visually similar products such as a motorcycle-
shaped pencil holder as well as visually dissimilar but related prod-
ucts such as a motorcycle themed ashtray. Recovery using the vi-
sual modality alone ignored thematically linked products, instead
recovering mostly motorcycle-shaped products. Textual recovery
on the other hand fixated on the word “motorcycle” and started re-
covering accessories for actual motorcycles.
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1. Introduction
Extreme Classification (XC). The goal of extreme multi-
label classification is to develop architectures to annotate
datapoints with the most relevant subset of labels from an
extremely large set of labels. For instance, given a prod-
uct purchased by a user, we may wish to recommend to the
user, the subset (i.e. one or more) of the most related prod-
ucts from an extremely large inventory of products. In this
example, the purchased product is the datapoint and each
product in the inventory becomes a potential label for that
datapoint. Note that multi-label classification generalizes
multi-class classification where the objective is to predict a
single mutually exclusive label for a given datapoint. An ex-
ample of a multi-class problem would be to assign a product
to a single exclusive category in a product taxonomy.
Multi-modal XC. An interesting XC application arises
when datapoints and labels are endowed with both visual
and textual descriptors. Example uses cases include
(1) Product-to-product recommendation [27] with products
being represented using their titles and one or more images.
(2) Bid-query prediction [5] where an advertisement with
visual and textual descriptions has to be tagged with the list
of user queries most likely to lead to a click on that ad.
(3) Identifying compatible outfits where each outfit is de-
scribed using multiple images and a textual caption [35].
Challenges in Multi-modal XC. Existing multi-modal
methods [10, 32, 34, 35] are often embeddings-only i.e.
categorization is done entirely using embeddings of dat-
apoints and categories obtained from some neural archi-
tecture. However, XC research has shown that training
classifiers alongside embedding architectures can offer im-
proved results [3, 5, 39]. However, existing XC research fo-
cuses mostly on text-based categorization. Bridging this
gap requires architectures that offer multi-modal embed-
dings sufficiently expressive to perform categorization over
millions of classes. Also required are routines that can
train classifiers over millions of classes and still offer pre-
dictions in milliseconds as demanded by real-time applica-
tions [3, 5, 12]. This is usually possible only if training and
inference scale logarithmically with the number of labels.
Contributions. The MUFIN method targets XC tasks with
millions of labels where both datapoints and labels can be
endowed with visual and textual descriptors.
(1) MUFIN melds a novel embedding architecture and a
novel classifier architecture. The former uses multi-modal
attention whereas the latter uses datapoint-label cross atten-
tion and high-capacity one-vs-all classifiers.
(2) MUFIN training scales to tasks with several millions
of labels by using pre-training and hard-positive and hard-
negative mining. MUFIN offers predictions within 3-4 mil-
liseconds per test point even on tasks with millions of labels.
(3) This paper releases the MM-AmazonTitles-300K
product-to-product recommendation dataset curated from

publicly available amazon.com listings with over 300K
products each having a title and multiple images.
(4) MUFIN offers at least 3% higher accuracy than leading
text-only, image-only and multi-modal methods on several
tasks (MM-AmazonTitles-300K, A2Q-4M) including zero-
shot tasks (Polyvore) indicating the superiority of not just
MUFIN’s classifiers but its embedding model as well.

