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Abstract

Domain Generalizable (DG) person ReID is a challeng-
ing task which trains a model on source domains yet gen-
eralizes well on target domains. Existing methods use
source domains to learn domain-invariant features, and
assume those features are also irrelevant with target do-
mains. However, they do not consider the target domain
information which is unavailable in the training phrase of
DG. To address this issue, we propose a novel Meta Dis-
tribution Alignment (MDA) method to enable them to share
similar distribution in a test-time-training fashion. Specif-
ically, since high-dimensional features are difficult to con-
strain with a known simple distribution, we first introduce
an intermediate latent space constrained to a known prior
distribution. The source domain data is mapped to this la-
tent space and then reconstructed back. A meta-learning
strategy is introduced to facilitate generalization and sup-
port fast adaption. To reduce their discrepancy, we fur-
ther propose a test-time adaptive updating strategy based
on the latent space which efficiently adapts model to un-
seen domains with a few samples. Extensive experimental
results show that our model outperforms the state-of-the-
art methods by up to 5.2% R-1 on average on the large-
scale and 4.7% R-1 on the single-source domain general-
ization ReID benchmark. Source code is publicly available
at https://github.com/haoni0812/MDA.git.

1. Introduction
Person Re-identification (ReID) aims to match persons

with the same ID across different camera views. Thanks
to the development of deep convolutional neural networks
(CNNs) [14], supervised ReID and unsupervised domain
adaptation (UDA) [42] have achieved remarkable perfor-
mance. However, they both need data of target domain for
training. In real-world applications, the ReID system will
inevitably search persons in unseen domains. Therefore,
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Figure 1. Illustration of our idea. Since target domain data (green)
is unavailable during training, we cannot directly align source and
target distributions. To address this issue, we align them to a prior
distribution (purple) during training (source domains) and testing
(target domains). Considering that high-dimensional ID features
are difficult to constrain to a prior distribution, ID features are en-
coded into latent embedding space. The same prior distribution
and decoder guarantee the same generated feature distribution.

domain generalization (DG) ReID has attracted extensive
research attention in a practical setting.

Compared with supervised ReID and UDA setting, DG
ReID does not use target domain data for training. Only one
or more labeled source datasets are available. Thus, most
existing DG methods aim to learn domain invariant fea-
ture through multiple source domains to generalize unseen
domains. These methods explore generalization at feature-
level based on disentanglement [13] or meta-learning [2, 3,
43]. However, a typical and effective cross-domain solution
has been ignored in DG, that is, to align feature distributions
across source and target domains. Methods based on dis-
tribution alignment have not been researched because only
source data is available for DG ReID. These method usually
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need both source and target domain data for training. So we
cannot align distributions based on the previous method.

Such observations reveal that it is challenging to align
distributions directly. So we take a known prior distribution
as the aligned goal, and ask: can we align source and tar-
get distributions to the same known prior distribution dur-
ing training and testing, respectively? However, constrain-
ing the distribution of ID features to a known prior distribu-
tion is difficult. Because ID feature is high-dimensional and
contains ID information, its distribution is so complex that
a known simple prior distribution cannot constrain it.

Thus, we adopt an encoding-decoding structure to en-
code ID feature into latent space, whose latent embedding
is low-dimensional and constrained to a known prior dis-
tribution. Then we decode latent embedding through a de-
coder. If the latent embedding distribution can also be close
to the prior distribution during testing, we can treat latent
embedding distributions during training and testing as the
same. Note that the premise of the above conclusion is that
the distance metric satisfies the triangle inequality, so we
use Wasserstein distance instead of KL divergence to mea-
sure the distance between distributions. Eventually, similar
posterior distributions and the same decoder enable us to
obtain aligned distributions. The main idea of our method
is shown in Figure 1.

