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Abstract

Semantic segmentation of point cloud data is a critical
task for autonomous driving and other applications. Recent
advances of point cloud segmentation are mainly driven by
new designs of local aggregation operators and point sam-
pling methods. Unlike image segmentation, few efforts have
been made to understand the fundamental issue of scale and
how scales should interact and be fused. In this work, we in-
vestigate how to efficiently and effectively integrate features
at varying scales and varying stages in a point cloud seg-
mentation network. In particular, we open up the commonly
used encoder-decoder architecture, and design scale pyra-
mid architectures that allow information to flow more freely
and systematically, both laterally and upward/downward in
scale. Moreover, a cross-scale attention feature learning
block has been designed to enhance the multi-scale fea-
ture fusion which occurs everywhere in the network. Such
a design of multi-scale processing and fusion gains large
improvements in accuracy without adding much additional
computation. When built on top of the popular KPConv net-
work, we see consistent improvements on a wide range of
datasets, including achieving state-of-the-art performance
on NPM3D and S3DIS. Moreover, the pyramid architecture
is generic and can be applied to other network designs: we
show an example of similar improvements over RandLANet.

1. Introduction

With the rise of autonomous driving, semantic segmen-
tation of point cloud data is increasingly drawing attention
in research. Building deep models for point clouds, sets of
orderless points at arbitrary 3D positions, is arguably differ-
ent from that for images. Early works projected 3D points
to regular structures so that convolution operators could
be used [31, 36, 40]. Later, the pioneering work of Point-
Net [33,34] developed a promising method to directly apply

Code is available at https://github.com/ginobilinie/
kp_pyramid

deep learning on sparse 3D points, using shared multi-layer
perceptrons (MLPs) to learn per-point features.

Follow-up work along the line of PointNet typically con-
sists of three key components, namely: point-wise transfor-
mation, local aggregation, and point sampling. Local aggre-
gation operator plays a similar role for points as the convo-
lution layer does for image pixels [27]; and point sampling
works as a pooling layer does for pixels [34, 52, 60]. To
take the similarities further, state-of-the-art point cloud seg-
mentation methods mostly employ the encoder-decoder U-
shape architecture [13, 34, 47], which is a classic design in
image segmentation (UNet [37]). In the encoder path, trans-
formation layers learn increasingly sophisticated per-point
features, local aggregation operators combine information
in local neighborhoods, and point subsampling layers fur-
ther increase the receptive field. The decoder path consists
of upsampling and per-point transformation layers.

Most recent works on point cloud segmentation focused
on either local aggregation [14, 19, 20, 27, 30, 34, 45, 47, 53,
58] or point sampling strategies [1,8,13,24,41,54,55]. For
example, PointNet++ [34] applied several MLPs on a con-
catenation of relative position and point feature to aggregate
information in local neighborhoods. KPConv [47] designed
to obtain pseudo grid feature and applied convolution on
these kernel points. RandLANet [13] compared point sam-
pling methods and selected random sampling for efficiency.
Density-adaptive sampling [1] was proposed to handle het-
erogeneous density distributions and class imbalance.

Interestingly, for point cloud segmentation, little atten-
tion has been devoted to the study of the network architec-
ture itself. This is in stark contrast with image segmenta-
tion, where most recent efforts went way beyond the basic
encoder-decoder U-structure to design better and more ef-
ficient architectures, especially on the topics of multi-scale
processing and fusion [18,32,35,48,57] and context aggre-
gation [5, 28, 50, 59]. For example, HRNet [48] proposed
to aggregates multi-scale features throughout lateral stages,
with an emphasis on high-resolution representation. Hier-
archical Attention [44] was also built upon better uses of
multi-scale information, from a perspective of inference.

Point cloud data, no different from images, are multi-
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scale in nature and requires multi-scale processing, includ-
ing the need to balance large-scale context with fine detail,
and the potential use of multiple local aggregation stages
in order to extract semantic information. In this work, we
show that indeed there is an urgent need, and a substan-
tial benefit, to move beyond the U-shape structure in point
cloud segmentation. Inspired by latest advances in image
segmentation [32, 48], we open up the standard encoder-
decoder architecture to design a pyramid architecture for
point cloud segmentation (see Fig 1). A number of design
improvements are proposed and validated:

• we use lateral stages to link up the counterparts in the
encoder and decoder paths at each scale, where neigh-
borhoods are re-used in local aggregation and sam-
pling;

• we add upward/downward links to form a full “pyra-
mid” shape which allows information at varying scales
and stages to be fused;

• we identify three components in fusion, design a novel
Cross-scaLe Attention fusIon Module (CLAIM, which
is almost parameter-free) to better serve the aggrega-
tion of multi-scale features, and empirically find the
best choices.

