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Figure 1. Images synthesized by the proposed CoordGAN for various object categories (left: faces; top-right: cars; bottom-right: cats) :
each row displays images with the same structure but different textures; in each column, structure varies while keeping texture fixed. The
correspondence maps (Corr-Map) controlling the structure of the synthesized images are shown in the first column of each row. For better
visualization, we use off-the-shelf segmentation models to highlight the foreground areas of all the correspondence maps, as shown with
Corr-Map (Crop).

Abstract
Recent advances show that Generative Adversarial Net-

works (GANs) can synthesize images with smooth varia-
tions along semantically meaningful latent directions, such
as pose, expression, layout, etc. While this indicates that
GANs implicitly learn pixel-level correspondences across
images, few studies explored how to extract them explicitly.
In this work, we introduce Coordinate GAN (CoordGAN),
a structure-texture disentangled GAN that learns a dense
correspondence map for each generated image. We repre-
sent the correspondence maps of different images as warped
coordinate frames transformed from a canonical coordi-
nate frame, i.e., the correspondence map, which describes
the structure (e.g., the shape of a face), is controlled via
a transformation. Hence, finding correspondences boils
down to locating the same coordinate in different corre-
spondence maps. In CoordGAN, we sample a transfor-
mation to represent the structure of a synthesized instance,
while an independent texture branch is responsible for ren-

*Work done while an intern at Nvidia.

dering appearance details orthogonal to the structure. Our
approach can also extract dense correspondence maps for
real images by adding an encoder on top of the genera-
tor. We quantitatively demonstrate the quality of the learned
dense correspondences through segmentation mask trans-
fer on multiple datasets. We also show that the proposed
generator achieves better structure and texture disentan-
glement compared to existing approaches. Project page:
https://jitengmu.github.io/CoordGAN/

1. Introduction

Generative Adversarial Networks (GANs) have achieved
great success in synthesizing high-quality images [3,20–22,
37], and many recent studies show that they also learn a rich
set of interpretable directions in the latent space [40, 41].
Moving latent codes along a semantically meaningful direc-
tion (e.g., pose) generates instances with smoothly varying
appearance (e.g., continually changing viewpoints), imply-
ing that GANs also implicitly learn which pixels or regions
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are in correspondence with each other, from different syn-
thesized instances.

On the other hand, dense correspondence is established
between local semantically-similar regions, but with vary-
ing appearance (e.g., patches of two different eyes). Learn-
ing dense correspondence across images of one category re-
mains challenging because labeling large-scale, pixel-level
annotations is extremely laborious. While most existing
works rely on supervised [7,11,17,39], or unsupervised [47]
image classification networks, few have investigated how to
learn dense correspondence from GANs.

In this work, we explore learning dense correspondence
from GANs. Specifically, we aim to learn an explicit cor-
respondence map, i.e., a pixel-level semantic label map.
Since correspondence represents structure (e.g., shapes of
facial components) and is independent of texture (e.g.,
global appearance like skin tone and texture), this task is
highly relevant to disentanglement of structure and texture
in GANs [1, 28, 33, 41, 45, 50]. Studies show that disentan-
glement of semantic attributes can be achieved by carefully
searching for latent directions learned by GANs [12,41,50],
but all attributes being factorized have to be identified by
humans. Some recent advances [1, 28] demonstrate ef-
fective structure-texture disentanglement by improving the
noise code input to GANs [1], or by applying spatial atten-
tion in the intermediate layers [28]. However, they either
produce a relatively low resolution (e.g., 4 ⇥ 4) structure
map [1], or do not produce it explicitly [28].

