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Abstract

Action recognition is a challenging task since the at-
tributes of objects as well as their relationships change con-
stantly in the video. Existing methods mainly use object-
level graphs or scene graphs to represent the dynamics
of objects and relationships, but ignore modeling the fine-
grained relationship transitions directly. In this paper, we
propose an Object-Relation Reasoning Graph (OR2G) for
reasoning about action in videos. By combining an object-
level graph (OG) and a relation-level graph (RG), the pro-
posed OR2G catches the attribute transitions of objects and
reasons about the relationship transitions between objects
simultaneously. In addition, a graph aggregating module
(GAM) is investigated by applying the multi-head edge-to-
node message passing operation. GAM feeds back the in-
formation from the relation node to the object node and en-
hances the coupling between the object-level graph and the
relation-level graph. Experiments in video action recog-
nition demonstrate the effectiveness of our approach when
compared with the state-of-the-art methods.

1. Introduction

Action recognition is one of the fundamental tasks in the
field of video understanding [8], and it remains an active
topic in the vision research community. The goal of action
recognition is to identify activities in the video according to
object states. As it is difficult to capture object transitions
by a global representation of the video [2, 25], object-based
action recognition has attracted increasing attention.

Object-based methods [30] mainly represent the objects
as the nodes of a graph and obtain the action category
through graph reasoning at the object-level. However, these
methods often fail to explicitly model the interaction be-
tween objects. To consider object interactions in action
recognition, current efforts [14] decompose the objects and
relationships in a video according to the event segmenta-
tion theory [18], where events can be divided into consistent
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Figure 1. Illustration of fine-grained relationship transition in the
videos. Two examples of different action labels with same subject-
object pairs but different relationship transitions are presented.

groups or represented as hierarchical structures. However,
these methods represent the dynamics of objects and rela-
tionships by aggregating them from the scene graph, and
ignore modeling and reasoning about fine-grained relation-
ship transitions.

Fine-grained relationship transition plays an important
role in distinguishing action categories, especially actions
with similar characteristics. Figure 1 shows two examples
of similar video content. In both cases, the subject is a
person and the objects are a chair and a pillow. However,
there are some slight differences in the relationship transi-
tions between the subject and objects, resulting in different
actions. For the visual relationship between the <person-
chair> pair, when the transition is ‘sitting on’→ ‘not con-
tacting’, it represents the action of ‘Someone is standing
up from somewhere’. However, when the transition is ‘not
contacting’ → ‘sitting on’, it represents another action of
‘Someone is going from standing to sitting’. For the visual
relationship between the <person-pillow> pair, when the
transition is ‘holding’→ ‘leaning on’, it represents the ac-
tion of ‘Taking a pillow from somewhere’ and ‘Putting a
pillow somewhere’. However, in the transition of ‘holding’
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→ ‘touching’→ ‘carring’, the actions change to ‘Holding
a pillow’ and ‘Snuggling with a pillow’. Therefore, model-
ing the relationship transition of independent subject-object
pairs across key frames is crucial for the action recognition
task. It helps the network to reason the video actions in a
human-like way, thus to enhance the explainability of the
network and get more precise action categories.

In this paper, we propose an Object-Relation Reasoning
Graph (OR2G) to model the fine-grained transition of the
objects and relationships in a video as shown in Figure 2.
Based on the above analysis, we split multiple objects and
relationships into independent items, and further decom-
pose the actions in detail. Firstly, for fine-grained modeling
of object attribute transition, we propose an actor-centric
object-level graph (OG). By modeling the dependencies be-
tween the subject and the objects in an actor-centric way, the
object-level graph captures more critical information about
object interactions. Secondly, considering the impact of re-
lationship transition between the subject and the objects, a
relation-level graph (RG) is proposed to model the depen-
dencies among fine-grained relationships along the tempo-
ral dimension. Finally, to enhance the coupling between
the two graphs, we propose a graph aggregating module
(GAM). With a multi-head attention edge-to-node message
passing operation, the information of relation-level graph
feeds back to the object-level graph in spatial dimension.

Our contributions can be summarized as follows:

• OR2G is proposed to model fine-grained attribute and
relationship transition for the challenging problem of
distinguishing actions with similar characteristics. By
reasoning on both object-level graph and relation-level
graph, OR2G explains more clearly how actions occur
through the slight transition of attributes and relation-
ships, and create interpretable representation for a va-
riety of complex actions.
• A graph aggregating module which adopts multi-head

attention edge-to-node message passing operation is
proposed to make the two graphs more coupled. The
information of relation-level graph feeds back to the
object-level graph in the spatial dimension, permitting
a more reasonable utilization of relationship transition
information.