Note each of these is novel for point cloud segmentation,
and together they provide a substantial boost in accuracy
without a higher demand on computation. When built up on
the popular KPConv network as the baseline, our pyramid
architecture leads to 1.0 ∼ 3.0% improvements in mIoU
on a wide range of benchmarks for both outdoor and in-
door scenes, including SOTA results on NPM3D and S3DIS
(with mIoU of 83.0 and 73.0, respectively). Moreover, our
pyramid architecture is generic and can be used to enhance
any encoder-decoder network. For example, when using
the more efficient RandLANet [13] as the baseline, similar
large improvements in accuracy are also observed.

2. Related Works
Point-based 3D Segmentation Networks The pioneering
work PointNet [33] is proposed to directly handle point
cloud analysis which learns per-point features using shared
MLPs and global features using symmetrical pooling func-
tions. Inspired by PointNet, a series of point-based net-
works have been designed. These methods could be gener-
ally categorized into four types: (a) point-wise MLP based,
(b) pseudo grid features based, (c) Recurrent Neural Net-
works based (RNN-based) and (d) graph-based methods.
(a) The point-wise MLP based methods usually use shared
MLP as the basic unit in their network [33]. Though be-
ing quite efficient, point-wise features extracted by shared
MLP cannot capture the local geometry in point clouds.
PointNet++ [34] has a neighborhood grouping module to
capture wider context for each point and learn richer local
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Figure 1. Illustration of the proposed pyramid architecture. The
pyramid network has lateral paths containing up to four stages.
Each stage involves a tridirectional fusion module to boost in-
formation integration between scales. Lateral flow (blue) ap-
plies transformation while maintaining resolution; top-down flow
(green) provides context for higher resolution paths; and bottom-
up flow (red) down-samples high-resolution features to assist in
extracting semantics at higher levels. The F is the designed multi-
scale feature fusion block shown in Fig. 2.

structures. Hu [13] proposed local feature aggregation mod-
ule to enlarge the receptive field so that the followed ran-
dom sampling may not miss much information. Attention
(weighted-sum) based local aggregation methods have also
been largely studied [6,27,54]. (b) Among pseudo grid fea-
ture based methods, KPConv [47] is a representative work,
in which, predefined number of equally distributed spher-
ical grid points are sampled and the pseudo features for
a pseudo grid point are computed based on distance from
the real points within the sphere. The kernel weights can
then be easily learned since the number of pseudo points
are fixed during training. There are some other pseudo grid
feature based methods [14, 20, 30, 45, 58], the key differ-
ence lies in the definition of the pseudo points. (c) RNN-
based methods target at capturing inherent context features
from point clouds [9, 15, 56] with the advance of recur-
rent module. (d) Graph-based methods aims at learning
the underlying shapes and geometric structures of 3D point
clouds [21, 22, 49, 61].

Among the above-mentioned point-based 3D segmenta-
tion networks, the mostly adopted network architecture is
U-shape encoder-decoder network [13, 27, 34, 47], which
demonstrate the success and popularity of the U-shape
based network for segmentation.
Multi-Scale Semantic Segmentation Networks In the U-
shape encoder-decoder networks [37], an encoder usually
reduces the spatial resolution of feature maps to learn more
abstract features. Correspondingly, the decoder recovers
the spatial resolution of the input image from encoder so
as to generate dense prediction maps. The skip connec-
tion combines shallow and deep features with skip connec-
tions to retain more details in the dense predictions. Many
works have been done in semantic segmentation to utilize
the multi-scale information to achieve robustness and higher
accuracy. PANet [26] built a bottom-up connection be-
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tween lower layers and the topmost layer to enhance the
encoder-decoder’s feature hierarchy with better localization
and small-scale detail in the lower layers. HRNet [42] intro-
duced multi-resolution convolution to fully fuse multi scale
information, and the high-resolution pathway can well re-
tain the localization information. BPNet [32] proposed a
pyramid network with top-down and bottom-up informa-
tion flow, to enhance information interaction between large-
scale contexts and small-scale details. In a related work on
object detection, EfficientDet [43] proposed a weighted bi-
directional feature pyramid network (BiFPN), showing that
information flow in both directions (coarse-to-fine, and fine-
to-coarse) are useful for feature fusion. As for point cloud
segmentation, only a few works walk towards using multi-
scale information. PointNet++ [34] adaptively combines
features from multiple scales in a hierarchical manner. [29]
fused both global and local features in multiple scales to
endow the segmentation network with more discriminative
features. PointSIFT [17] consider multi-scale information
to form a robust feature extractor.