Our key idea is to introduce a novel coordinate space,
from which pixel-level correspondence can be explicitly ob-
tained for all the synthesised images of a category. Inspired
by UV maps of 3D meshes [19, 27, 31], where shapes of
one category are represented as deformations of one canon-
ical template, in this work, we represent the dense corre-
spondence map of a generated image as a warped coor-
dinate frame transformed from a canonical 2D coordinate
map. This enables the representation of a unique struc-
ture as a transformation between the warped and the canon-
ical frames. We design a Coordinate GAN (CoordGAN)
with structure and texture controlled via two independently
sampled noise vectors. While the texture branch controls
the global appearance via Adaptive Instance Normalization
(AdaIN) [21], in the structure branch, we learn an MLP as
the aforementioned transformation. This maps a sampled
noise vector to a warped coordinate frame, which is further
modulated in the generator to control the structure of the
synthesized image in a hierarchical manner.

We adopt several objectives during training to ensure that
the network learns accurate dense correspondence, i.e., (1) a
texture swapping constraint to ensure the same structure for
images with the same structure code but different texture
codes; (2) a texture swapping constraint to ensure similar
texture for images with the same texture code, but different

structure codes. We also introduce a warping loss to further
regularize the correspondence maps. In addition, we show
that CoordGAN can be flexibly equipped with an encoder
that produces dense correspondence maps for real images.
We summarize our contributions as follows:

• We introduce a novel coordinate space from which
dense correspondence across images of one category
can be explicitly extracted. A warping function is in-
troduced to learn this coordinate space.

• We propose CoordGAN, a disentangled GAN that gen-
erates dense correspondence maps and high-quality
images, via a set of effective objectives.

• CoordGAN can be flexibly equipped with an encoder
to produce the correspondence maps for real images.
In other words, we also introduce a network (i.e., the
encoder) that learns explicit structure representation.

• Experiments show that CoordGAN generates accurate
dense correspondence maps and high-quality struc-
ture/texture editable images, for various categories.

2. Related Work

Disentangled GANs. Recent studies [12, 41, 50] show
that rich semantically meaningful directions (e.g., pose,
color, lighting, etc.) automatically emerge in GANs. To
factorize these meaningful latent directions, a line of disen-
tangled GANs [4, 5, 33, 34, 42] are proposed to synthesize
images via multiple latent factors, where each factor con-
trols a certain attribute, e.g., object shape or texture. Un-
like [34, 42, 45] where human annotations (e.g., bounding
boxes, surface normals, etc) are required, most related to
ours are self-supervised disentanglement approaches [1,28,
33]. Among them, Alharbi et al. [1] show that injecting
hierarchical noise in the first layer of GANs leads to fine-
grained spatial content disentanglement. Kwon et al. [28]
further inject noise into multiple layers with diagonal spatial
attention modules. However, the learned content code only
captures coarse structure such as viewpoints, i.e., keeping
the same content code and only modifying the texture code
would change the subject’s shape. In contrast, our method
models finer structure that allows for generating images of
the same identity with various textures.

Style Transfer. Style transfer [6, 10, 18, 35, 43] synthe-
sizes a novel image by combining the content of one image
with the texture of another one. Most related to ours is to
swap texture between semantically-related regions of two
images. E.g., Park et al. [35] learns a disentangled auto-
encoder such that texture of corresponding regions can be
swapped. In contrast, our work studies disentanglement of
unconditional GANs and extracts dense correspondence be-
tween images explicitly.

Dense Correspondence. Identifying dense correspon-
dence has been a challenging problem due to large shape
and appearance variances. Most existing approaches are
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Figure 2. Correspondence in coordinate space. The correspon-
dence maps (Corr-Map) establish dense correspondence between
all synthesized images and the canonical coordinate frame.

based on discriminative networks, i.e., either supervised
image classification [7, 11, 17, 25, 32, 39], or unsupervised
image-level contrastive learning [47, 48]. Our work differs
in that we investigate how to extract dense correspondence
from GANs. Recently, several works [49, 52] show that se-
mantics can be extracted from GANs via a linear classifier
in a few-shot setting. However, these methods still require
manual annotations for training the classifier. Inspired by
these works, we move one step further to extract dense cor-
respondence without using any annotated labels.