To further enhance the model generalization on unseen
domains, we introduce a meta-learning strategy to simu-
late the real train-test process. Specifically, we dynamically
divide the source domain into a meta-train domain and a
meta-test domain in each batch. The meta-train process is
regarded as the training process of the source domain, and
the meta-test simulates the situation of testing on the un-
seen domain. In the meta-train stage, we use the meta-train
domain to inner-update parameters. In the meta-test stage,
we examine various generalization scenarios depending on
the movement of inner loop, and perform a second-order
updating on the original parameters. These two processes
are performed alternately to improve generalization ability
of the model on various unseen domains. During testing,
we can further pull in latent embedding distributions across
source and target domains by a test-train strategy at batch-
level. We will only update the encoder in this process, to
ensure the same decoder for source and target domains.

In summary, our contributions are three-fold:

• We propose a novel Meta Distribution Alignment
(MDA) for DG ReID, which is a pioneering work on
aligning distributions across source and target domains
for DG ReID task.

• We design a meta-learning strategy to simulate the real
train-test process, which improves the generalization
of the model. A test-time adaptive updating strategy
is further proposed to efficiently adapt the model to

unseen domains with a few samples.

• We perform extensive experiments and achieve state-
of-the-art performance on the large-scale DG ReID
and single-source DG ReID.

2. Related Work
Person Re-identification. In the last decade, person
ReID has achieved great progress. Among them, super-
vised person ReID has achieved impressive performance.
Relying on labeled data, supervised ReID can performs
supervised training and testing in the same domain. But
current supervised models degrade dramatically when de-
ployed to unseen domains. The main reason is the gap
across source and target domain. To improve the per-
formance on target domain, many Unsupervised Domain
Adaptation (UDA) Person ReID methods have been pro-
posed. They can be roughly grouped into four categories:
a) clustering in the target domain to generate pseudo-
labels [6, 8, 20, 31, 36, 40], b) self-supervised training on
target domain [37, 49], c)generating images with target do-
main style and source domain labels for data augmenta-
tion [5,33,48], d) aligning feature distributions across target
and source domains [19, 32, 34]. In fact, the latter two can
also be classified as distribution alignment methods, which
perform at input level and feature level, respectively. How-
ever, the methods based on distribution alignment in UDA
all need to use the unlabeled target dataset for training,
which is not available in DG ReID. Therefore, all previous
distribution alignment methods will fail in DG ReID.

Domain Generalization Person Re-identification. Al-
though supervised and UDA person ReID have achieved
good performance, they all require target domain data for
training. However, in practical applications, the ReID sys-
tem often needs to be deployed directly without training.
DG ReID was first proposed under this background [38].
After that, [27] applied meta-learning to learn domain-
invariant feature. [13] proposed SNR disentangle identity-
irrelevant information. [24] proposed IBN-net explored the
effect of combining instance and batch normalization. And
[12] combined IBN and meta leaning to further improve
performance. More recently, meta-leaning has also been
studied more deeply and played an important role in DG
ReID. The core idea of these methods is to learn domain-
invariant features, while ignoring the gap between the
source and target domain feature distributions.

Meta Learning. The concept of meta-learning [29] is
learning to learn, and has been initially proposed in the ma-
chine learning community. It has been applied to tasks such
as few-shot learning [41], domain generalization and model
optimization. Model-Agnostic Meta-learning (MAML) [7]
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was proposed to learn good initialization parameters for fast
adapting the model to new tasks. [15] extends MAML to do-
main generalization. Inspired by those methods, we design
a meta-learning strategy to simulate real train-test domain
shifts, which makes the model more generalized and can
quickly adapt the model to unseen domain.

3. Methodology
Our goal is to align distributions across source and target

domains. To this end, we propose a novel Meta Distribu-
tion Alignment algorithm. In the following, we describe the
main components of our method. First, we introduce the
DG problem setting and overview of the entire method (Sec.
3.1). Next, we describe the Meta Distribution Alignment
algorithm in detail, which includes the following parts: ID
Feature Learning module (Sec. 3.2.1), Prior Distribution
Alignment module(Sec. 3.2.2) and Distribution Guided Re-
fining (Sec. 3.2.3). To facilitate generalization and support
fast adaption, we design a Meta-learning Based Optimiza-
tion strategy to simulate train-test process (Sec. 3.2.4). Fi-
nally, we discuss how we fine-tune our model by Test-time
Adaptive Updating (Sec. 3.3). Figure 2 shows an overview
of our method.