2. Related Work
Large-scale Visual Categorization. Categorization with a
large number of classes has received much attention [9, 11,
22]. Early methods learnt classifiers over hand-crafted or
pre-trained features such as HoG [7] (100K classes). Con-
temporary approaches offer superior accuracies by using
task-specific representations obtained from neural architec-
tures. Some of these [9, 22, 30, 36] eschew classifiers en-
tirely and focus on purely embedding-based methods while
others train embedding and classifier models jointly using
techniques such as hierarchical soft-max, in-batch negative
mining [15] and hard-negative mining [41]. However, these
works do not consider multi-modal data.
Extreme Classification. XC methods seek to learn clas-
sifiers that offer efficient prediction even with millions of
labels. Earlier works used fixed or pre-trained features and
learnt classifier architectures such as multi-way classifica-
tion trees [16], one-vs-all classifiers [1, 12] and probabilis-
tic label trees [13]. Recent advances [5, 6, 14, 17, 27, 33, 39]
have introduced task-specific neural representations that
are jointly learnt alongside the classifiers and offer per-
formance boosts over embedding-only methods. However,
these mostly consider tasks with textual descriptions only.
Multi-modal Product Recommendation. The task of rec-
ommending related products such as compatible outfits [35]
has led to several multi-modal techniques that utilize prod-
uct images as well as product title or category. ADDE-
O [10] learns a disentangled visual representation for outfits
so that an outfit with an altered category such as color or
size can be recovered simply by appending the query prod-
uct with a category modifier such as “blue” or “extra large”.
The Type-aware approach [35] learns product embeddings
that respect textual product types but capture product sim-
ilarity and compatibility. SCE-Net [34] learns image rep-
resentations that jointly capture multiple aspects of simi-
larity e.g. color, texture without having to learn separate
feature spaces for each aspect. SSVR [32] introduces semi-
and self-supervised techniques that use textual categories
to regularize product image embeddings. S-VAL [18] and
CSA-Net [21] perform similarity and compatibility-based
retrieval focusing on using the visual modality alone or else
using the textual category/type information as a black-box
category. Note that none of these methods utilize classifiers
and are purely embedding-based methods. Modality fusion
techniques have also been explored. Early works adopted
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late fusion by treating modalities separately till each yielded
a score whereas recent works [28] have explored early and
bottle-necked fusion. MUFIN performs early fusion via its
multi-modal attention blocks (see Sec. 3).
Multi-Modal Learning. Methods for multi-modal tasks
such as image captioning and associated word prediction
[15] have proposed embedding-only solutions (CLIP [30],
VisualBERT [19]) as well as classifier architectures (IM-
RAM [4], M3TR [40]). MUFIN empirically outperforms
CLIP and VisualBERT while IMRAM and M3TR could not
scale to the datasets used in our experiments.

3. MUFIN MUltimodal extreme classiFIcatioN
Notation. L is the number of labels (e.g. number of prod-
ucts available for recommendation, bid queries). N train
points are presented as {(Xi,yi)}Ni=1. Datapoint i is rep-
resented using mi descriptors (textual e.g. product title
and/or visual e.g. product image) as Xi =

{
x1
i , . . . , x

mi
i

}
.

yi ∈ {−1,+1}L is the ground-truth label vector for dat-
apoint i with yil = +1 if label l ∈ [L] is relevant to the
datapoint i else yil = −1. Each label l ∈ [L] is represented
as Zl =

{
z1l , . . . , z

ml

l

}
using ml textual/visual descriptors.

Motivation for MUFIN’s Architecture. MUFIN seeks
to obtain an embedding x̂i ∈ RD for every datapoint Xi

and a classifier wl ∈ RD for every label l ∈ [L] so that
w⊤

l x̂i is indicative of the relevance of label l to datapoint i.
Datapoints and labels each having multiple descriptors i.e.
mi,ml ≥ 1 present opportunities to ease this process:
(1) The neural architecture used to obtain datapoint embed-
dings x̂i can also be used to obtain label embeddings ẑl that
can serve as a convenient warm start when learning wl and
has been found to accelerate training in XC methods [5,27].
(2) Cross-talk among descriptors of a datapoint and those
of a label may make the classifier’s job easier by promoting
affinity among related datapoint-label pairs. Alignment be-
tween descriptors of datapoint i and those of label l can be
used to construct an alternate embedding x̂l

i of the datapoint
that is adapted to the label l. The goal of this label-adapted
embedding would be not budge if the label l is irrelevant i.e.
x̂l
i ≈ x̂i if yil = −1 but approach the label classifier if the

label is relevant i.e. x̂l
i → ŵl if yil = +1.

(3) Self-talk among descriptors of the same datapoint/label
allow different modalities to interact and produce superior
embeddings for that datapoint/label.
MUFIN adopts both bag and vector representations for la-
bels and datapoints to let descriptors retain their identity and
allow efficient classification. Attention blocks are used to
implement cross-talk and self-talk. Fig. 5 shows that label-
adapted embeddings learnt by MUFIN do achieve the ob-
jectives stated above by noticing that images of a datapoint
appear among images of a relevant label.
Bag Embeddings. A visual architecture EV is used to
map visual descriptors to RD (MUFIN uses ViT-32 [8]

with D = 192). A textual architecture ET (MUFIN uses
msmarco-distilbert-base-v4 [31] with D = 192) is used
to map textual descriptors to RD. We note that both the
ViT and Sentence-BERT models have a native dimension-
ality of 768. An adaptive maxpool 1D layer was use to
project down to obtain 192 dimensional descriptor embed-
dings. EV , ET are shared by datapoints and labels. MUFIN
maps datapoints and labels to bags of embeddings as shown
in Fig. 2(a). A datapoint Xi =

{
x1
i , . . . , x

mi
i

}
is mapped to

X̂1
i = E(Xi) ∈ Rmi×D by first encoding each descriptor of

that datapoint using either EV or ET , depending on whether
that descriptor is visual or textual, to obtain a bag of pre-
embeddings X̂0

i ∈ Rmi×D. These are then passed through
a self-attention block AS (an instantiation of the block de-
picted in Fig. 2(d)) to obtain X̂1

i = AS(X̂
0
i ) = A(X̂0

i , X̂
0
i ).