3. Approach

The architecture design of our Pyramid structure to pro-
cess multi-scale information is illustrated in Fig 1, including
a preliminary feature transformation step, a pyramid net-
work for cross-scale information processing and fusion, fol-
lowed by feature transformation layers to generate the final
dense prediction for segmentation.

3.1. Tridirectional Pyramid Architecture

As shown in Fig. 1, in addition to the encoder-decoder
path (black), the proposed pyramid architecture has lateral
links (in multiple stages) in the horizontal direction for all
layers (levels) except the bottom layer (i.e., L0 (we do not
introduce lateral links in L0 to avoid large computational
cost). Each stage in the pyramid involves a local aggrega-
tion operation, so that the lateral (horizontal) information
flow can have increasingly large receptive fields but also
keep the spatial resolution without losing detail. Moreover,
at each stage, we add links in the vertical directions to boost
cross-scale interaction.

Information (and processing) in the pyramid can flow in
three directions, illustrated in different colors: one moves
“forward” (laterally, in blue color) in stages, maintaining
spatial resolution while applying local aggregation opera-
tors to integrate information; one moves “down’ (in green)
in layers, adding larger-scale context to finer-scale detail;
the third moves “up” (in red) in layers, from higher spatial
resolution to lower resolution, providing richer information
for larger contexts. The original encoder-decoder paths are
shown in black in the figure. A “bird-eye” view of our net-
work resembles a pyramid, or a Pascal Triangle.

3.1.1 Lateral Information Flow

A typical instantiation of our pyramid structure consists of
4 or 5 layers (3 or 4 steps of subsampling). If the input
resolution is x32 (with x an arbitrary integer), the feature
resolution of the lowest layer is x32. At the second lowest
layer (i.e., the 1st layer in Fig.1), the feature resolution is
x16, and it goes through 3 lateral stages of local aggregation
and transformation to learn better features and to enlarge the
effective receptive field. Because the spatial resolution (i.e.,
number of points) remains the same, such a lateral link can
thus learn high-resolution representation, especially in the
low layers (e.g., L1). Note we donot use local aggregations
in the lateral links from deep layers (e.g., L3 and L4) since
we cannot gain much more semantics with such operations
there. As we move up the “pyramid”, following common
practice, we reduce the feature resolution by half at each
step, and increase the number of channels by two (channel
numbers are shown as C, 2C, 4C, etc. with C an integer).

Note that we do not simply add direct lateral links, as
skip connections often do. For each lateral link, we have a
varying number of stages. Typically, there are 3 or 4 stages
of local aggregation at the 1st layer. As we move up the
layers, fewer processing steps are needed laterally, as the
incoming information already passes through a number of
local aggregation in the subsampling process.

By adding the lateral links with varying stages, a pyra-
mid structure takes shape. It is substantially different
from the original U-Shape structure with a single encoder-
decoder path (or, for that matter, a typical feature pyramid
for object detection). There is no clearly defined encoder
or decoder. This structure allows us to further add links to
enable cross-scale information fusion (see below).

3.1.2 Cross-scale Information Flows

Top-down information flow. With aforementioned lateral-
link based architecture, we describe how we design cross-
scale information flow in a systematic way. One component
is top-down information flow. As shown in Fig 1 (in green
arrows), information flows “down” the pyramid at each pro-
cessing step. For example, the features at L2 (at resolution
x8 and after one step of local aggregation with subsampling)
are fed down the hierarchy to be integrated with S1, which
is one step of local aggregation at the 1st layer (maintain-
ing feature resolution x32). Similarly, the features at L3 (at
resolution x4) are fed down the hierarchy to the layer be-
low, to be integrated with the output of one lateral step from
L2. Other top-down flows are designed similarly across the
pyramid structure, at all layers and all stages.
Bottom-up information flow. The top-down flows in
our pyramid network enhances processing at lower layers
(higher resolution) with more contextual and semantic in-
formation from higher layers. However, cross-scale infor-
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mation flow does not have to be in only one direction. We
also add bottom-up information flows, as illustrated by red
arrows in Fig. 1. For bottom-up flows, higher-resolution
features (after top-down fusion) are fed upward to be inte-
grated with lower-resolution features at higher layers. This
design completes our pyramid network for multi-scale pro-
cessing: information is free to flow laterally, upward, or
downward, and they are fused at every step of the process-
ing. In the ablation studies, we will show that all three types
of flows (lateral, top-down and bottom-up) are useful and
provide substantial improvements in accuracy.

Empirically, the number of layers (in the resolution hi-
erarchy) and the number of stages (processing steps at the
lowest layer) tend to be the same, which results in a “per-
fect” triangle. In all the models we use, the triangles
are “perfect”, and they produce good results across board.
Meanwhile, the number of layers and the number of stages
do not have to be the same. We have experimented with
“skewed” triangles and they can be effective under certain
circumstances (such as when the input resolution is high but
we want a lighter weight model).