3.1. Problem Setting and Overview

Problem setting For DG ReID, we use one or several
labeled datasets for training. Each source dataset DS =

{(Xi
s, y

i
s)}

Ns

i=1 is composed of a training set and a testing
set. After training, we directly deploy the model into un-
seen target domains. Each target dataset DT = {Xj

t }
Nt
j=1

only contains one testing set. In other words, we cannot ac-
cess unseen target training samples during training. In the
training stage, the goal of ReID is to learn a mapping func-
tion: fθ : X→x, which maps X to a feature space with
parameters θ, so that features meet the following condition:

∀yi = yj ̸=yk i, j, k ∈ (1, 2, ·, Ns)
s.t. d(xi, xj) < d(xi, xk)

(1)

where d is a distance metric.

Overview In supervised ReID, a training set and a test-
ing set usually come from a same domain, so they basically
share the same distribution. As a result, a distance between
testing set features is not susceptible to interference from
different environments. It can still meet requirements of
Condition, defined in Eq. 1. However, when a model is
deployed to a new domain, where the source domain dis-
tribution p(xs) and the target domain distribution p(xt) are
quite different, the distance between the features is affected
by the scene. In this case, Condition 1 can no longer be met.

In order to solve this problem, UDA uses target training
set to align p(xs) and p(xt). However, target domain data
is unavailable for DG ReID during training. Therefore, we
propose meta distribution alignment (MDA) to align p(xs)
and p(xt) to a prior known distribution during training and
testing.

3.2. Meta Distribution Alignment

3.2.1 ID Feature Learning

In this stage, we randomly sample from different source do-
mains to get a mini-batch Xb of size Nb. We take the entire
mini-batch data as input and use two common loss functions
to constrain the distance between these features so that they
meet the Condition 1 as much as possible. The first one is
the cross entropy loss function:

Lce(Xb|θ) = − 1

Nb

Nb∑
i=1

log p (yi|fθ(Xi)) (2)

Compared with CE loss, a triplet loss directly constrains the
distance between positive and negative sample pairs. The
specific formula is as follows:

Ltri(Xb|θ) =
1

Nb

Nb∑
i=1

[dp − dn + α]+ (3)

where dp and dn are Euclidean distance of positive and neg-
ative feature pairs, respectively. α is the margin of triplet
loss, [s]+ ismax(s, 0). The overall loss of ID feature learn-
ing is formulated as follows:

LID(Xb|θ) = Lce(Xb|θ) + Ltri(Xb|θ) (4)

3.2.2 Prior Distribution Alignment

Distribution encoding As we mentioned in Sec. 1, ID
features are high-dimensional and contain discriminative ID
information. Its distribution is difficult to constrain with a
known simple distribution, such as standard Gaussian dis-
tribution. Thus, given an ID feature xs based on current fθ
and Xs, our encoder Eϕ parameterizes a multivariate Gaus-
sian distribution with a diagonal covariance as follows:

µn,σn = Eϕ(xs)

z ∼ q(z|xs) = N (µn, diag(σn))
(5)

where n is the dimension of latent embedding z. µn and
σn are mean and variance of Gaussian distribution, respec-
tively.

In general, KL divergence is used to measure the sim-
ilarity of distributions. However, it does not meet trian-
gle inequality. That is, the sum of KL[p(z|xs)||q(z)] and
KL[p(z|xt)||q(z)] is irrelevant to KL[p(z|xs)||p(z|xt)].
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Figure 2. Illustration of our proposed Meta Distribution Alignment. It includes three modules and a meta-learning strategy. In the ID
feature learning, LID is used to enhanced the ID-discrimination ability. In prior distribution alignment, ID features are encoded into latent
space. The distribution encoder Eϕ parameterizes a multivariate Gaussian distribution for each sample. We align this distribution to a
standard Gaussian distribution by minimizing Wasserstein distance. Then we sample from the distribution and decode latent embedding to
generated ID feature space through distribution guided decoder. The reconstruction loss Lrec is used to preserve ID label. In distribution
guided refining, we use refine net Rφ to retain the ID information as much as possible while constraining the distribution. Combining the
W2, Lrec and Lref , we perform our meta-learning based optimization by separating multiple source domains. During testing, we can fast
adapt model to unseen domains with a few samples by test-time adaptive updating (purple arrow).