A label Zl =
{
z1l , . . . , z

ml

l

}
is similarly mapped to Ẑ1

l =
E(Zl) ∈ Rml×D. We note that the same self-attention block
AS is used to embed both datapoints and labels.
Vector Embeddings. MUFIN obtains vector embeddings
by aggregating and normalizing the bag embeddings offered
by E (see Fig. 2(a)). The vector embedding for a data-
point i is obtained as x̂1

i = N(1⊤X̂1
i ) ∈ SD−1 where

1 ∈ Rmi is the all ones vector, N : v 7→ v/ ∥v∥2 is the
normalization operator and SD−1 is the unit sphere in D
dimensions. Similarly ẑ1

l = N(1⊤Ẑ1
l ). Given a datapoint

i and label l, MUFIN constructs the label-adapted embed-
ding x̂2,l

i for the datapoint as shown in Fig. 2(c). A bag
embedding for the datapoint adapted to the label is obtained
as X̂2,l

i = AC(X̂
1
i , Ẑ

1
l ) where X̂1

i = E(Xi), Ẑ
1
l = E(Zl)

using a cross-attention block AC (Fig. 2(d)) which is vec-
torized to yield the label-adapted vector embedding x̂2,l

i =

N(1⊤X̂2,l
i ). Note that AS and AC do not share parameters.

Scoring Model and Label Classifiers. Given a datapoint
i and a label l ∈ [L], MUFIN assigns a relevance score
by taking a dot product of the adapted vector embedding of
the datapoint x̂2,l

i with the classifier vector wl constructed
as shown in Fig. 2(b) by linearly combining the (normal-
ized) vector embedding for the label ẑ1

l with a normalized
free vector N(ηηηl). The free vector ηηηl and the combination
weight αl ∈ [0, 1] are learnt independently per label.

3.1. Modular Training with MUFIN

Trainable Parameters. The encoder blocks EV , ET , the
attention blocks AS ,AC , the free vectors and weights
ηηηl, αl, l ∈ [L] for the label classifiers were trained. MUFIN
adopted a training strategy first proposed in the DeepXML
paper [6] that breaks training into 4 distinct modules.
Module I: Pre-training. In this module, only the encoders
EV , ET and the self-attention block AS were trained in a
Siamese fashion. The cross-attention block AC was by-
passed i.e x̂2,l

i = x̂1
i and αl was set to 0 for all l ∈ [L]

so as to also exclude the free vectors. A pretrained ViT-
32 model [8] was used to initialize EV and its final layer
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Figure 2. (a) The embedding block E uses a multi-modal self-attention block AS to represent a datapoint (or a label) as a bag of embeddings
X̂1 that can be optionally aggregated into a single normalized vector x̂1. (b) One-vs-all classifier vectors wl are learnt for each label by
combining the vector representation for that label ẑ1

l with a normalized free vector N(ηηηl) (N is normalization). (c) The relevance score
between a datapoint i and label l is computed using the label classifier wl and a vector representation of the datapoint x̂2,l

i that is adapted
to the label l by using the cross-attention block AC . (d) The attention block is instantiated twice, once to implement self-attention as
AS : X 7→ A(X,X) and once to implement cross-attention as AC : (X,Z) 7→ A(X,Z). The two instantiations use distinct parameters.

was fine-tuned during training. A pre-trained Sentence-
BERT model (msmarco-distilbert-base-v4) [31] was used
to initialize ET and was fine-tuned end-to-end during train-
ing. The transformation layers Q,K, V,O in AS were
initialized to identity. Datapoints and labels were repre-
sented by their vector embeddings i.e. x̂1

i and ẑ1
l respec-

tively. Training encouraged x̂1
i and ẑ1

l to approach each
other for related pairs and repel for unrelated pairs. Mini-
batches B were created over labels instead of datapoints
by sampling labels randomly. This was observed to im-
prove performance over rare labels [5, 26]. Training with
respect to all N datapoints for each label would have re-
sulted in an Ω (NL) epoch complexity that is infeasible
when N,L are both in the millions. Thus, a set Pl of hard-
positive datapoints for each label l ∈ B was chosen among
the set