3.1.3 Multi-Scale Feature Fusion Strategy

The tridirectional information flows in our pyramid net-
work bring together features at different scales with dif-
ferent characteristics. It is natural that how we fuse these
features plays a central role in the design.

In image segmentation, people often use element-wise
addition, element-wise multiplication, or concatenation, to-
gether with conv1x1 and conv3x3 to formulate an entire fea-
ture fusion process [48]. In recent point cloud segmentation
works, concatenation is typically used and followed by one
or several MLPs to do feature transformation [27]. We carry
out a systematic design and its empirical validation.
General Formulation. A multi-scale fusion module con-
sists of three components: pre-fusion transformation (in-
cluding scale matching), fusion, and post-fusion transfor-
mation. In general, for K input vectors at different scales,
s1, s2, ..., sK , we select a base scale sm and fuse fea-
ture vectors at other scales to this base scale m. Upsam-
pling or downsampling is adopted to match the base scale
and align the spatial dimensions. Transformations G (e.g.,
MLPs or local aggregators (LA) or identity mapping (IM))
may be applied to each of these scales, a fusing operator
F (typical using concatenation (CAT), element-wise sum
(SUM), element-wise multiplication (MUL), element-wise
weighted sum (wSUM), element-wise max-pooling(MAX))
is then utilized to aggregate all transformed features, and
finally the output feature vector g can be obtained after a
transformation function (T ) (e.g., MLPs or LA or IM).

g = T (F ({Gi(si)|i = 1, 2, ...K})) (1)

The three-component design of fusion is shown in Eq. 1.
We also illustrate the design in Fig. 2, in which, the base
scale is B. For most of the fusion modules in our network,
there are three inputs from three scales, with the middle
scale being the base.
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Figure 2. Illustration of our cross-scale attention based multi-
scale feature fusion block, consisting of pre-fusion transformation,
cross-scale attention feature learning, feature fusion, and post-
fusion transformation (see text). (a) denotes 3-scale fusion for the
levels 2 and above. (b) denotes 2-scale fusion for level 1.

Cross-scaLe Attention fusIon Module (CLAIM). Since
the pre-fusion transformation and post-fusion transforma-
tion are usually standard operations (e.g., in our work, G1
and G3 are identity mapping, G2 can be LA, and T can be
MLP), we focus on designing the multi-scale fusion mod-
ule. In our work, we carefully design a cross-scale attention
based feature learning block, which fully considers the char-
acteristics of features from different scales to boost learning
high-resolution semantic features, to work as the core to en-
hance the fusion module. Besides the base scale B, A is
from the higher level (low-res, representing context), B is
from the base level and C from the lower level (high-res,
representing detail). Compared to B, A has richer con-
text information, and C has more details. They have dif-
ferent characteristics and the ideal fusion is to retain the
details from C and keep the semantics from A. The pro-
posed cross-scale attention based feature learning block is
designed to enhance detail features in C and semantic fea-
tures in A by interacting the neighbor-scale features.

Note that directly element-wise summing B and C can
bring detail information but would tend to produce blurred
boundaries since context information in B has a low res-
olution, and intuitively multiplying A and B element-wise
allows information both in A and B to reinforce each other,
but unique signals in eitherA orB could be suppressed. In-
stead, we first squeeze the channels of the features in all the
three scales (A, B and C) to 1. Then we conduct a “ADD”
operation on B and C, a “MUL” operation on B and A,
to obtain the spatialwise attention masks (for convenience,
we name them sem-mask (Msem) and res-mask (Mres) re-
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spectively) with a sigmoid activation, as shown in Eq. 2 and
Eq. 3.

Msem = σ (z (A) · z (B)) (2)

Mres = σ (z (C) + z (B)) (3)

Following the above-mentioned steps, we apply the
Msem on A and Mres on C so that their own character-
istics are enhanced without suffering the shortcomings, as
shown in Eq. 4 and Eq. 6. As mentioned before, we also
apply local aggregation on B (Eq.5) to achieve even higher
semantics (blue link in Fig. 1.

A′ = A�Msem (4)

B′ = g(B) (5)

C ′ = C �Mres (6)

With characteristic-enhanced multi-scale features, we
stack them (i.e., A′, B′ and C ′) together (F in Fig. 2) to
aggregate multi-scale features. Then we employ a MLP (T
in Fig. 2) to reduce the channels of the stacked features. The
settings for 2-scale feature fusion is similar with 3-scale fea-
ture fusion. For the entire fusion module, we name it Cross-
scaLe Attention fusIon Module (CLAIM).