Even if p(z|xs) and p(z|xt) are close to q(z) under the
measure of KL divergence, it cannot guarantee p(z|xs) and
p(z|xt) are close. Thus, we chose Wasserstein distance to
measure the similarity, which can meet triangle inequality:

W (P ;Q) <= W (P ;O) +W (Q;O) (6)

where O, P and Q are three arbitrary distributions. The
second order Wasserstein distance between the embedding
distribution p(z|xs) and the standard Gaussian distribution
q(z) = N

(
µ0
n, diag(σ0

n)
)

can be formulated as:

W2(p(z|xs); q(z)) = (∥µn − µ0
n∥22

+ ∥diag((σn)
1
2 − (σ0

n)
1
2 )∥2F)

1
2

(7)

where ∥·∥2 is the second norm and ∥·∥F is Frobenius norm.

Distribution based decoding Although the embedding is
constrained to a known prior distribution, but it tends to lose
the discriminative information about ID due to significant
feature dimension decreasing. To preserve the ID informa-
tion as much as possible, we decode the latent embedding
z to a high-dimensional ID space. Given z ∼ p(z|xs),
the decoder Gψ : z → x′ is used to map z back to the
ID feature space. The reconstruction loss is introduced to
ensure that the generated features can maintain the original
ID, which can be formulated as:

Lrec(xs|ϕ, ψ) = ∥xs −Gψ(z))∥2 (8)

3.2.3 Distribution Guided Refining

Although we use reconstruction loss to preserve ID in-
formation, it is still inevitably lost during the encoding-
decoding process. The loss of ID information can be con-
sidered as the price we paid to constrain the distribution.
To make up for this loss, we introduce a refine network Rφ
to integrate the original ID features xs to complement the
generated featuresGψ(z)). The Refined feature and its cor-
responding ID loss function can be expressed as:

xr=(1− v)× xs + v ×Gψ(z)

Lref (xs|ϕ, ψ, φ)=Lce(xr|ϕ, ψ, φ)+Ltri(xr|ϕ, ψ, φ)
(9)

where v = R(xs − Gψ(z)). Intuitively, the refine network
learns a set of weights, allowing the model to make a trade-
off between ID discrimination and distribution constraints.
In this way, we are capable of aligning a feature to a specific
distribution while preserving its ID information as much as
possible.

3.2.4 Meta-learning Based Optimization

Motivated by the success of meta-learning for cross-domain
image classification [15] in terms of generalization and fast
adaption, in this paper we propose a meta-learning strategy
for DG ReID to update our distribution encoder Eϕ, distri-
bution based decoder Gψ and refined net Rφ during train-
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ing. The whole learning strategy includes meta-train and
meta-test.

Domain separation. To simulate the train-test process
during training, we divide multiple source domains in
Sec. 3.2.1 into meta-train domain Dmtr and meta-test do-
main Dmte. In the meta-train stage, we use Dmtr as input
to calculate the meta-train loss, and then inner-update Eϕ,
Gψ and Rφ. In the meta-test stage, we use the updated pa-
rameters and Dmte to calculate the meta-test loss. For final
optimization, we use the meta-train loss to update the entire
encoder-decoder and use the meta-test loss to update the en-
coder.

Meta-train. The overall loss for meta-train is as follows:

Lmt(Dmtr|ϕ, ψ, φ) = W2
2 (p(z|xs); q(z))

+ Lrec(xs|ϕ, ψ) + Lref (xr|ϕ, ψ, φ)
(10)

where xs is sampled from Dmtr. In inner loop, we update
the parameters of meta distribution align from (ϕ, ψ, φ) to
(ϕ′, ψ′, φ′) as follows:

(ϕ′, ψ′, φ′)=(ϕ, ψ, φ)−α▽ϕ,ψ,φLmtr(Dmtr|ϕ, ψ, φ) (11)

where α is a learning rate for inner loop optimization.