The remainder of this article is structured as follows.
Section 2 gives an overview of related work. Section 3
presents our proposed method. Section 4 provides the im-
plementation details and experimental results on the public
action recognition dataset, followed by the conclusions in
Section 5.

2. Related Work
During the past decades, action recognition has attracted

a lot of attention in the computer vision community. In this

Figure 2. Object-Relation Reasoning Graph (OR2G) is proposed
to distinguish actions with similar characteristics by fine-graied
attribute and relationship transition modeling.

section, we mainly focus on the study of action recognition,
graph structure and visual reasoning.

2.1. Action Recognition

Most of the early works for action recognition have fo-
cused on designing hand-crafted features, such as the Im-
proved Dense Trajectory (IDT) [27]. The strategies are
still widely used and show very competitive results in dif-
ferent video related tasks. Recently, due to the great ad-
vances of deep learning, a large number of CNN-based ap-
proaches have been proposed and surpass such traditional
approaches.

The existing deep-learning methods for action recogni-
tion can be classified into two types. The first is based
on two-stream networks [6, 7, 23, 28, 32], which take RGB
frames and optical flows as input for each stream. Simonyan
et al. [23] first proposed the two-stream ConvNet architec-
ture for action recognition. Wang et al. [28] proposed a
sparse temporal sampling strategy for the two-stream struc-
ture to model long range relationship in the time domain.
The second type is based on 3D convolutional neural net-
works (3D CNN) [2, 25, 35], which are designed to cap-
ture the spatial-temporal features jointly. The first 3D CNN
for action recognition is C3D [25], which models the spa-
tial and temporal features together. By inflating the filters
and pooling kernels of very deep image classification Con-
vNets into 3D, Carreira et al. [2] proposed the I3D network
to learn seamless spatio-temporal features. Recently, Kon-
dratyuk et al. [16] use Neural Architecture Search to get net-
work structure with the best performance for action recog-
nition.

2.2. Graph Structure in Videos

When used to recognize actions, two types of graph
structures are utilized: skeleton-based graphs and object-
based graphs. Skeleton-based graphs are constructed to
model the skeleton information based on a fixed graph
structure. Yan et al. [36] introduced the graph convolu-
tion operation to skeleton-based action recognition and pro-
posed a novel spatial-temporal graph convolutional network
to learn the spatial and temporal pattern from skeleton data
automatically. Cheng et al. [4] proposed a shift graph con-
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Figure 3. The overall architecture of OR2G. Firstly, visual, spatial and semantic features are extracted from the object locations, object
categories and the visual relationship categories in key frames to construct the nodes in the graphs. Secondly, the node features of the
two graphs are refined at the object-level and the relation-level, respectively. Then, the information of relation-level graph is fed back
to the object-level graph by a graph aggregating module. Finally, the node information of three modules are concatenated to learn the
representation of video for the action recognition task.

volutional network to combine novel shift graph opera-
tion with lightweight point-wise convolutions for skeleton-
based action recognition. Object-based graphs are utilized
in non-skeleton-based action recognition, where the nodes
represent objects or regions in a visual scene. Wang et
al. [30] captured the important cues by representing videos
as space-time region graphs, and then used Graph Convolu-
tional Network (GCN) [15] to perform long-range temporal
modeling of human-object and object-object relationships.
Herzig et al. [10] modeled the video context by a disen-
tangled graph embedding derived from several inter-object
graphs with spatial and temporal hierarchy.

2.3. Visual Reasoning

For visual reasoning in videos, methods can be divided
into two families, frame-level reasoning and object-level
reasoning. Frame-level reasoning conducts relational rea-
soning among video frames. For example, Zhou et al. [38]
introduced an interpretable module to learn and reason
about temporal dependencies between video frames. Huang
et al. [12] proposed a Graph-based Temporal Reasoning
Module to learn the relations of action segments. Zhang
et al. [37] proposed a learnable temporal relation reason-
ing graph to capture the appearance features among regions
and the temporal relation between video sequences simul-
taneously. Different from frame-level reasoning, object-
level reasoning relies on an object-level graph to model
the interactions among objects or regions in videos. Ba-
radel et al. [1] introduced an Object Relation Network to
the action recognition task and proposed a novel model to