Concurrent Work. Peebles et al. [36] achieves visual
alignment through equipping a pre-trained StyleGAN2 [23]
with additional Spatial Transformer Network (STN) [16].
However, dense correspondence is only identified for part of
the object. Differently, through disentanglement of struc-
ture and texture, the proposed CoordGAN automatically
generates correspondence maps of full images and neither
pretrained StyleGAN nor additional STN is required.

3. Dense Correspondence from CoordGAN

We design a structure-texture disentangled GAN such
that dense correspondence can be extracted explicitly from
the structural component, where the key component is to
tie image structure to a coordinate space that is shared by
all images. Specifically, the structure of each generated
image is represented as a warped coordinate frame, trans-
formed from a shared canonical 2D coordinate frame. This
reduces finding correspondence between image pixels to lo-
cating the coordinates in corresponding warped coordinate
frames, which are transformed from the same coordinates
in the canonical frame. We call our model Coordinate GAN
(CoordGAN).

Coordinate Map Representation. We define C as a
2D coordinate map of width W

c and height Hc. When
C(i, j) = (i, j), this denotes the canonical coordinate map
(see Figure 2). Pixel locations and coordinates are normal-
ized to the range [�1, 1]. For example, C(1, 1) = (1, 1)
indicates the bottom right pixel of the coordinate map is

of coordinate (1, 1). It is then possible to define a warp-
ing function W : (C,w) ! C

w, parameterized by a code
w 2 RN , that maps C into a warped coordinate map C

w.
Since the code w relates the pixel coordinates of the image
to the canonical coordinate map, it can be seen as the repre-
sentation of image structure. In particular, Cw(i, j) = (k, l)
implies that the pixel i, j of the image is in correspondence
with the canonical coordinate k, l. Given the two images
with codes w1 and w2, it is also possible to establish corre-
spondence between them by seeking pixels of similar coor-
dinates. Given pixel (i, j) of the image associated with co-
ordinate C

w1(i, j), the corresponding pixel in another im-
age of coordinate map C

w2 is,

T1,2(i, j) = argmin
p,q

||Cw1(i, j)� Cw2(p, q)||2, (1)

where T1,2 defines the forward transformation from warped
coordinates C

w1 to C
w2 . In this way, a generative model

for images that includes a warping function automatically
establishes dense correspondence between all synthesized
images, as shown in Figure 2. This can be useful for trans-
ferring properties between the images, such as semantic la-
bels, landmark locations, image pixels, etc.

3.1. Overview

An overview of the proposed CoordGAN is presented in
Figure 3. The CoordGAN is a generative model based on
the structural coordinate map representation. The inputs to
our model include two latent code vectors with dimension
N : a structure code zs 2 RN for modeling layouts and ob-
ject structure, and a texture code zt 2 RN for modeling tex-
ture, lighting, etc. The CoordGAN generator G(zs, zt; ✓G)
is a mapping from these codes to the image space, with
parameters ✓G . This is implemented by a combination of
structure and texture mappings. A structure mapping net-
work ws = S(zs; ✓S) of parameters ✓S maps the structure
noise variable zs into a structure code ws, which is then
used by a warping function W(C,ws) to produce a warped
coordinate map C

ws for the image. A texture mapping net-
work wt = T (zt, ✓T ) of parameters ✓T maps the texture
noise variable zt into a texture code ws. The modulated
generator then produces an image with the mapping A pa-
rameterized by ✓A,

G(zs, zt; ✓G) = A(Cws , wt; ✓A), (2)

where ✓G includes ✓S , ✓T , and ✓A. The details of the vari-
ous modules are discussed in the following sections.