Meta-test In order to simulate an unseen domain, we
evaluate our model at unseen-like samples from meta-test
domain Dmte. With the meta-test domain, we can examine
various generalization scenarios depending on the move-
ment of the meta distribution align parameters. In the outer
loop, the same loss as the meta-train is used to update the
parameters, which can be formulated as:

(ϕ, ψ, φ)=(ϕ, ψ, φ)−β▽ϕ,ψ,φ Lmt(Dmte|ϕ′, ψ′, φ′) (12)

where β is a learning rate for outer loop optimization. Intu-
itively, meta distribution align simulates such a process: In
meta-train, model is trained on the source domain. In meta-
test, model is validated and fine-tuned on unseen domains.
These two processes are performed alternately. Finally, the
model can obtain better generalization ability in various un-
seen domains. The better initialization parameters also give
the model the ability to quickly transfer, which provides
convenience for our adaptive fine-tuning in the test.

3.3. Test-time Adaptive Updating

Through prior distribution alignment, we can get good
initialization parameters. However, when transferring to
unseen domains, the distribution of latent embedding may
change slightly. Therefore, we propose a test-time adaptive
updating to further constrain the distribution on unseen do-
main. Specifically, we fine-tune the encoder Eϕ according

to the current batch-test samples to make latent embedding
distribution closer to q(z). Since test samples are unlabeled,
our purpose is only to align the distribution of hidden vari-
ables. Therefore, we use the Wasserstein distance to con-
strain the distribution, and reconstruction loss prevents the
generated feature Gψ(z) from being too far away from the
original feature and completely losing ID discrimination.
The update process is as follows:

ϕ = ϕ− β▽ϕ (
(
Lrec(xt|ϕ) +W2

2 (p(z|xt); q(z))
)

(13)

where xt is a test sample. Note that only distribution en-
coder is fine-tuned during test, decoder and refine net will
not be changed. Because only the same input distribution
and decoder can be guaranteed to the same Gψ(z) distribu-
tion during training and testing. After fine-tuning the de-
coder, we use the refined feature for retrieval.

4. Experiment

4.1. Datasets

To evaluate the generalization of the model, we conduct
extensive experiments on large-scale domain generalization
(DG) ReID benchmark [27] and single-source DG prob-
lem. For Large-scale DG ReID, we use CUHK02 [16],
CUHK03 [17], Market-1501 [44], DukeMTMC-ReID [46],
and CUHK-SYSU PersonSearch [35] for training, and eval-
uate on VIPeR [9], GRID [22], and QMUL i-LIDS [45]. For
single-source DG ReID, we choose one of DukeMTMC-
ReID, Market-1501, MSMT17 [33] as the training set
and directly test on the remaining datasets. In a single-
source DG ReID, only one source domain is available, so
we divide the data of different cameras as different do-
mains for domain separation in meta-learning. In partic-
ular, for MSMT17 we use the entire test set and training
set for training [18]. For simplicity, we denote Market-
1501, DukeMTMC-reID, and MSMT17 as Market, Duke
and MSMT tables.

4.2. Implementation details

We implement our method with two common backbones,
i.e., ResNet-50 [11] and MobileNetV2 [26]. The models
are pre-trained on ImageNet [4]. For training, images are
resized to 256 × 128. The training batch size is set to 160.
In ID feature learning, all images in a mini-batch are used.
Half of them are meta-train domains, and the other half are
meta-test domains. Both the encoder and decoder are com-
posed of three fully connected layers, and the dimension of
the latent embedding is set to 64. The refine net consists of
a fully connected layer and a sigmoid activation function.
The label-smoothing parameter is 0.1, and the margin in the
triplet loss is 0.3. For backbone, we use the SGD optimizer
with a momentum of 0.9 and a weight decay of 5 × 10−4.
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Table 1. Quantitative comparisons of large-scale domain generalization ReID. CUHK02, CUHK03, Market-1501, DukeMTMC-ReID, and
CUHK-SYSU PersonSearch are used for training. All results are the average of 10 random sampling. Our results are highlighted in bold
and others’ best results are underlined. Results with ’*’ is based on ResNet-50, otherwise is MobileNetV2.