{
i : yil = +1,

〈
ẑ1
l , x̂

1
i

〉
≤ 0.9

}
since positive data-

points too similar to the label i.e.
〈
ẑ1
l , x̂

1
i

〉
> 0.9, yil = +1

would yield vanishing gradients. In-batch negative sam-
pling was also done by selecting for each label l ∈ B, a set
Nl of hard-negative datapoints among positive datapoints
of other labels in the same minibatch. Hard-positive and
negative mining was found to accelerate training by focus-
ing on those label-datapoint pairs that gave most prominent
gradients. The following contrastive loss was used to train
EV , ET and AS using mini-batches B over labels:∑

l∈B

∑
i∈Pl

∑
j∈Nl

[〈
ẑ1
l , x̂

1
j

〉
−
〈
ẑ1
l , x̂

1
i

〉
+ γ

]
+

MUFIN used γ = 0.2, |Pl| = 2, |Nl| = 3. Capping the
sizes of the sets to |Pl| , |Nl| ≤ O (1) ensured that an epoch
complexity of O (L) instead of Ω (LN).

Module II: Augmented Retrieval. The label-wise training
strategy adopted by Module I is sympathetic to rare labels
but is not aligned to final prediction where labels need to
be predicted for datapoints, not the other way round. More-
over, in-batch negative mining is inexpensive but may offer
inferior convergence [38]. To accelerate subsequent train-
ing, a set of O (logL) most promising labels was retrieved
for each datapoint. The irrelevant labels in this set would
form hard-negatives for subsequent training. MUFIN im-
proved retrieval by exploiting multiple descriptors for each
label. After Module I, datapoint vector and label bag em-
beddings i.e. x̂1

i , Ẑ
1
l were re-computed. Label centroid

vectors [5] were created as µ̂µµl = mean
{
x̂1
i : yil = +1

}
.

An ANNS (approximate nearest neighbor search) structure
NNx [24] was created over the set of

∑
l∈[L](ml + 1) vec-

tors
⋃

l∈[L] Ẑ
1
l ∪{µ̂µµl} with each vector recording the identity

of the label to which it belonged. ANNS queries of the form
NNx(x̂1

i ) were then fired to retrieve for each datapoint i, a
set Ri of O (logL) ≤ 100 unique labels. Negative labels in
this set i.e. {l ∈ Ri : yil = −1} were well-suited to serve as
hard-negative labels for the datapoint i. Ablations in Sec. 4
show that this technique offers superior performance than
if the ANNS structure NNx were to be created over vector
representations ẑ1

l of the labels instead. Note that we could
have fired bag-queries on the datapoint side as well i.e. fire
mi ANNS queries for datapoint i, one for each element of
the datapoint bag X̂1

i = E(Xi). However that would sub-
stantially increase retrieval time by a factor of mi (mi ≈ 5
for MM-Amazon-300K) and was thus avoided. Instead, the
approach adopted by MUFIN ensures superior retrieval at
the cost of a single ANNS query per datapoint.
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Module III: Pre-training to Fine-tuning Transfer. The
encoders EV , ET and the self-attention block AS were ini-
tialized to their values after Module I training. The transfor-
mation layers Q,K, V,O within AC are initialized to iden-
tity. The free vectors ηηηl were all offered uniform Xavier ini-
tialization and αl = 0.5 was initialized for all labels l ∈ [L].
Module IV: Fine-tuning. EV , ET ,AS were further fine-
tuned whereas AC , ηηηl, l ∈ [L] and αl, l ∈ [L] were trained
from scratch. Mini-batches B were created over datapoints
to align with the final prediction task. For each i ∈ B,
a set Si of random positive labels was chosen. A set Ti
of hard-negative labels was chosen among negative labels
in the shortlist Ri constructed in Module II. A datapoint i
was represented using label-adapted embeddings w.r.t. the
positive and hard-negative labels shortlisted for them i.e.{
x̂2,l
i : l ∈ Si ∪ Ti

}
. Labels were represented using their

classifier vectors wl (see Fig. 2(b)). The following co-
sine embedding loss was used to train EV , ET ,AS ,AC and
ηηηl, αl, l ∈ [L] using mini-batches B of datapoints:

∑
i∈B

{∑
l∈Si

(
1−

〈
x̂2,l
i ,wl

〉)
+

∑
k∈Ti

[〈
x̂2,k
i ,wk

〉
− γ

]
+

}

MUFIN used γ = 0.5, |Si| = 2, |Ti| = 12. Capping the
set sizes to |Si| , |Ti| ≤ O (logL) ensured that an epoch
complexity of O (N logL) instead of Ω (NL).
Prediction with MUFIN. Given a test point Xt with mt

descriptors Xt =
{
x1
t , . . . , x

mt
t

}
, its vector representation

x̂1
t = N

(
1⊤E(Xt)

)
is used to query the ANNS structure

and perform augmented retrieval of labels to yield a short-
list Rt = NNx(x̂1

t ) of 100 ≤ O (logL) labels. For each
retrieved label l ∈ Rt, a similarity score is assigned as
atl

def
= max

〈
x̂1
t ,v

〉
,v ∈ Ẑ1

l ∪ {µ̂µµl} (recall that in aug-
mented retrieval, each label l ∈ [L] contributes ml + 1
entries to the ANNS structure). Vector representations for
Xt adapted to all shortlisted labels i.e.