3.2. Coordinate Warping Network

One major component in CoordGAN is the warping
function. We propose a Coordinate Warping Network,
which learns a transformation between the canonical and a
warped coordinate frame, conditioned on a latent structure
code ws. While there exist several differentiable transfor-
mation functions, such as Thin Plate Splines (TPS), Spa-
tial Transformation Network (STN) [16], and affinity ma-
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Figure 3. Overview of CoordGAN. CoordGAN mainly consists of a texture mapping network, a structure mapping network, a coordinate
warping network, and a modulated generator. The coordinate warping network (on the right) takes the structure latent code and a canonical
coordinate map and outputs a correspondence map, which is then fed into multiple layers of the modulated generator to synthesize images.

trix [30, 44], in CoordGAN this transformation is imple-
mented with a MLP as

Cws(i, j) = W(C(i, j), ws) = P([C(i, j), ws], ✓P) 8i, j (3)

where P is a three layer MLP of parameters ✓P and
[C(i, j), ws] 2 RN+2 is the concatenation of coordinate i, j
from the canonical frame with the structure latent code ws.
In the supplementary materials, we show that the MLP is
a learnable, conditional geometric transformation between
the canonical coordinate frame and a warped coordinate
frame.

The advantages of learning the transformation via a MLP
are two folds. First, since an MLP is a continues function
containing only linear projection layers and ReLUs, it pre-
serves the order of the coordinates in the canonical coor-
dinate frame, i.e., it ensures that the warping is diffeomor-
phic. Second, compared to TPS and STN, our design of W
is generic and allows for more flexible deformation.

3.3. Incorporating Warping in CoordGAN

We introduce the rest of CoordGAN components. While
our generator design is inspired by StyleGAN [21] (see Fig-
ure. 3), we discuss the major differences in the following.

Positional Encoding. Rather than inputting dense cor-
respondence map directly to the generator, we map it via a
positional encoding layer [2]. I.e., a Fourier embedding is
obtained by the application of a 1⇥ 1 convolution followed
by a sine function. The Fourier embedding serves as the
first layer of the generator.

Mapping Networks S(·) and T (·). We use the same
architecture as StyleGAN for the mapping network. Dif-
ferent from StyleGAN, we apply two independent mapping
networks responsible for structure and texture, respectively.

Modulated Generator A(·). We replace the learnable
constant input of StyleGAN with the correspondence map.

Since the latter has high resolution (i.e., 128⇥128), instead
of gradually increasing spatial resolution, the spatial reso-
lution is kept the same as the input Fourier embedding at
all layers as shown in Figure 3. We inject the latent tex-
ture code wt into different layers of the modulated gener-
ator, via weight modulation [22], to render appearance de-
tails at different levels. To balance the structure and tex-
ture inputs at an architectural level, the dense correspon-
dence map is also concatenated with the features produced
by multiple intermediate layers of the modulated generator.
We found that, without this multi-layer modulation of dense
correspondence map, the coordinate warping network can
only learn coarse and inaccurate structure information (e.g.,
viewpoints of faces), as shown in Table 3.

3.4. Learning Objectives

To learn accurate correspondence maps and encourage
the disentanglement of the latent space, such that zs and
zt encode the image structure and texture separately, Co-
ordGAN is trained with the following objectives.

Texture Swapping Constraint. To ensure the Co-
ordGAN generates the same identity and image layout when
the structure is fixed and only the texture code is modified,
a texture swapping constraint is applied. Given a pair of
synthesized images with a shared structure code zs and dif-
ferent texture codes zt1 , zt2 , the texture swapping loss Lt is
defined as the LPIPS [51] loss between the two synthesized
images:

Lt = LLPIPS (G(zs, zt1 ; ✓G), G(zs, zt2 ; ✓G)). (4)

Structure Swapping Constraint. To encourage images
that share the same texture code to have similarly look-
ing textures, a structure swapping constraint is introduced.
This consists of encouraging two images with the same tex-
ture code zt but different structure codes zs1 and zs2 to
have similar textures. Following [35], this is done with
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a non-saturating GAN loss based on a patch discriminator
Dpatch:

Ls = E
h
� log

⇣
Dpatch

�
G(zs1 , zt; ✓G), G(zs2 , zt; ✓G)

�⌘i
.