achieve object-level reasoning in videos. Sun et al. [24]
proposed a weakly supervised actor-centric relational net-
work to accumulate pair-wise relation information for ac-
tion classification. Chen et al. [3] proposed an approach
to reason between regions by a fully-connected graph and
projected the node features to the coordinate space. Zhuo
et al. [39] integrated scene graph generation methods into
a video action recognition framework. Wu et al. [34] built
an object-level graph to capture the appearance and position
relation between actors through Graph Convolutional Net-
work. Materzynska et al. [20] proposed a spatial-temporal
interaction network that operated on object-centric features
and performed spatial interaction reasoning to obtain a clas-
sification decision in compositional action recognition.

3. Methodology
To reason the attribute transitions as well as the relation-

ship transitions in the video, we decompose action into a
series of objects and relationships according to the event
segmentation theory, and propose an Object-Relation Rea-
soning Graph (OR2G) for the action recognition task. The
overall architecture of the proposed OR2G is shown in Fig-
ure 3. It is mainly constructed of three parts, the object-level
graph, the relation-level graph and the graph aggregating
module.

3.1. Object-level Graph Reasoning

The nodes in the object-level graph represent persons or
objects in video frames, and we refer to them as person
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nodes or object nodes, respectively. The object-level graph
is constructed to obtain the relationships between the person
node and the object nodes, as well as the attribute transitions
of object nodes.

To obtain sufficient information about the objects, two
kinds of high-level features are used. The first is the vi-
sual feature vOi extracted by ResNet [9], and the second is
the semantic feature sOi obtained by embedding the object
category to the semantic feature space. The location and
category information of the objects are either provided by
the dataset or extracted by a fine-tuned Faster R-CNN [21].
Attributes of the object nodes are obtained by concatenating
the two features as xOi = [vOi , s

O
i ].

After extracting the node information, edges are added
between nodes to build the graph. Considering the informa-
tion flows in spatial and temporal dimensions, we add two
kinds of edges to the graph. Firstly, we add spatial edges be-
tween the person node and object nodes in the same frame
to evaluate the correlation of person-object pairs. The spa-
tial adjacency matrix can be formulated as:

AO
Sij

=

{
1, oi/oj = ‘person’ and ti = tj
0, otherwise

(1)

where oi and oj represent the object categories of node i
and j, respectively. ti and tj represent the video key frames
that the objects belong to. Since the actions are based on
the action subject, we construct an actor-centric object-level
graph whose central node is the person node. In each iden-
tical key frame, the object nodes only connect to the person
node, while between different key frames, the person node
and the object nodes only connect to themselves by tempo-
ral edges. The temporal adjacency matrix can be formulated
as:

AO
Tij

=

{
1, oi = oj and ti − tj < T1
0, otherwise

(2)

where T1 is the threshold of the distance between adjacent
frames. We combine spatial and temporal edges by straight
combination to generate the overall adjacency matrix of the
object-level graph. The computational formulas for straight
combination are:

AO
ij = AO

Sij
⊕ AO

Tij

GO = σ(D̂O
− 1

2

ÂOD̂O
− 1

2

XOWO)
(3)

where ⊕ denotes the OR operation. AO is the overall ad-
jacency matrix for object-level graph, and ÂO is adjacency
matrix AO with added self-connections IN . D̂O is the de-
gree matrix of ÂO. XO is the input features of the object
nodes in the graph. WO is the weight matrix of the layer.
Once the graph is constructed, the node information is up-
dated by the graph convolution operation.

3.2. Relation-level Graph Reasoning

The nodes in the relation-level graph represent the rela-
tionships between the subject and the objects, and we refer
to them as relation nodes. The function of the relation-level
graph is to obtain the fine-grained relationship transitions of
relation nodes.

Similar to the object-level graph, we also used two kinds
of high-level features for the relation-level graph. One is
the spatial feature spRi of the subject and the objects, which
is extracted using relative spatial position descriptors. Dif-
ferent from the visual feature and the semantic feature, the
spatial feature is a relative feature which represents the rel-
ative position of two bounding boxes. To obtain the relative
spatial feature of the bounding box, we adopt the idea of box
regression [11], in which the relative spatial feature spRi is
defined as:

spRi = [∆ (bi, bp) ; ∆ (bi, bip) ; ∆ (bp, bip) ;

iou (bi, bp) ; dis (bi, bp)]
(4)

where bp is the bounding box of the subject. bi is the bound-
ing box of the object. bip is the union of bi and bp. ∆ (bi, bp)
is the box delta that regresses the bounding box bi to bp.
dis (bi, bp) and iou (bi, bp) are the normalized distance and
IoU between bi and bp, respectively.