It is worth-noting that we design the cross-scale attention
mechanism in a (almost) parameter-free manner instead of
more complicated ones, because we would like to avoid in-
troducing much more parameters (point cloud segmentation
networks can be easily overfitting). Our strategy is proved
to be effective in ablation study.
Reuse of Local Neighborhoods. Each of our fusion step
involves local aggregation operations. Typically, local
neighborhoods are computed using either a radius query or a
KNN query based on distance, both of which can be compu-
tationally expensive. Fortunately, we can re-use such local
neighborhoods: for each lateral link (and downsampling),
regardless of the number of stages, only one neighborhood
query is needed. This allows our pyramid architecture to be
efficient and does not incur a large increase in computation
comparing to the baseline.

We will demonstrate in ablation studies that CLAIM is
empirically the best choice and performs better than other
combinations. In addition, CLAIM does not need more pa-
rameters than other fusion blocks.

3.2. Making KP-Pyramid and RandLA-Pyramid

The proposed pyramid architecture can apply to any
encode-decoder based segmentation network. We take KP-
Conv as an example to show how we ‘upgrade’ KPConv
to KP-Pyramid. Shown in Fig. 1, we adopt ‘KPConv’ op-
erators in the blue arrows to work as the local aggregation
operators, and shared MLPs (unary convolution) in the red
arrows. For downsampling and upsampling, we follow the

KPConv settings to use strided KPConv (we can also use
max-pooling) and nearest point upsampling. We use the de-
signed CLAIM shown in Fig. 2 to complete the multo-scale
feature fusion within the pyramid. For the other settings, for
example, the number of channels and rigid or deformable
kernel, we directly follow the ones in KPConv [47]. To
this end, we have successfully ‘upgraded’ KPConv to KP-
Pyramid.

As an example of flexibility, we also adapt the more ef-
ficient RandLANet [13] to the pyramid architecture. We
adopt the local feature aggregation (LFA) module to learn
neighborhood features in the upward links. We adopt a sim-
plified LFA, which removes the dilated residual block, for
lateral feature transformation. MLPs are used for the other
links. Random sampling is used for downsampling, and
nearest-neighbor interpolation is used for the point feature
upsampling. Note the downsampling/upsampling ratio be-
tween layers is not set to 2 as shown in Fig. 1, but follows
the settings in RandLANet. In this way, we convert Rand-
LANet to RandLA-Pyramid.

Table 1. Comparing pyramid architecture (KP-Pyramid) with U-
shape architecture (original KPConv), using the standard mIoU
metric. As can be clearly seen, the pyramid architecture provides
a substantial improvement in accuracy, consistently aross all three
datasets, and for both rigid and deformable settings of KPConv.

Methods PL3D S3DIS Semantic3D
KPConv rigid 77.8 69.1 74.6

KP-Pyramid rigid 80.5 71.7 76.4
∆mIoU +2.7 +2.6 +1.8

KPConv deform 81.2 70.6 73.1
KP-Pyramid deform 83.0 73.0 75.8

∆mIoU +1.8 +2.4 +2.7

4. Experiments and Results

4.1. Datasets and Settings

We carry out experimental validations of our pyramid
architecture on three commonly used point cloud bench-
marks, including a variety of indoor and outdoor scenes:
(1) Paris-Lille-3D (PL3D) [39], a segmentation challenge
of NPM3D, for outdoor mobile scans; (2) S3DIS [2], for
indoor large spaces and (3) Semantic3D [11], for outdoor
fixed scans. PL3D contains more than 2km of streets in 4
different cities and is an online benchmark. The 160 mil-
lion points of this dataset are annotated with 10 semantic
classes, and 30 million points collected in three cities works
as test set. S3DIS covers six large-scale indoor areas from
3 buildings for a total of 273 million points labeled with
13 classes. For S3DIS, we follow experimental protocols
in [13, 47] and use k-fold and Area-5 as test scene to mea-
sure the generalization ability of our method. Semantic3D
is an online benchmark with several fixed lidar scans of dif-
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Table 2. Investigation of tridirectional information flow. All three
types of information flow (link) provide boost in performance. Re-
sults are computed under the same setting.

method fusion strategy mIoU ∆mIoU
BaseNet - 66.0 -
+lateral - 66.6 +0.6

+lateral+downward CLAIM 67.6 +1.6
+lateral+upward CLAIM 67.2 +1.2

+pyramidal CLAIM 68.2 +2.2

ferent outdoor scenes, and it has more than 4 billion points
with 8 semantic categories. We again follow experimental
protocols in [13, 47] and select the reduced-8 challenge be-
cause it is less biased by the objects close to the scanner.