(5)
Warping Loss. A warping loss is defined to explic-

itly regularize the correspondence map. Given a pair
of synthesized images x1 = G(zs1 , zt1 ; ✓G) and x2 =
G(zs2 , zt2 ; ✓G), x1 is warped to the coordinate frame of x2

by transferring pixel colors according to Equation (1). In
practice, similar to [30, 44, 46], we relax Equation (1) with
affinity matrix to make the warping differentiable. This pro-
duces a warped image x

w
2,1

. A warping loss based on the
LPIPS loss [51],

Lwarp = LLPIPS (x
w
2,1

, x2), (6)

is used to minimize the distance between x
w
2,1

and x2 .
Chamfer Loss. Suppose a canonical coordinate map C

is transformed to a warped coordinate map C
w, a Chamfer

loss is implemented to avoid the collapse of the transforma-
tion,

Lcham =
1
|C|

X

(i,j)2C

min
(p,q)

||C(i, j)� Cw(p, q)||2

+
1

|Cw|
X

(p,q)2Cw

min
(i,j)

||Cw(p, q)� C(i, j)||2.
(7)

Overall Learning Objective. To generate realistic im-
ages, a standard GAN objective function LGAN is applied
to the synthesized images. Combining all the aforemen-
tioned loss objectives, the overall training objective is de-
fined as

LG =�t ⇤ Lt + �s ⇤ Ls + �warp ⇤ Lwarp

+ �cham ⇤ Lcham + �GAN ⇤ LGAN ,
(8)

where �t,�s,�warp,�cham,�GAN are coefficients used to
balance the different losses.

3.5. Inverting CoordGAN via an Encoder

The CoordGAN can be equipped with an encoder to en-
able the extraction of dense correspondence from real im-
ages. Specifically, an encoder E(·; ✓E ) parameterized by
✓E is introduced to map an image x to a pair of structure
ws,E and texture wt,E latent codes. These latent codes are
then input to the CoordGAN to synthesize a replica of the
image. As observed in [38], embedding real images directly
into W+ space rather than W space leads to better recon-
struction. So for the texture branch, we design the encoder
to output texture latent codes w+

t,E in W+ space as opposed
to wt,E in W space. During training, we fix the generator
while optimizing the encoder via latent consistency, recon-
struction and texture swapping losses, which are described
as follows.

Latent Consistency Loss. We introduce a latent con-
sistency loss by feeding synthesized images back to the en-
coder and matching the distribution of encoder outputs to

that originally produced by the mapping network. Suppose
an image is synthesized with latent codes wt, ws, and cor-
respondence map C

w. Inputting this image back into the
encoder produces a pair of latent codes w+

t,E and ws,E , and
the correspondence map C

w
E . The latent consistency loss

Lcon is defined as

Lcon = L2(ws, ws,E ) + L2(C
w, Cw

E
), (9)

where L2(·, ·) denotes the L2 loss.
Reconstruction Loss. This is a reconstruction loss for

input real images, with L1 (L1) and LPIPS [51] (LLPIPS)
components, defined as

Lrec = L1(x,G(E(x))) + LLPIPS (x,G(E(x))), (10)

Overall Learning Objective. The overall learning ob-
jective used for encoder training an encoder is

LE = �con ⇤ Lcon + �rec ⇤ Lrec + �t ⇤ Lt, (11)

where �con,�rec,�t are hyperparameters that balance the
different losses.

We note that the encoder facilitates explicit structure rep-
resentation learning for real images. It is significantly more
efficient than optimization-based GAN-inversion methods,
as no iterative inference is required.

4. Experiments

In this section, we show quantitative and qualitative re-
sults of models trained on the CelebAMask-HQ [29], Stan-
ford Cars [26], and AFHQ-Cat [6] datasets. We train sepa-
rate models on each dataset, using a resolution of 512⇥512
for the CelebAMask-HQ model and 128⇥128 for the other
two. For CelebAMask-HQ, we first train CoordGAN with
an output size of 128 ⇥ 128 and then append two upsam-
pling layers to generate high-resolution images. Detailed
network design and training hyper-parameters are described
in the supplementary.