Method

Large-scale domain generalization ReID (multi-source DG)

Target: VIPeR Target: GRID Target: i-LIDS

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

DIMN [27] 51.2 70.2 76.0 60.1 29.3 53.3 65.8 41.1 70.2 89.7 94.5 78.4
AugMining [28] 49.8 70.8 77.0 - 46.6 67.5 76.1 - 76.3 93.0 95.3 -

Switchable (BN+IN) [23] 51.6 72.9 80.8 61.4 39.3 58.8 68.1 48.1 77.3 91.2 94.8 83.5
DualNorm [12] 53.9 62.5 75.3 58.0 41.4 47.4 64.7 45.7 74.8 82.0 91.5 78.5

DDAN [1] 52.3 60.6 71.8 56.4 50.6 62.1 73.8 55.7 78.5 85.3 92.5 81.5
DDAN w/ [12] 56.5 65.6 76.3 60.8 46.2 55.4 68.0 50.9 78.0 85.7 93.2 81.2
MetaBIN [2] 56.9 76.7 82.0 66.0 49.7 67.5 76.8 58.1 79.7 93.3 97.3 85.5
MDA(Ours) 61.9 80.73 85.5 70.4 53.8 76.1 83.3 63.8 81.0 92.8 95.5 86.1

SNR* [13] 52.9 - - 61.3 40.2 - - 47.7 84.1 - - 89.9
DualNorm* [12] 59.4 - - - 43.7 - - - 78.2 - - -
MetaBIN* [2] 59.9 78.4 82.8 68.6 48.4 70.3 77.2 57.9 81.3 95.0 97.0 87.0
MDA*(Ours) 63.5 80.6 84.2 71.7 61.2 83.4 88.9 62.9 80.4 92.2 95.0 84.4

The initial learning rate of backbone and encoder-decoder
is 0.01, which is warmed up for 10 epochs [10].

4.3. Comparison with State-of-the-art Methods

Large-scale DG ReID We evaluate our meta distribution
alignment framework on the large-scale domain generaliza-
tion ReID benchmark [27]. For a fair comparison, we con-
duct our experiments on both MobileNetV2 and ResNet-
50. We follow the single-shot setting [12] with the num-
ber of query/gallery images set as: VIPeR: 316/316; GRID:
125/900; i-LIDS: 60/60 respectively. Following [12], all
results are the average of 10 random splits on the target
dataset.

The experimental results are shown in Table 1. From it,
we can observe that with MobileNetV2 as a backbone, our
method outperforms all competing methods by a significant
margin on all three datasets across all evaluation metrics.For
example, MDA beats state-of-the-art by 5.0% and 4.4% in
R-1 and mAP, respectively. In general, the R-1 and mAP
of MDA are 3.5% and 3.6% higher than state-of-the-art on
average. Even with ResNet-50 as a backbone, our method
still achieves the best results on both VIPeR and GRID. Es-
pecially on GRID, our method outperforms MetaBIN by
12.8% in R-1. By contrast, SNR with ResNet-50 obtains
the best R-1 and mAP on i-LIDS, but it performs worst in
both VIPeR and GRID. Our method is on average higher
than state-of-the-art 5.2% and 1.8% in R-1 and mAP. This
demonstrates the effectiveness of our proposed methods. In
addition, our method obtains higher gains on GRID with 8
cameras than VIPeR and i-LIDS with two cameras. This
demonstrates that our MDA has a good potential in dealing

with complex distributions.

Single-source DG ReID In order to further validate the
performance of our method, we also conduct the experi-
ments on a single source dataset. Specifically, we use Mar-
ket, Duke, and MSMT as the training sets, and use Market
and Duke as the test sets. Moreover, we divide the cross-
domain experimental settings into UDA, fully unsupervised
and DG. In addition, we also respectively enumerate three
experimental settings and compare their differences.