{
x̂2,l
t , l ∈ Rt

}
are

computed and the corresponding label classifiers applied to
yield classifier scores cil

def
=

〈
wl, x̂

2,l
t

〉
for each l ∈ Rt.

The classifier and similarity scores are then combined lin-
early as stl = β ·ctl+(1−β) ·atl. A fixed value of β = 0.7
was used. Final predictions are made in descending order of
the scores stl. The prediction time complexity of MUFIN
is derived in App. A in the supplementary.
Handling unseen labels with MUFIN (ααα = 1). A variant
dubbed “MUFIN (α = 1)” was developed to handle un-
seen labels (for which supervision was not available during
training) by setting αl = 1 for all l ∈ [L]. This causes
MUFIN to start using the vector label representation itself
as the classifier i.e. wl ≡ ẑ1

l and give relevance scores of

the form
〈
ẑ1
l , x̂

2,l
t

〉
. Note that the cross-attention block AC

can still be applied to yield adapted datapoint embeddings

x̂2,l
t even w.r.t. unseen labels. The variant MUFIN (α = 1)

sets αl = 1 for all labels l ∈ [L] to ensure consistency.

4. Experimental Results
Datasets. Dataset construction details are given in App. B
in the supplementary [link]. Tab. 1 presents dataset statis-
tics. The Polyvore FITB task relies on precomputed short-
lists for each query and does not present a satisfactory
benchmark for multi-modal XC methods where the goal is
to retrieve results directly from a catalog of millions of la-
bels. Other multimodal datasets [20, 23] were found simi-
larly lacking. Thus, two other tasks were considered. The
A2Q-4M dataset presents a heterogeneous task where dat-
apoints have multi-modal descriptors but labels are purely
textual. The MM-AmazonTitles-300K dataset also presents
occasional datapoints/labels with either the text or vision
modality missing entirely. Thus, these tasks demand that
the architecture be resilient to missing modes.
MM-AmazonTitles-300K: An XC product-to-product rec-
ommendation dataset was curated from an Amazon click
dump [29]. Given a query product, the task is to retrieve
the subset of the most relevant products from a catalog of
over 300K unique products. Each product is represented by
a title and up to 15 images. This dataset has been released
at the The Extreme Classification Repository [2] [link].
A2Q-4M: A large bid-query prediction task was mined from
the internal click logs of the Bing search engine. Given
an ad as a datapoint represented by an image and textual
description, the task is to predict the subset of user queries
(textual) most likely to lead to a click on that ad.
Polyvore-Disjoint: Polyvore is a popular fashion website
where users can create outfit compositions [35]. The Fill-In-
The-Blank (FITB) task requires the most compatible outfit
to be chosen from a pre-computed shortlist given an incom-
plete query outfit with 4–5 images and short captions.
Baselines. Due to lack of space, a detailed discussion on
the baselines is provided in App. C of the supplementary.
MM-AmazonTitles-300K: MUFIN was compared to lead-
ing text-based XC methods [5,16,25,27,37,39] and leading
multi-modal methods CLIP [30] and VisualBert [19] that
employ cross-modal pre-training to embed related items
(e.g. an image and its associated caption) closeby. Atten-
tionXML [39] employs label-specific datapoint representa-
tions similar to MUFIN. SiameseXML was augmented to
utilize a DistilBERT architecture similar to MUFIN instead
of the bag-of-embeddings model used in [5]. The details of
the augmentation are given in App. C. CLIP and VisualBert
use the ViT and Resnet-101 image encoders respectively.
To offer a fair comparison, pre-trained encoders for these
methods were injected into MUFIN’s training pipeline and
afforded the same self-attention, cross attention and classi-
fier architectures. Tab. 2 shows that MUFIN outperformed
even augmented versions of these algorithms.
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Table 1. Statistics for datasets used to benchmark MUFIN. For Polyvore-Disjoint, a ‘-’ indicates that only unseen labels were available for
recommendation at test time. For A2Q-4M, a ‡ indicates numbers redacted for the proprietary dataset.