4.1. Evaluation on Dense Correspondence

We quantitatively demonstrate the quality of the ex-
tracted dense correspondence on the task of semantic label
propagation. Given one reference image with semantic la-
bels, its correspondence map is first inferred with the trained
encoder. This establishes a mapping between the semantic
labels and the correspondence map for that image. Another
correspondence map is then inferred for a query image and
the labels of the reference image are obtained with Equa-
tion (1). To align with the training stage, we relax Equa-
tion (1) with affinity matrix in practice.

Datasets and Metrics. We evaluate different meth-
ods on the CelebAMask-HQ [29] and DatasetGAN [52]
datasets. We merge CelebAMask-HQ dataset labels and se-
lect 6 classes (eyes, nose, ear, mouth, face and eyebrow)
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Figure 4. Qualitative results for semantic label propagation. In each row, given one reference image along with its semantic labels as shown
on the left, the proposed approach predicts its correspondence map and propagates its segmentation mask to other query images on the
right. For better visualization, we use the ground-truth masks to highlight the foreground areas of all the predicted correspondence maps,
denoted with Corr-Map (Crop). Note that no ground-truth masks are used for actual label propagation.

for our evaluation. The DatasetGAN dataset contains de-
tailed manually annotated labels for faces (34 classes) and
cars (20 classes). For the DatasetGAN faces, we excluded
neck and hair since they are not consistently visible for all
images in the dataset. For all datasets, we randomly se-
lect 5 images as reference and another set as query images.
Each reference image’s semantic label is propagated to all
query images and the mean intersection-over-union (IOU)
with the ground-truth segmentation maps is computed for
evaluation. We report the averaged score of these 5 runs.

Baselines. For all baseline models, we extract fea-
tures from hidden layers and use nearest neighbor search
to determine feature correspondences and propagate la-
bels. We detail the features selected for label propagation
below. We employ two sets of baselines. The first set
comprises of transfer learning based methods with either
supervised ImageNet pre-training, e.g., ResNet50 [14] or
self-supervised contrastive learning based pre-training, e.g.,
MoCo [13] pre-trained on ImageNet [8] and VFS [48] pre-
trained on Kinetics video dataset [24]. For all these meth-
ods, ResNet50 [14] is employed as the backbone and the
pre-trained models are directly tested on our task without
fine-tuning. We follow [47, 48] and use the Res-block 4
features for label propagation as it is shown that Res-block
4 gives the best pixel-level correspondences. Another set
of baselines is based on auto-encoders, such as Swapping
Auto-encoder [35] and Pix2Style2Pix [38]. Both methods
are trained on the same datasets as ours. For Swapping
Auto-encoder, the structure branch features are used for la-
bel propagation. For Pix2Style2Pix encoder, the Res-block
4 features are used for label propagation. All methods are
evaluated with input image resolution of 128, except for
Pix2Style2Pix where the input image size is set to 256 fol-

CelebA-HQ DGAN-face DGAN-car
Resnet50 [14] 39.48 11.05 11.07
Moco [13] 36.19 10.00 9.53
VFS [48] 38.10 8.55 6.88
Swap AE [35] 24.73 5.48 5.37
Pix2Style2Pix [38] 48.50 20.36 10.77
CoordGAN 52.25 23.78 13.23

Table 1. IOU comparison for label propagation. Our method
shows the best semantic label propagation results among all base-
line methods.
lowing the original paper.

Quantitative Results. As reported in Table 1, the pro-
posed CoordGAN outperforms all self-supervised baselines
across all three datasets on the task of semantic segmen-
tation label propagation. The most related approach is
Pix2Style2Pix, which also learns an encoder for a pre-
trained StyleGAN2 model. While Pix2Style2Pix encoder
features contain both structure and texture information, Co-
ordGAN correspondence maps, with only structure infor-
mation, still achieve better label propagation performance.
These results suggest that CoordGAN learns much accurate
correspondence than the other methods.