The other one is the semantic feature smR
i obtained

by embedding the visual relationship category between the
subject and the objects to the semantic feature space. The
visual relationship category labels are either provided by the
dataset or the fine-tuned visual relationship detection net-
work [11, 19] as introduced in Section 4.1. Features of the
relation nodes are obtained by concatenating the two fea-
tures as xRi = [spRi , sm

R
i ].

We add temporal edges between the relation nodes of
same subject-object pair at adjacent frames to evaluate rela-
tionship transition, which can be formulated as:

AR
Tij

=

{
1, ri = rj and ti − tj < T2
0, otherwise

(5)

where ri and rj represent the subject-object pairs that com-
pose the visual relationship. The computational formula for
the relation-level graph is:

GR = σ(D̂R
T

− 1
2

ÂR
T D̂R

T

− 1
2

XRWR
T ) (6)

where ÂR
T is temporal adjacency matrix AR

T with added self-

connections IN . D̂R
T is the degree matrix of ÂR

T . XR is the
input features of the relation nodes in the graph. WR

T is the
weight matrix of the layer.

3.3. Graph Aggregating Module

The object-level graph transfers and reasons the informa-
tion of the object nodes, while the relation-level graph trans-
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fers and reasons the information of the relation nodes. How-
ever, the two graphs are still relatively independent and do
not interact with each other. To make the two graphs more
coupled, we proposed a graph aggregating module with a
multi-head attention edge-to-node message passing opera-
tion. In this way, the information of the relation-level graph
feeds back to the object-level graph in spatial dimension.

In the relation-level graph, the information of each node
corresponds to the information of each edge in the object-
level graph, so we take the node embeddings of the relation-
level graph as the edge embeddings of the object-level
graph. The graph aggregating module is actually updating
the object-level graph according to the relation-level graph.

In the general graph convolutional network, the edge-to-
node message passing operation [11] can be formulated as:

x′i = fe(
1

di

∑
eij∈E

eij) (7)

where x′i is the updated node embedding. E denotes the
edge set. eij is the edge embedding between the object node
i and j. di is the amount of edges connected to node i. fe
is the mapping between the edge and the node.

In the proposed method, when updating the central node
(person node) with the edge embedding in each frame, a
multi-head attention edge-to-node message passing oper-
ation is proposed for the special actor-centric structure in
the object-level graph. In the actor-centric graph, each ob-
ject node has only one edge connected to it, while the per-
son node has multiple edges connected to it. According to
eq. 7, each object node is only updated by one connected
edge embedding, while there are multiple edge embeddings
feed back to the person node embedding with the same
weight. However, the importance of each subject-object
pair varies for different actions in the multi-label action
recognition task. So in this section, we optimize the edge-
to-node message passing operation based on the multi-head
attention mechanism [26], which is inspired from the self-
attention mechanism and also described as the mapping
from Query(Q) to Key(K)-V alue(V). Each head in the
multi-head attention mechanism linearly transforms Q, K
and V through the parameter matrix WQ, WK , WV . This
process can be formulated as:

headi(Q,K,V) = softmax(
QWQ

i (KWK
i )T√

dk
)VWV

i (8)

where i is the index of heads, and the parameter matrix of
each head is not shared. dk is the dimension of K.

According to eq. 7 and 8, the updating of the person node
in each frame can be formulated as:

GA
p =

1

dp

∑
[head1(GR

p ,G
R
p ,G

R
p ), ...,

headh(GR
p ,G

R
p ,G

R
p )]WA

(9)

where h is the number of heads, GA
p is the updated em-

bedding of the central node, GR
p is the feature matrix of all

the edges connected to node p, dp is the number of edges
connected to the person node, WA is the weight matrix of
output embedding.