Dataset
Train Datapoints

N
Labels
L

Test Instances
N

′
Average Labels
per datapoint

Average Tokens
per datapoint

Average Images
per datapoint

Polyvore-Disjoint 16,995 - 15,145 1 27.31 4
MM-AmazonTitles-300K 586,781 303,296 260,536 8.13 20.41 4.91
A2Q-4M 9,618,490 4,528,191 3,933,149 ‡ ‡ ‡

A2Q-4M: Multi-modal baseline methods struggled to scale
to this dataset so comparisons were made only to the leading
text-based method SiameseXML [5].
Polyvore-Disjoint: MUFIN was compared to leading
methods including ADDE-O [10], CSA-Net [21], Type-
aware [35], S-VAL [18], SCE-Net average [34] and
SSVR [32]. Since this dataset offers only unseen labels as
recommendation candidates at test time, only the MUFIN
(α = 1) variant was executed for fair comparison.
Evaluation Metrics. Standard XC metrics e.g. area under
the curve (AUC), precision (P@k), nDCG (N@k), and re-
call (R@k) were used for the MM-AmazonTitles-300K and
A2Q-4M tasks. Classification accuracy was used for the
multi-class Polyvore-Disjoint task as is standard [10,21,35].
Hyperparameters. MUFIN uses ViT-32 [8] as the im-
age encoder EV with 32 × 32 patches and the msmarco-
distilbert-base-v4 architecture [31] as the text encoder ET .
The AdamW optimizer with a one-cycle cosine scheduler
with warm start of 1000 iterations was used. MUFIN could
train on a 24-core Intel Skylake 2.4 GHz machine with 4
V100 GPUs within 48 hrs on the A2Q-4M dataset. See
App. D in the supplementary for hyperparameter details.

4.1. Results and Discussion

MM-AmazonTitles-300K. Tab. 2 shows MUFIN gave 3.6–
11% higher P@1 than text-based XC methods. MUFIN is
5.5% better in P@1 than AttentionXML [39] that also em-
ploys label-specific datapoint representations. MUFIN is
also 3.5% more accurate than SiameseXML that uses a Dis-
tilBERT encoder similar to MUFIN. This indicates the ben-
efit of melding multi-modal information with high-capacity
classifier architectures. MUFIN’s lead is similarly high in
terms of other metrics such as P@5 and R@10. MUFIN
also gave 3.2-12% higher P@1 than multi-modal meth-
ods CLIP and VisualBERT. It is notable that the methods
being compared to are variants of CLIP and VisualBERT
that were offered MUFIN’s attention modules and training
strategies. App. E shows that MUFIN’s lead over these
methods could be as high as 30% if they are not offered
these augmentations. This highlights the utility of MUFIN’s
task-specific pre-training in Module I.
A2Q-4M. MUFIN could train on this dataset with 9M
training points within 48 hrs on 4×V100 GPUs. MUFIN
achieved 47.56% P@1 compared to 44.46% P@1 by Siame-

seXML. MUFIN also offered predictions within 4 millisec-
onds per test datapoint on a single V100 GPU. MUFIN is
able to scale to tasks with several millions of labels offering
prediction times suitable for real-time applications.
Polyvore-Disjoint. Tab. 3 presents results on the FITB task
where MUFIN (α = 1) could be 3-4% more accurate than
the next-best method. MUFIN is encoder-agnostic and con-
tinues to outperform existing methods even if MUFIN re-
places its EV with Resnet18 (used by ADDE-O [10]).

Table 2. Results on MM-AmazonTitles-300K. MUFIN outper-
forms state-of-the-art XC methods by 3–11% in P@1 as well as
R@10. MUFIN also outperforms state-of-the-art vision+language
pre-training strategies by 3–12% in P@1 and 4–13% in R@10.
Recall that the multi-modal techniques were augmented with
MUFIN’s pipeline. App. E shows that MUFIN’s lead rises sig-
nificantly if the methods are not offered these augmentations. The
column tpred reports the per-datapoint prediction times in millisec-
onds for various methods. MUFIN offers millisecond level predic-
tion comparable to or better than existing methods.