Qualitative Results. We visualize both the coordinate
maps and the propagated segmentation labels in Figure 4.
On the left, several reference images from the DatasetGAN
dataset are shown along with their semantic labels. On the
right, we show the propagation results for different query
test images. The predicted correspondence maps for both
the reference and query images are color-coded and masked
with the foreground ground-truth semantic labels for better
visualization. Note that this is only for visualization, no
ground-truth masks are used for the actual label propaga-
tion. Note that our method produces precise label propa-
gation results for both frontal and profile query faces. For
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CoordGAN DiagonalGAN StyleGAN Factorization

Figure 5. Qualitative comparison for texture swapping. From top to bottom: models trained on CelebAMask-HQ, Stanford Cars, and
AFHQ-cat datasets. For CoordGAN and DiagonalGAN, images shown in each row are generated with the same structure code and diverse
texture codes. For GAN Factorization, images in each row are generated with random perturbations along the identified eigen-vector
directions. It is apparent that CoordGAN preserves structure better when only texture codes are modified.

CelebA-HQ Stanford Cars AFHQ-cat
LPIPS # Arcface # FID # LPIPS # FID # LPIPS # FID #

StyleGAN2 [23] - - 8.21 - 16.20 - 21.02
DiagonalGAN [28] 0.58 0.79 11.16 0.61 18.09 0.55 17.63
CoordGAN 0.22 0.38 16.16 0.21 24.27 0.27 23.62

Table 2. Texture swapping comparison. The lowest LPIPS and
Arcface feature distances of CoordGAN suggest better structure
preservation when the texture code is varied.

cars, this is even more challenging, considering the large
differences in viewpoints and scales. For example, in ex-
treme cases where the reference car is viewed from the front
and the query car from the back, no correspondence exist.
Surprisingly, even in cases where the reference car is ob-
served from the side and the query car from the rear, Co-
ordGAN still matches the labels reasonably well. We con-
jecture this is because it learns a reasonable prior for the
category, by observing many instances and densely associ-
ating them during training.

4.2. Identity-preserving Texture Swapping

We analyze disentanglement of structure and texture of
CoordGAN by generating images with the same structure
code but different texture codes (i.e., texture swapping) and
evaluating the structural consistency of the outputs. We fo-
cus on the generator and do not use an encoder in these
experiments.

Metrics. To quantitatively examine different methods,
we use the ArcFace [9] face identity loss and the LPIPS [51]
loss to evaluate disentanglement and structure preservation
performance, and FID [15] score for measuring the per-
ceptual image quality of the generated images. ArcFace
computes a feature-level cosine similarity loss between two
faces. It can be used to measure whether the face identity
is preserved since the smaller the loss is, the more likely
both images capture the same identity. LPIPS [51] mea-
sures whether two images have similar image layouts.

Baselines. CoordGAN is compared against two base-
lines: DiagonalGAN [28] and GAN Factorization [41].
DiagonalGAN achieves state-of-the-art performance for
StyleGAN-based structure and texture disentanglement.
Similar to CoordGAN, it uses separate structure and tex-
ture codes as inputs. To generate texture-swapped images,
we sample a structure code and different texture codes, and
then compute the structural similarity among the images
synthesized using the aforementioned metrics. GAN Fac-
torization exploits SVD to identify semantically meaning-
ful latent directions across different GAN layers. The pa-
per suggests that the final layers of the GAN are mainly
responsible for controlling texture. Therefore, we generate
texture-swapped images with GAN Factorization by adding
perturbations along the computed eigen-vectors of the last
two convolution layers of a pre-trained StyleGAN2.
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Figure 6. Qualitative results for structure swapping. Images shown
in each row are generated with the same texture code and diverse
structure codes.