The experimental results are shown in Table 2. When
training with Market or Duke, our method outperforms
the state-of-the-art DG ReID method. In particular, our
method’s mAP is 2.1% higher than the current best DG
ReID method (MetaBIN) when testing on Market. It shows
our MDA is effective with different training datasets.

It is worth noting that our method trained with MSMT
achieves comparable or even better results than unsuper-
vised method, reaching 52.4% mAP and 71.7% R-1 on
Duke. Our MDA beats state-of-the-art DG ReID method by
4.7% and 4.8% on average in R-1 and mAP, respectively.
Also compared with training on Market, the performance
of our method trained on MSMT is greatly improved, with
an increase of 5.0% in mAP and 8.0% in Rank-1 on Duke.
This demonstrates MDA can obtain better generalization
and exceed the performance of fully supervised method as
the quality of the source training set improves.

4.4. Ablation Study

Ablation study of main components of our method.
To further demonstrate the effectiveness of the proposed
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Table 2. Quantitative comparisons between ours and the state-of-the-arts in single-source DG ReID. Our results are highlighted in bold
and others’ best results are underlined.

Methods Reference Setting
Training Test:Duke Training Test:Market

Source Target R-1 mAP Source Target R-1 mAP

TJ-AIDL [32] CVPR18
UDA

Market Duke 44.3 23.0 Duke Market 58.2 26.5
PAUL [37] CVPR19 Market Duke 56.1 35.7 Duke Market 66.7 36.8
ECN [47] CVPR19 Market Duke 63.3 40.4 Duke Market 75.1 40.0

ECN baseline [47] CVPR19

DG

Market - 28.9 14.8 Duke - 43.1 17.7
PN-GAN [25] ECCV18 Market - 29.9 15.8 - - - -
QAConv50 [18] ECCV20 Market - 48.8 28.7 Duke - 58.6 27.2

SNR [13] CVPR20 Market - 55.1 33.6 Duke - 66.7 33.9
MetaBIN [2] CVPR21 Market - 55.2 33.1 Duke - 69.2 35.9

MDA This paper Market - 56.7 34.4 Duke - 70.3 38.0

MAR [39] CVPR19
TJ-AIDL

- Duke 67.1 48.0 - Market 67.7 40.0
SSL [21] CVPR20 - Duke 52.5 28.6 - Market 71.7 37.8

MMCL [31] CVPR20 - Duke 65.2 40.2 - Market 80.3 45.5

MAR baseline [39] CVPR19

DG

MSMT - 43.1 28.8 MSMT - 46.2 24.6
PAUL baseline [37] CVPR19 MSMT - 65.7 45.6 MSMT - 59.3 31.0
QAConv50 [18] ECCV20 MSMT - 69.4 52.6 MSMT - 72.6 43.1

SNR [13] CVPR20 MSMT - 69.2 49.9 MSMT - 69.5 40.9
MDA This paper MSMT - 71.7 52.4 MSMT - 79.7 53.0

Table 3. Ablation studies on effectiveness of main components.
Trained on Duke and Tested on Market.

Mthod
Duke→Market

Rank 1 Rank 5 Rank 10 mAP

Baseline 61.1 77.5 83.4 29.9
MDA w/o Meta 66.7 82.1 86.4 34.9

MDA w/o Refined net 69.0 84.3 88.7 35.8
MDA 70.3 85.2 89.6 38.0

method and analyze the impact of different major compo-
nents on the DG ReID task, we conduct an ablation study.
Each model is trained on the Duke dataset and trained on
the Market dataset. We test the following models: 1) base-
line, which removes the refine net as well as the prior dis-
tribution alignment; 2) MDA w/o meta, which removes the
meta-learning based optimization strategy; 3) MDA w/o re-
fined net, which directly combines the ID feature and the
generated feature without considering their weights; and 4)
MDA with all components.

The experimental results are demonstrated in Table 3.
These results clearly show the advantage of our contribu-
tions. Firstly, our meta-learning based optimization is use-
ful for improving generalization. Secondly, refine net is ef-
fective for keep ID information. In general, MDA effec-
tively weakens the influence of domain by aligning the dis-
tribution.