We use the official open source code of KPConv as the
baseline and build on top of it. KPConv is a state-of-the-art
method for point cloud segmentation and has been widely
used. For training settings, We use the hyper-parameter set-
tings in KPConv [47] as provided by the open source code
on NPM3D, S3DIS and Semantic3D since there is not of-
ficial KPConv experimental settings). For example, we set
K = 15, Σ = 1.0 and ρ = 5.0 for all experiments. The
setting of the convolution radius is also exactly the same as
those in KPConv on all the three datasets. Also, the first
subsampling cell size dl0 is determined by the dataset and
dlj+1 = 2× dlj .

4.2. Improvements over the U-Shape Baseline

First, we show experimental results on all three datasets,
comparing our pyramid architecture (KP-Pyramid, the pyra-
mid version of KPConv) with the U-Shape encoder-decoder
baseline (the standard KPConv). In this comparison, to
make it fair, we use results from the KPConv open source
code with provided settings (evaluated on online servers
when needed). Note that the results from the open source
code may be different from those in the paper or in online
benchmarks, sometimes higher, other times lower.

The experimental results are presented in Table 1. The
settings are mostly kept consistent between the baseline
and the pyramid-enhanced network. PL3D and Seman-
tic3D scores are obtained on test datasets. S3DIS scores
are obtained using k-fold cross-validation. Endowed with
the pyramid structure to process and fuse multi-scale infor-
mation, the performance on all datasets are improved. On
NPM3D, the pyramid structure provides a performance gain
of more than 2.2 mIoU points in average; On S3DIS, the
performance gain is up to 2.7 points and on Semantic3D,
the average gain is more than 2.0 points. We thus show that
the proposed pyramid architecture, with better multi-scale
processing and fusion, significantly improves the baseline.

4.3. Ablation Studies

Our pyramid architecture has a number of novelties over
the baseline, including the lateral information flow, the
cross-scale upward and downward information flows, and
the choice of the fusion strategy. How much do they help?
How do they compare to alternative choices? We conduct
ablation studies to answer these questions. The experiments
are conducted on S3DIS, using area 5 set for evaluation.

4.3.1 Impact of Pyramidal Information Flows

To investigate the effects of the added links (information
flows) within the pyramid architecture, we compare the fol-
lowing networks: (a) BaseNet which is the same architec-
ture as KPConv Deformable; (b) adding lateral links in the
intermediate layers of the BaseNet as shown in Fig. 1 which
represents the ‘lateral’ or ‘forward’ information flow (de-
noted as ‘+lateral’); (c) adding only top-down flow in the
pyramid network, which is the downward information flow
(denoted as ‘+lateral+downward’); (d) adding only bottom-
up flow, which indicates the upward information flow (de-
noted as ‘+lateral+upward’), and (e) adding both top-down
and bottom-up flows, which completes the pyramid shape
with the lateral flows (denoted as ‘+pyramidal’). The re-
sults are shown in Table 2.

As shown in the table, ‘+lateral’ provides an improve-
ment of 0.6 mIoU point, showing modest gains by adding
a direct link for each scale with more ‘convolution’ stages.
On top of the network with lateral links, both downward
and upward information flow can further boost the network
to achieve better performance. Compared to upward infor-
mation flow, downward information flow is more beneficial,
which confirms that providing context to high-resolution
processing is more important. With both the downward and
upward links, the network can enjoy an even larger perfor-
mance gain, demonstrating the merit of having information
flow at every step of the processing, in all forward (lateral),
upward and downward directions.

4.3.2 Impact of Multi-Scale Fusion Strategies

Described in Sec. 3.1.3, we formulate the multi-scale infor-
mation fusion to be combinations of transformation layers
and fusing operators, as shown in Eq. 1. To validate the ef-
fectiveness of our designed CLAIM and also explore which
factors play important roles in multi-scale feature fusion,
we conduct comprehensive experiments to understand the
impact of different multi-scale fusion strategies. In particu-
lar, we use the proposed bidirectional pyramid architecture
as the basis, and compare different choices of pre-fusion
transformation (i.e., IM and MLP), fusion and post-fusion
transformation (i.e., IM and MLP). Especially, we take the
following choices for the fusion strategy, namely, direct fu-
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sion (i.e., CAT, SUM, MAX and MUL) and attention based
fusion which are listed below:

• S3SE: StackA,B andC, then apply SE module (chan-
nel attention) [12] to enhance them.

• S2SES: Stack A, B, apply SE to enhance A, and do
the similar to C. Then we stack all them.

• S3CBAM: Stack A, B and C, then apply CBAM (dual
channel and spatial attention) [51] to enhance them.