The updated central node, the updated object nodes, and
the output of the object-level graph are concatenated and
mapped to generate the entire output of the graph aggregat-
ing module. This process can be formulated as:

GA = fe([GA
p ,G

R,GO]) (10)

3.4. Multi-class Action Recognition

After performing the spatial-temporal graph convolu-
tion, all the update features are rearranged to compose three
3D features, i.e., the object-level feature, the relation-level
feature and the aggregating feature. The height and chan-
nel number of the two features are equal to the number of
frames and to the dimension of the updated features, respec-
tively. The width of the object-level feature is equal to the
number of object nodes in each frame, while the width of
the relation-level feature is equal to the number of relation
nodes in each frame. The rearranged features are processed
by several convolutional layers and pooling layers to obtain
1×d dimension representations gOi , gRi and gAi , which con-
tain the information of the OG, RG and GAM, respectively.
In addition, the video is processed by a pre-trained I3D with
non-local blocks [29] (I3D-NL) network to obtain another
1× d dimension global feature gGi .

These features are then concatenated together as gi =
[gOi , g

R
i , g

A
i , g

G
i ] for action recognition. The confidence of

each class is yi = sigmoid(Wfgi) , where Wf is the em-
bedding matrix that maps interaction embeddings to match
the action categories. Binary cross entropy loss is used in
the training.

4. Experiments
4.1. Implemention Details

Dataset. The Charades dataset [22] contains 9,848 videos
with an average length of 30 seconds. There are 157 ac-
tion classes and multiple actions can happen at the same
time. The Action Genome dataset [14] is annotated based
on the Charades dataset. The dataset decomposes actions
and focuses on video clips where the actions occur. It con-
tains a total number of 234K key frames, on which 476K
object bounding boxes and 1.72M relationships are anno-
tated. There are a total number of 35 object categories
and 25 relationship categories, among which the relation-
ship categories are divided into 3 types, namely 3 classes
of attention relationships, 6 classes of spatial relationships
and 16 classes of contacting relationships. The multi-class
action recognition task provides a video sequence as input
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(a) Examples of I3D, OG, OR2G* and OR2G with detail structures (b) Several examples of I3D and OR2G

Figure 4. The visualization results of different structures. Top-K results are listed. The correct predictions are marked in green and the
incorrect predictions are marked in red.

(a) Object and frame numbers (b) T1 and T2 threshold values

Figure 5. Hyper parameter experiments.

and expects multiple action labels as output. Performance
is measured by mean Average Precision (mAP).
Backbones. We used the ResNet-152 network as the vi-
sual feature extractor for bounding box regions in the video
frame. The ResNet-152 network is pre-trained on the Im-
ageNet dataset [17] and takes object image cropped from
each bounding box as input. As in the state-of-the-art meth-
ods used for comparison, we also adopt the I3D-NL net-
work as the video feature extractor. The backbone of the
I3D-NL network is ResNet-101. The I3D-NL network is
pre-trained on the Kinetics-400 dataset [2] and takes RGB
video frames as input.
Evaluation Modes. Following the standard evaluation
in [14], we used two standard evaluation modes for all
the ablation study experiments: (1) Oracle (OR2G Ora-
cle): Object locations, object categories and human-object
relationships (attention, spatial and contact relationships)
are provided by the ground truth of the Action Genome

dataset [14]. (2) Prediction (OR2G): Faster R-CNN [21]
with ResNet-101 is used as the backbone for region pro-
posals and object detection. The network is then fine-
tuned on object locations and object categories in the Ac-
tion Genome dataset. A graph convolutional network with
FC layer [11, 19] is used for visual relationship detection.
The network is then fine-tuned on human-object relation-
ship categories in the Action Genome dataset. For a fair
comparison, we used the same train/val splits as in the Cha-
rades dataset [22].

Experimental Setup. All the experiments are conducted
under the same design. The input of the network contains
Nf key frames for each video. For the training set, the
frames are extracted randomly over the whole video, while
for the validation set, the frames are extracted evenly over
the whole video. The frames are sent into the network in the
order of time, and when the total number of frames is less
than Nf , the missing frames are filled with zeroes. No ob-
jects are selected for each video, with the actor node ranking
the first. To select the other objects, the number of occur-
rences of objects in all frames is counted and sorted. For
the training set, the top No/2-1 most frequent objects are
selected, and the other No/2 objects are randomly selected
from the remaining objects. For the validation set, the top
No − 1 most frequent objects are selected. When the to-
tal number of objects is less than No or when the objects
do not appear in the current frame, the missing objects are
filled with zeroes.
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Table 1. Structure analysis.

