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Abstract

Recent techniques have been successful in reconstructing

surfaces as level sets of learned functions (such as signed dis-

tance fields) parameterized by deep neural networks. Many

of these methods, however, learn only closed surfaces and

are unable to reconstruct shapes with boundary curves. We

propose a hybrid shape representation that combines explicit

boundary curves with implicit learned interiors. Using ma-

chinery from geometric measure theory, we parameterize

currents using deep networks and use stochastic gradient

descent to solve a minimal surface problem. By modifying

the metric according to target geometry coming, e.g., from

a mesh or point cloud, we can use this approach to repre-

sent arbitrary surfaces, learning implicitly defined shapes

with explicitly defined boundary curves. We further demon-

strate learning families of shapes jointly parameterized by

boundary curves and latent codes.

1. Introduction

Shape representation is a crucial component of geometry
processing and learning algorithms. Depending on the target
application, different representations have varying tradeoffs.
Broadly, shape representations fall naturally into two classes:
Lagrangian or explicit; Eulerian or implicit. In this work,
we show how to use the theory of currents from geometric
measure theory to design a flexible neural representation that
combines favorable aspects from each category, represent-
ing the interiors of surfaces implicitly while maintaining an
explicit representation of their boundaries.

Lagrangian representations encode a shape by giving co-
ordinates of points or parameterizing regions of the shape.
To represent a curve in a Lagrangian way, one might give co-
ordinates of successive points along the curve. Analogously,
to represent a surface in 3D, one might use a mesh, which
assembles the surface out of simple patches. Lagrangian rep-
resentations afford great precision but require predetermined
combinatorial structures, making it difficult to represent fam-
ilies of shapes with varying topology.

*Authors contributed equally to this work.

In contrast, Eulerian representations encode a shape via
a function on some background domain. For example, a
surface might be encoded as the level set of a scalar function
sampled on a regular grid. Level sets of signed distance
fields (SDFs) form one popular implicit representation. Im-
plicit functions naturally capture topological variation, but
traditional implicit shape representations, in which the back-
ground geometry must be discretized with a fixed grid or
mesh, waste resolution on regions far away from the level set
of interest. Recent neural implicit representations alleviate
this problem [7, 38, 46]. The universal approximation and
differentiability properties of neural networks make them an
appealing alternative to regular grid discretizations.

Neural implicit representations come with their own lim-
itations. Like other implicit representations based on level
sets, most neural implicit representations can only encode
closed surfaces, which lack boundary curves. Boundaries are
desirable as they can provide manipulation handles for con-
trollable deformation, and common boundaries can be used
to stitch together surfaces into a larger articulated surface.

In this paper, we describe a new way to encode neural
implicit surfaces with boundaries, which can then be com-
bined into more complex hybrid surfaces. The key to our
representation is the theory of currents from geometric mea-
sure theory. In this theory, k-dimensional submanifolds
are defined by their integration against differential k-forms,
generalizing how distributions (0-currents) are defined by
integration against smooth functions. Current spaces are
complete normed linear spaces that make optimization over
surfaces convenient, and the boundary operator also becomes
linear on these spaces. Classically, currents were the key to
solving Plateau’s minimal surface problem by transforming
it into mass norm minimization. We adopt the mass norm as
the primary loss function encouraging our neural currents to
converge to smooth surfaces.

We demonstrate our representation with three applica-
tions. We first demonstrate how it enables computing mini-
mal surfaces efficiently through stochastic gradient descent.
Then, by modifying the background metric used to define the
mass norm, we reconstruct arbitrary surfaces from data. Fi-
nally, we demonstrate the flexibility of our representation by
encoding families of surfaces with explicit boundary control.
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Contributions. In summary, we

• propose a new neural implicit surface representation with
explicit boundary curves;

• show how to use SGD on the mass norm to compute mini-
mal surfaces;

• introduce a custom background metric and additional loss
terms to represent surfaces from data; and

• describe a framework for learning families of surfaces
parameterized by their boundaries along with a latent code.