Method P@1/
N@1 P@5 N@5 R@10 AUC tpred

(ms)
MUFIN 52.3 34.76 50.46 50.63 0.60 1.32

Textual (XC)
SiameseXML [5] 48.64 32.99 47.46 47.72 0.57 0.82
ECLARE [27] 47.84 32.22 46.04 46.08 0.55 0.08
AttentionXML [39] 46.45 31.17 44.34 43.73 0.53 4.33
Bonsai [16] 47.34 31.65 45.4 45.04 0.55 5.71
MACH [25] 42.22 28.14 40.39 39.7 0.49 0.46
XT [37] 41.45 27.71 39.64 38.91 0.52 5.21

Visual + Textual
CLIP [30]
+ MUFIN 40.49 27.38 38.45 37.19 0.485 6.46

VisualBert [19]
+ MUFIN 49.11 32.35 46.95 46.43 0.58 8.35

Category-wise Analysis. To analyze the gains offered by
MUFIN, the performance of various algorithms was con-
sidered on the 20 unique categories of 300K products in
the MM-AmazonTitles-300K dataset. Fig. 3 shows that
MUFIN’s multi-modal recommendations are 2–6% more
accurate on all popular categories than SiameseXML (that
used the same text encoder ET as MUFIN). Tab. 6 and Fig. 8
in the supplementary present qualitative results that show
that the trend persists and MUFIN offers superior perfor-
mance than competing methods on almost all categories ir-
respective of the popularity of the category.
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Table 3. Results on the FITB task on Polyvore-Disjoint. MUFIN
is 3-4% more accurate compared to the next best method.

Methods FITB Accuracy
MUFIN (α = 1) 64.17
MUFIN (Resnet18, α = 1) 61.63

Visual + Textual
ADDE-O [10] 60.53
Type-aware [35] 55.65
SCE-Net average [34] 53.67
SSVR [32] 51.5

Visual
CSA-Net [21] 59.26
S-VAL [18] 54.3
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Figure 3. MUFIN outperforms baseline methods on almost all cat-
egories. Only the top 5 categories are shown here to avoid clutter.
Tab. 6 in the supplementary contains results on all categories.

Label popularity. To analyze MUFIN’s performance on
rare and popular labels, labels were divided into 5 equi-
voluminous bins of increasing label frequency such that
each bin had an equal number of datapoint-label pairs from
the ground truth. Fig. 4 shows that MUFIN and MUFIN
(α = 1) outperform the baseline methods across all bins.
Impact of Cross Attention (Ac). Fig. 5a shows the cross-
attention heat map generated by AC between a datapoint i
and a relevant label in the retrieved shortlist Ri for that dat-
apoint. MUFIN was able to match a chair in a datapoint
image [Image 5] to a similar chair in the background of a
label image [Image 3] (magnified in Fig. 5b). Fig. 5c shows
that for a given datapoint (x̂1, ), cross-attention allowed
MUFIN to generate a label-adapted datapoint representa-
tion (x̂2,+, ) that is embedded close to the relevant label
(w+, ). However, the label-adapted representation of the
same datapoint (x̂2,−, ) is unmoved for an irrelevant la-
bel (w−, ). Label-adapted representations allow MUFIN
to boost the score for relevant labels and rank them higher.
Label semantics. Type-aware methods [10, 21, 35] have
demonstrated that explicitly incorporating label categories
while training can improve model accuracy. However, in
XC settings with millions of labels, label hierarchies are of-
ten unavailable or incomplete [2]. Fig. 6 depicts the label
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Figure 4. Analyzing the performance of MUFIN and other meth-
ods on popular vs. rare labels. Labels were divided into 5 bins in
increasing order of popularity (left-to-right). The plots show the
overall R@10 of each method (histogram group “complete”) and
the contribution of each bin to this value. The results indicate that
MUFIN’s performance on popular labels (histogram group 1) does
not come at the cost of performance in rare labels. Other methods
seem to exhibit a trade-off between rare and popular labels.

classifiers (wl) learnt by MUFIN using t-SNE representa-
tions. MUFIN could identify category-based relationships
among labels without any explicit feedback on cluster iden-
tity. MUFIN’s clusters exhibit sub-clustering that can be
attributed to the fact that labels belonging to a category
can be further grouped into sub-categories, e.g. “Home
and Kitchen” can be further clustered into “Furniture” and
“Utensils”. Thus MUFIN draws its gains on diverse label
types (Figs. 3 and 4) by deducing label-datapoint relation-
ships from multi-modal information (Figs. 5 and 6).