Evaluation
Mode Method OG

edge
Combine

type OG RG GAM mAP

Oracle

OG-S Spa - ! % % 57.95
OG-T Tem - ! % % 58.94
OG-w S+T weighted ! % % 59.53
OG S+T straight ! % % 59.77
OR2G* S+T straight ! ! % 62.81
OR2G S+T straight ! ! ! 63.28

Prediction

OG-S Spa - ! % % 31.30
OG-T Tem - ! % % 32.06
OG-w S+T weighted ! % % 32.63
OG S+T straight ! % % 32.65
OR2G* S+T straight ! ! % 33.60
OR2G S+T straight ! ! ! 34.24

Table 2. Feature analysis.

Evaluation
Mode Method Object

feature
Relation
feature mAP

Oracle

OG V - 34.56
OG S - 58.78
OG V + S - 59.77
OR2G* V + S Sp 60.28
OR2G* V + S Sm 62.65
OR2G* V + S Sm+Sp 62.81

Prediction

OG V - 25.51
OG S - 32.36
OG V + S - 32.65
OR2G* V + S Sp 32.89
OR2G* V + S Sm 33.17
OR2G* V + S Sm+Sp 33.60

4.2. Hyper Parameters

Object and frame numbers. The videos in the Action
Genome dataset contain different numbers of key frames
and objects. We vary the numbers of sampling frames Nf

and objects No into the object-level graph and show the re-
sults in Figure 5a. Nf is taken as 4, 8, 16 and 32 frames,
respectively. No is taken as 4, 8 and 16 objects from each
video segment, respectively. It can be seen from the exper-
imental results that the best performance can be obtained
when No is set to 16. The mAP of the validation set in-
creases and then decreases as the number of input video
frames Nf grows, and the optimal experimental results are
obtained when Nf is set to 16.
T1 and T2 threshold values. We compare the performance
of different distance thresholds T1 in the object-level graph
and T2 in the relation-level graph, respectively. As shown
in Figure 5b, it can be seen from the experimental results
that the best performance can be obtained when T1 is set to
7. For the threshold of T2, the mAP of the validation set
increases and then decreases as the threshold of T2 grows,
and the optimal experimental results are obtained when T2
is set to 7.

4.3. Ablation Study

Structure Analysis
• Components of OR2G. Table 1 explores the effectiveness
of each module of the proposed OR2G. The baseline corre-
sponds to the performance obtained by the object-level rea-
soning graph (OG). No relation-level information is present
in this baseline. OR2G* adds a relation-level graph to the
baseline and gains 2.9 points compared to our baseline in
Oracle evaluation mode. This indicates that modeling of
the fine-grained relationship transition is able to extract
representative features for distinguishing different actions.
OR2G is the proposed method and gains 0.4 points com-
pared to OR2G* in Oracle evaluation mode, which proves

that the graph aggregating module improves the coupling of
the two graphs and makes better use of relationship without
introducing additional information.

To show the effect of our proposed modules more intu-
itively, we give some examples and visualize them in Fig-
ure 4. As shown in Figure 4a, I3D tends to extract the global
representation of the video, and its result only concentrates
on actions related to the ‘clothes’. In the result of OG, the
action related to the ‘picture’ (i.e., ‘Watching/looking at a
picture’) is also correctly recognized with the addition of
fine-grained object information. But due to the absence of
relationship cues, OG fails to recognize the action of ‘some-
one is dressing’. This problem is solved by OR2G* with
the additional relationship transition information. Only the
proposed OR2G recognizes the action of ‘Tidying a shelf or
something on a shelf ’, because it makes more reasonable
use of the relationship transition with the graph aggregation
module, which gives different attention weights to different
visual relationships (i.e., the <person-picture> pair and the
<person-shelf> pair).

• Construction of OG. In addition, we also compare the per-
formance of the two kinds of adjacent edges in the object-
level graph. OG-S is the method with the spatial edges
given by Eq. 1, while OG-T is the method with temporal
edges given by Eq. 2. The two kinds of adjacent edges
represent different ways of message passing, so we com-
pare the performance of graphs with different combina-
tion types for spatial and temporal edges. OG-w shows
the result of the weighted combination of the two graphs,
while OG shows the result of the straight combination in
Eq. 3. Compared with the results of spatial edges or tempo-
ral edges, both the combined graphs achieve better perfor-
mance, which proves the complementarity between the two
edges. When comparing the two combined graphs, it can
be found that the straight combination is slightly better than
the weighted combination.
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Table 3. Backbone analysis in two evaluation modes.