The results are presented in Table 3. These results val-
idate that our choice of ‘IM+CLAIM+MLP’ provides the
highest score. They also provide other insights into fusion.
For pre-fusion transformation, it is also interesting to see
that IM performs better than MLP when followed by a suit-
able fusion (e.g., CAT or CLAIM), which suggests that hav-
ing more sophisticated modules may not help here, as there
is a risk of overfitting. For feature fusion, our proposed
CLAIM are is a good choice and CAT is an alternative for
direct fusion. It is worth-noting that the widely used atten-
tion blocks [7,12,51] for multi-scale feature fusion in image
recognition cannot directly work well in point cloud seg-
mentation cases since they can be much more easily overfit-
ting, which means one key point to the success of CLAIM is
its (almost) parameter-free design. The benefit of CLAIM
can also be attributed to that scale A contains rich semantic
information, in other words, good representation for large
objects, and C contains more local details which is good
for tiny objects and boundaries. For post-fusion transforma-
tion, using LA as transformation after feature aggregation
does not seem a good choice; channel-wise transformation
is more effective. This is consistent with practice in image
segmentation, where conv1x1 is commonly used after fea-
ture fusion.

Table 3. Investigation of multi-scale feature fusion strategies.
‘Pre-Fusion-T’ represents feature transformations for the incom-
ing scales before fusion (note G2 is fixed as LA). ‘Fusion’ is the
feature fusion operator. ‘Post-Fusion-T’ denotes transformation
after fusion.

Pre-Fusion T Fusion post-Fusion T mIoU
∆mIoU

MLP CAT MLP 64.7
MLP SUM MLP 66.8
MLP MAX MLP 67.1
MLP SUM IM 66.2
MLP MAX IM 66.7
MLP MUL IM 63.8
IM CAT MLP 67.9
IM CAT LA 66.6
IM S3SE MLP 66.2
IM S2SES MLP 66.4
IM S3CABM MLP 65.2
IM CLAIM MLP 68.2

4.3.3 Efficiency Analysis of the Pyramid Architecture

In this section, we evaluate the overall efficiency of the pro-
posed pyramid structure on real-world datasets for semantic
segmentation. In particular, we measure running time and
memory cost of KP-Pyramid on NPM3D and Semantic3D
test set, where NPM3D test set contains 3 areas, each with
10 million points and Semantic3D test set contain 4 areas,
each with 10 to 30 million points. For a fair comparison,
we set the same num votes (set to 4) for all the networks
during inference. We keep the test configuration identical
for the different methods on each dataset (e.g., conv radius,
batch num etc.). The inference is carried out on a Nvidia
RTX 2080 TI card with torch 1.5.1.

As shown in Table 5, with pyramid structure for multi-
scale information process and fusion, the increase of infer-
ence time is around 11%. The memory increases by around
15% at inference time. The experimental results validate the
efficiency of our proposed pyramid structure, even though
we add several multi-scale processing and fusion operations
inside the pyramid. As discussed, one key to efficiency is
the re-use of neighborhood radius queries.

4.4. Comparison with State-of-the-Art Results

Previously we have evaluated our proposed pyramid ar-
chitecture against the baseline encoder-decoder U-shape ar-
chitecture, and conducted ablation studies to validate its
components. To have a more comprehensive view of how
our network compares to the state of the art, we report de-
tailed results alongside other recent methods. The listed re-
sults are either from the published papers or online bench-
mark evaluations (when available). We follow the settings
in KPConv without change for Paris-Lille-3D, S3DIS and
Semantic3D.

The results are shown in Table 6. Our model outperforms
all existing methods on NPM3D and S3DIS by considerable
margins. In particular, we achieve mIoU 83.0 on NPM3D,
and 73.0 on S3DIS, both setting new records on popular
benchmarks. We also improve the KPConv on Semantic3D
to a mIoU of 76.4.

Class-wise details of the results are provided for S3DIS
in Table 4. Our results tend not to have ‘weak spots’, i.e.
there are no classes that have very low accuracy. Further-
more, we do quite well on both small objects (e.g., book)
and large objects (e.g., ceil, floor), despite it being an indoor
setting vs an outdoor setting. This is a testament to the merit
of a multi-scale fusion architecture. Good performance on
small objects can be attributed to the high-resolution fea-
ture representation in the first layer in Fig. 1; for the perfor-
mance on large objects, the design of our pyramid architec-

75.9 is reported in the original KPConv paper. The latest mIoU for
KPConv in the evaluation benchmark is 82.0. However, we donot have the
experimental setting for this result from the github source code.
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Table 4. Semantic segmentation IoU scores on S3DIS k-fold. Additionally, we give the mean class recall, a measure that some previous
works call mean class accuracy.