4.2. Ablation

This section investigates design choices made by
MUFIN for its key components - sampling, retrieval, repre-
sentation, and ranker (scorer). Tab. 4 summarizes the abla-
tion results. The ablation experiments have been explained
in detail in App. F in the supplementary [link].
Sampling. Removing hard +ve sampling (MUFIN-no +ve)
causes a 1% drop in P@5. Removing hard -ve and +ve sam-
pling (MUFIN-no +ve, -ve) leads to a 1.5% drop in P@5.
Retrieval. Recall from Sec. 3 that retrieval of label short-
lists Ri could have been done over label embeddings ẑ1

l or
bag embeddings Ẑ1

l of the labels. The augmented retrieval
strategy of MUFIN (MUFIN-P-I-bag) can be 0.3% and 1%
more accurate in R@10 and P@1 as compared to retrieval
based on vector embeddings ẑ1

l alone (MUFIN-P-I-vec).
Representation. MUFIN was 3-4% more accurate than
the MUFIN-ConCat variant that concatenated x̂1, ẑ1

l fol-
lowed by two feed-forward layers instead of using the cross-
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(a) Heat map of cross-attention weights generated by AC (range of
weights in legend). [TXT] denotes the title of the data-point/label. Note
the point of high attention encircled in red (discussed below). The plot has
been enhanced for contrast. Please zoom in for better viewing.
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(b) The high attention weight (high-
lighted as a red circle in Fig. 5a) was a
result of the cross-attention block AC

being able to align [Image 5] of the dat-
apoint X to [Image 3] if the label Z+ by
observing that the chair depicted in [Im-
age 5] X is closely related to the chair
in the background of [Image 3] of Z+.
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(c) Analysing the impact of
label-adapted representations.
The vector embedding of the
data point was adapted to the
relevant label Z+ (the very one
referenced in Figs. 5a and 5b)
as well as an irrelevant label
Z− (see discussion below).

Figure 5. The impact of multi-modal cross-attention in MUFIN.
Fig. 5a shows the cross-attention heat map between the datapoint
X and a relevant label Z+. Fig. 5b shows that cross-attention is
able to identify objects in X among objects in the background
of the relevant label Z+. Fig. 5c shows how this helps boost
the scores assigned to relevant labels. x̂1 ( ) represents the non-
adapted vector embedding of the datapoint X . w+( ) and w−( )
represent the classifier vectors for the relevant and irrelevant labels
Z+ and Z− respectively. Similarly, x̂2,+( ) and x̂2,−( ) rep-
resent the vector embedding of the datapoint adapted to Z+ and
Z− respectively. Notice how adaptation moves x̂2,+( ) closer
to w+( ) allowing the relevant label Z+ to get a higher score.
On the other hand, adaptation has no effect when done with re-
spect to an irrelevant label (note that x̂1 ( ) and x̂2,−( ) do
indeed almost overlap). Fig. 5c was plotted by projecting the vec-
tors x̂1,w+,w−, x̂

2,+, x̂2,− onto R2 using a t-SNE embedding.

attention block AC . Removing the self-attention block from
Modules I-IV (MUFIN-no AS) led to a 1.6% drop in P@5.
Ranker. MUFIN’s novel scoring architecture can be upto
1.5% more accurate in terms of P@5 than variants that ei-
ther exclude the cross-attention block (MUFIN-no AC) or
the one-vs-all classifiers (MUFIN-(α = 1)).

MM-AmazonTitles-300K

Grocery and Gourmet Food
Sports and Outdoors
Clothing Shoes and Jewelry

Home and Kitchen
Toys and Games

Figure 6. t-SNE representations for classifiers wl, l ∈ [L] learnt
by MUFIN show that labels belonging to the same category are
clustered together. Only the 5 most popular categories are shown.

Table 4. An ablation study exploring alternate architecture and
training choices for MUFIN. Choices made by MUFIN could lead
to 3-4% gain in P@1 and 1-2% gain in R@10 than alternatives.

Ablation P@1/
N@1 P@5 N@5 R@10

MUFIN 52.3 34.76 50.46 50.63
Sampling

MUFIN-no +ve 50.35 33.71 48.91 49.19
MUFIN-no +ve, -ve 49.69 33.33 47.9 48.76

Retrieval
MUFIN-P-I-bag 42.72 28.8 42.03 44.49
MUFIN-P-I-vec 41.71 28.26 41.31 44.2

Representation
MUFIN-ConCat 49.61 32.89 47.87 47.97
MUFIN-no AS 49.98 33.16 48.11 48.11

Ranker
MUFIN-no AC 50.22 33.87 49.03 49.68
MUFIN-(α = 1) 49.25 33.19 48.53 49.87

The ablations show that MUFIN’s design choices with
respect to hard +ve, -ve sampling, self- and cross-attention,
and one-vs-all classifiers, each offer performance boosts.

Dataset and Supplementary Material. The MM-
AmazonTitles-300K dataset can be downloaded at http:
/ /manikvarma.org/downloads/XC/XMLRepository.html.
MUFIN pseudocode, implementation details, additional re-
sults and discussions on limitations of MUFIN, ethical con-
siderations and future work are presented in the supplemen-
tary at http://manikvarma.org/pubs/mittal22-supp.pdf.
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