Evaluation
Mode Backbone mAP

Oracle Resnet 63.28
Resnet+I3D 67.51

Prediction Resnet 34.24
Resnet+I3D 44.91

Feature Analysis
• Object features. We compare the performance of different
object features to evaluate their effectiveness in Table 2. V
represents the visual feature and S represents the semantic
feature. Comparing the three OG with different object fea-
tures as input, it can be seen that the S+V achieves the best
performance, which verifies the complementarity between
the two feature types.
• Relation features. The experiments of relation features
are also shown in Table 2. Sm and Sp are semantic feature
and spatial feature for the relation-level graph, respectively.
Comparing the three OR2G* with different relation features
as input, it can be seen that the Sm+Sp achieves the best
performance, which verifies that both the semantic feature
and the spatial feature are beneficial for the relation-level
reasoning.
Backbone Analysis

The backbones for the proposed OR2G are ResNet and
I3D. When the backbone is ResNet, only gOi , gRi and gAi are
concatenated for classification. When the backbone is I3D,
that’s the OR2G we proposed, in which gOi , gRi , gAi together
with the I3D feature gGi are concatenated for classification.
It can be seen from Table 3 that the accuracy of OR2G is
greatly improved with the addition of the I3D feature.
Prediction Evaluation Mode

The overall trend of the Prediction evaluation mode is
consistent with that of the Oracle evaluation mode in abla-
tion study experiments, and similar conclusions can be ob-
tained. Comparing the results of the two evaluation modes,
we find that with the ground truth object locations, object
categories and human-object relationships provided by Ac-
tion Genome, the improvement in mAP can be as high as
23%. It means that the performance of the proposed OR2G
can be further improved with the improvement on object
information or visual relationships information.

4.4. Comparison with the State-of-the-art Methods

To demonstrate the effectiveness of the proposed OR2G,
we compare the proposed method with related works for
the multi-label action recognition task. Table 4 shows the
results of comparing our proposed method to the existing
methods in the Charades dataset. Timeception [13] and
LFB [33] model the action using long-range temporal infor-
mation, while SlowFast [5] models the action based on the

Table 4. Action recognition on Charades validation set in mAP
(%).

Method Backbone Pre-train mAP

I3D + NL [2, 29] R101-I3D-NL Kinetics-400 37.5
STRG [30] R101-I3D-NL Kinetics-400 39.7
Timeception [13] R101 Kinetics-400 41.1
SlowFast [5] R101 Kinetics-400 42.1
SlowFast+NL [5, 29] R101-NL Kinetics-400 42.5
LFB [33] R101-I3D-NL Kinetics-400 42.5
SVAG [31] R101-NL Kinetics-400 44.1
SGFB [14] R101-I3D-NL Kinetics-400 44.3
OR2G (ours) R101-I3D-NL Kinetics-400 44.9

SGFB Oracle [14] R101-I3D-NL Kinetics-400 60.3
OR2G Oracle (ours) R101-I3D-NL Kinetics-400 67.5

difference of speed between action subject and background.
It is difficult for these methods to capture the object transi-
tions. STRG [30] and SVAG [31] model the actions based
on objects and voxels, respectively, ignoring explicitly mod-
eling the interaction between objects. Though SGFB [14]
takes visual relationships into account, it ignores modeling
and reasoning about fine-grained relationship transitions. In
the case of the Prediction evaluation mode, our proposed
OR2G is superior to these methods and achieves the state-
of-the-art performance with 44.9% mAP. For a fair compar-
ison, we also evaluated our method in the Oracle evaluation
mode and compared it with the SGFB method. The mAP of
OR2G is higher than that of SGFB by 7%, indicating that
our method is able to reason about actions more accurately
after being provided with effective annotations of objects
and visual relationships.

5. Conclusions

In this paper, an Object-Relation Reasoning Graph
(OR2G) is proposed for action recognition. The proposed
OR2G uses graph convolutional network at object-level and
relation-level to reason the fine-grained object and relation-
ship transitions through the visual, spatial and semantic fea-
tures of the objects and visual relationships in the video.
Specifically, the graph aggregating module is proposed to
make more reasonable use of relationship transition infor-
mation. Ablation experiments verified the effectiveness of
the object-level graph, the relation-level graph and the graph
aggregating module. Experiments on the Charades dataset
show that the proposed method improves on state-of-the-
art performance in both Oracle and Prediction evaluation
modes.
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