Methods mIoU mRec ceil. floor wall beam col. wind. door chair table book. sofa board clut.
Pointnet [33] 47.6 66.2 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
RSNet [16] 56.5 66.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 60.1 59.7 50.2 16.4 44.9 52.0

SPGraph [23] 62.1 73.0 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointCNN [25] 65.4 75.6 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

RandLANet [13] 70.0 82.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1
SCFNet [10] 71.6 82.0 93.3 96.4 80.9 64.9 47.4 64.5 70.1 71.4 81.6 67.2 64.4 67.5 60.9

KPConv rigid [47] 69.6 78.1 93.7 92.0 82.5 62.5 49.5 65.7 77.3 57.8 64.0 68.8 71.7 60.1 59.6
KPConv deform [47] 70.6 79.1 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

KP-Pyramid deform 73.0 82.2 94.6 95.5 84.1 63.0 56.8 70.9 78.6 67.8 69.2 67.5 78.3 58.4 64.4

Table 5. The computation time (seconds) and memory cost (GB)
for inference on test sets of PL3D (NPM3D) and Semantic3D
datasets. The additional cost of using our pyramid architecture
is minimal.

Method NPM3D Semantic3D
Memo Time Memo Time

KPConv deformable 3-4.2 193 5.5-7.5 274
KP-Pyramid deformable 3.4-4.7 216 5.9-8.2 290

Table 6. 3D scene segmentation scores (mIoU). PL3D (NPM3D),
Semantic3D scores are taken from their respective online bench-
marks (reduced-8 challenge). S3DIS scores are given by k-fold
cross validation.

Methods PL3D S3DIS Semantic3D
RF MSSF [46] 56.3 49.8 62.7
MSDVN [38] 66.9 54.7 65.3
SPGraph [23] - 58.0 73.2
ConvPoint [3] 75.9 68.2 76.5
SCFNet [10] - 71.6 77.6
KFAConv [4] 82.7 68.4 74.6

RandLANet [13] 78.5 70.0 77.4
KPConv rigid [47] 72.3 69.6 74.6

KPConv deform [47] 75.9(82.0) 70.6 73.1
RandLA-pyramid 80.1 71.5 77.5
KP-Pyramid rigid 80.5 71.7 76.4

KP-Pyramid deform 83.0 73.0 75.8

ture allows richer information to flow ‘upward’ at various
stages, not just on a single encoder path.

4.5. Additional Experiments based on RandLANet

The above-introduced experiments and results indicate
the success of our adaptation for KPConv [47], that is, im-
proving multi-scale processing and fusion in the encoder-
decoder segmentation architectures. To investigate the gen-
eralization ability of our proposed multi-scale processing
and fusion strategy, we conduct additional explorations on
another typical encoder-decoder based point cloud segmen-
tation network, RandLANet [13]. The ‘upgrade to RandLA-
Pyramid’ process is introduced in Sec. 3.2.

We test RandLA-Pyramid on several datasets, with the

results shown in Table 6. On NPM3D and S3DIS, RandLA-
Pyramid achieves about 1.5 points improvement in terms of
mIoU against the baseline. At the same time, the inference
time and memory cost do not increase much (i.e., less than
10%). This demonstrates that our proposed pyramid struc-
ture is generic and can potentially apply to any encoder-
decoder networks.

5. Conclusion
We presented a tridirectional pyramid architecture to

process and fuse multi-scale information for point cloud
segmentation. We improved the commonly used encoder-
decoder structure with several simple and yet effective com-
ponents, i.e., lateral as well as top-down and bottom-up in-
formation flows and a scale pyramid architecture, to en-
hance interaction between large-scale contexts and small-
scale details. We also explored feature fusion strategies
for cross-scale feature fusion within the pyramid structure
and designed the effective (almost) parameter-free CLAIM
for multi-scale feature fusion. State-of-the-Art results were
obtained on standard benchmarks and the proposed com-
ponents were shown to provide substantial improvements
in accuracy. Without needing pre-training, we believe our
model have the potential to be used for many point-cloud
related applications and still have room for further improve-
ments.

6. Social Impact and Limitations
Our proposed point cloud algorithm can boost the devel-

opment of lidar data processing for autonomous driving and
making the AI driver safer. More importantly, the proposed
method is efficient to achieve the higher performance which
can help decrease the carbon footprint and is thus environ-
mental friendly.

As for the method itself, the fusion in the scale-pyramid
should be explored more and we think we can remove part
of the links to save more computational cost. Also, we
have just validated the proposed network on several pub-
lic datasets and haven’t tested it on large datasets in real
applications.
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