Results. As shown in Table 2, CoordGAN outperforms
the baselines by a significant margin for all disentanglement
metrics (ArcFace and LPIPS) on all object categories. This
suggests that it successfully preserves the fine-grained im-
age structure independent of the input texture. Note that
ArcFace is only available for human faces. The FID score
is computed over 10,000 generated images for all methods,
for reference. Note that, as discussed in [1, 28], a slight
decrease in the FID score is observed due to the strong dis-
entanglement constraints enforced.

In Figure 5, each row shows diverse texture-swapped
images generated by fixing the structure code and varying
the texture code. The DiagonalGAN changes the subject’s
identity completely. This becomes more clear when testing
on cars, where the viewpoint is ambiguous and scale can
vary. Results suggest that its disentangled content code only
captures coarse structural information, such as the rough
image layout and viewpoint. In contrast, CoordGAN suc-
cessfully maintains both the coarse and fine-grained image
structure and only varies appearances, on all datasets. For
GAN factorization, while potentially possible to exhaus-
tively search for the latent eigen-vectors that only modify
image textures, it is not easy to finely control the appear-
ance of the synthesized images.

4.3. Structure Swapping

To further demonstrate CoordGAN successfully disen-
tangles structure and texture, in this section, we synthesize
images of the same texture code and various structure codes
(i.e., structure swapping). As show in Figure 6, from top
to bottom, we show synthesized images of models trained
separately on CelebAMask-HQ, Stanford Cars, and AFHQ-
cat datasets. It is clear that images in each row show sim-
ilar textures (e.g., hair/face colors for humans, grey cars,
orange cats) with diverse structural variations (e.g., view-
point, scale, shape, layout, etc). The again confirms that
CoordGAN learns a disentangled representation where the
structure code and the texture code capture different at-
tributes of a synthesized image. More visualizations are
included in the supplementary materials.

Disentanglement Correspondence
LPIPS# Arcface # CelebA-HQ DGAN-face

CoordGAN 0.10 0.32 52.25 23.78
w/o struc-mod 0.32 0.73 48.59 20.01

Table 3. Ablation on structure modulation. We show that incorpo-
rating the structure modulation is essential to a good disentangle-
ment and correspondence performance (measured by IOU).

4.4. Ablation Studies

We ablate different architectures w.r.t the structure
branch, i.e., feeding the correspondence map (1) only to the
first layer of CoordGAN (w/o struc-mod), or (2) to modu-
late multiple layers, as discussed in Section 3.3. Both mod-
els are trained to synthesize images of resolution 128⇥ 128
on the CelebAMask-HQ dataset. Table 3 shows that the
proposed structure modulation design is crucial to achieve
a good disentanglement of structure and texture. This con-
firms that a non-trivial architecture design is needed to em-
bed the structure information and highlights the importance
of the proposed balanced structure and texture modulation.
More studies on objectives are included in the supplemen-
tary materials.

5. Discussion

Conclusion. In this work, we show that it is possible to
train GANs so that dense correspondence can automatically
emerge. We propose a novel disentangled GAN model, Co-
ordGAN, that produces dense correspondence maps repre-
sented by a novel coordinate space. This is complemented
by an encoder for GAN inversion, which enables the gener-
ation of dense correspondence for real images. Experimen-
tal results show that CoordGAN generates accurate dense
correspondence maps for a variety of categories. This opens
up a new door for learning dense correspondences from
generative models in an unsupervised manner. We qualita-
tively and quantitatively demonstrate that CoordGAN suc-
cessfully disentangles the structure and texture on multiple
benchmark datasets.

Limitations and Future Work. The current proposed
model is restricted to learn correspondence within the same
category, since it requires the coordinate maps transformed
from the same canonical space. While we can potentially
infer the 3D viewpoints from the coordinate map (as visu-
alized in Figure 4), we have not explicitly modelled the 3D
structure in our representation. A future extension of this
work can be to learn a 3D UV coordinate map instead of a
3D map to represent the underlying structure.
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