Ablation study on sample size for test-time adaptive up-
dating. To investigate the effect of sample size for test-
time adaptive updating, we conduct experiments on Market
and Duke datasets by choosing one as the source domain
and the other as the target domain. We report both mAP and
R-1. Moreover, we set different ration of test-train ranging
from % 0.3 to 12%. Note that 0.1% equals to 20 samples.

The experimental results are shown in Figure 4. When
Duke and Market are used as training and testing respec-
tively, both mAP and R-1 increase as the the number of sam-
ples increases and almost keeps steady at 6%. It is worth
noting that with an increase of 0.3% test samples (i.e., 0.3%
to 0.6% ), the mAP and R-1 increased by 2.5% and 3.3%,
respectively. Furthermore, when trained with Market and
tested on Duke, the performance in mAP and R-1 in general
keeps increasing as the number of ration increases. These
results clearly prove that our test-time adaptive updating
strategy can quickly adapt a model to unseen domains with
a few samples.

A qualitative comparison in terms of IDs distribution.
We conduct illustrative experiments by comparing our
method with baseline in terms visualizing features with t-
SNE, where color and shape respectively represents the per-
son ID and camera (domain). For simplicity, we randomly
select 6 Ids. Each model is trained on Market and test on
Duke. The visualization results are shown in Figure 3(a)
and (b). By observing the yellow and red circle of Figure
3(a), we can see that samples in the same shape (domain)
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(c) Baseline (d) MDA (ours)(a) Baseline (b) MDA (ours)

Figure 3. t-SNE [30] visualization. For (a) and (b), models are trained on Market and tested on Duke. 6 person IDs are randomly selected.
The color and shape represents different Person ID and Camera Id. For (c) and (d), models are trained on MSML and tested on Duke and
Market. 150 person IDs are randomly selected from the test dataset. One color indicates one dataset.
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Figure 4. Ablation study on sample size of test-time adaptive up-
dating. D→M indicates that trained on Duke and tested on Market,
vice verse.

tends to be close due to the domain similarity, which influ-
ences ID discrimination. MDA makes features more close
to those features with same ID instead of the same camera.
As shown in Figure 3(b), Features with the same color are
more concentrated.

A qualitative comparison in terms of distribution on do-
mains We also conduct illustrative experiments on the
MSMT, Duke and Market, where MSMT is a used for train-
ing, while the rest two are for testing. For each testing
dataset, we randomly select 150 IDs. The t-SNE embedding
are visualized in Figure 3(c) and (d), where different color
represents different dataset (domain). The visualization re-
sults clearly show that distributions of different domains
are closer. Specifically, isolated color blocks are reduced,
which means the two distributions are closer. It shows our
MDA can align multiple target domains to a similar distri-
bution, which enhances model generalization on multiple
target domains.

5. Conclusion and Discussion
In this paper, we propose a novel Meta Distribu-

tion Alignment (MDA) framework that aligns distributions
across source and target domains. Previous work can not
align distributions because target dataset is not available.
To this end, we propose to align source and target feature
distributions to a prior distribution in latent space. Further-
more, we design a meta-learning strategy to mimic the train-
test process, which help the model learn a good initializa-
tion and fast adapt to unseen domains. Experimental re-
sults on large-scale DG ReID benchmark and single-source
DG ReID problem show that our approach outperforms the
state-of-the-art DG ReID model.

Broader impacts The most significant contribution of
ReID is to improve the accuracy of automatic person recog-
nition, autonomous driving, and other fields. Our work ef-
fectively improves the accuracy of DG ReID, which makes
ReID system more practicable in security. However, ReID
may bring privacy issues to our society. Firstly, ReID
uses images that involve the privacy of pedestrians. These
datasets should be carefully distributed and not used in il-
legal ways. Secondly, ReID system may intentionally or
unintentionally cause an invasion of privacy, so the deploy-
ment and application of the systems should be strictly con-
trolled. To avoid privacy breaches due to face images, we
only use the back and side views of pedestrians for display.
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