2. Related Work

Our work takes classical ideas in minimal surface com-
putation and brings them into the context of modern deep
learning to form a new neural shape representation. Below,
we summarize key prior works in these two areas.

2.1. Minimal Surface Computation

Most computational approaches to minimal surface gener-
ation use a mesh or grid representation of the surface. In the
twentieth century, numerical minimal surface problems were
discretized by finite difference methods on a grid, assuming
the surfaces were function graphs [11, 17]. Grid-based meth-
ods were later adapted to triangle meshes [32, 66], allowing
the generated surface to leave the space of function graphs
[62]. Modern mesh-based minimal surface solvers use mean
curvature flow [3, 15, 22], stretched grids [50], quasi-Newton
iterations [49, 51], Voronoi tessellations [45], or curvature
flows with a conformal constraint [12, 33]. These methods
based on explicit surface representations are straightforward,
but the optimization often suffers from local minima due
to the non-convexity of the area functional and can even
diverge if the initial mesh has the wrong topology [49, 62].

A different approach to the minimal surface problem is
based on geometric measure theory (GMT), whose theoret-
ical foundations were developed in the 1960s [25, 26, 42].
In this theory, curves and surfaces are represented implicitly
by currents as dual to differential forms. Such representa-
tions have been used in geometry processing [5, 39, 40, 43]
and medical imaging [6, 19, 20, 21, 28, 60]. In geometric
measure theory, the minimal surface problem becomes the
convex minimal mass norm problem (see Section 3.4). A
discrete analog of the minimal mass problem on a graph is
a linear program known as the optimal homologous chain
problem [10, 16, 18, 56]. GMT-based discretization of the
minimal surface problem in Euclidean space was pioneered
by [47] and revisited by [4, 64].

2.2. Deep Learning for Shape Reconstruction

Using deep learning to produce 3D geometry has gained
popularity in vision and graphics. Network architectures now
can output many explicit shape representations, like voxel
grids [13, 67, 71], point clouds [23, 68, 70], meshes [30, 44,

63], and parametric primitives [48, 52, 54, 55, 59]. While
the content produced by these approaches is generally easy
to render and manipulate, it is often restricted in topology
and/or resolution, limiting expressiveness.

A different approach circumvents topology and resolution
issues by representing 3D shapes implicitly, using functions
parameterized by neural networks. In DeepSDF, Park et al.
[46] learn a field that approximates signed distance to the
target geometry, while Mescheder et al. [38] and Chen and
Zhang [7] classify query points as being outside or inside
a shape. Others further improve the results by proposing
novel regularizers, loss functions, and training or render-
ing approaches [1, 29, 36, 57]. While these works achieve
impressive levels of detail in surface reconstruction, they
largely suffer from two drawbacks—lack of control and in-
ability to represent open surfaces, i.e., those with boundary.

Neural implicit learning methods typically overfit to a
single target shape or learn a family of shapes parameter-
ized by a high-dimensional latent space. While recent work
has shown the possibility of adapting classical geometry
processing algorithms to neural implicit geometries [69], ap-
plying targeted manipulations and deformations to learned
shapes remains nontrivial. Several papers propose hybrid

representations, combining the expressive power of neural
implicit representations with the control afforded by explicit
representations. Genova et al. [27] reconstruct shapes by
learning multiple implicit representations arranged accord-
ing to a learned template configuration. In DualSDF [31],
manipulations can be applied to learned implicit shapes by
making changes to corresponding explicit geometric prim-
itives. BSP-Net [8] and CvxNet [14] restrict the class of
learned implicit surfaces to half-spaces and convex hulls,
respectively. [37] defines local implicit functions on point
clouds, facilitating the transition between discrete points and
smooth surfaces during training.

Because neural implicit shapes are typically level sets
of learned functions, this limits the class of representable
shapes to closed surfaces. Two notable exceptions are [9],
which learns unsigned distance functions rather than SDFs,
and [61], which maps an input point to its closest point on
the target surface. Our DeepCurrents adopt a hybrid repre-
sentation, which models boundaries explicitly and allows
them to be used as handles for manipulation.

3. Preliminaries

Geometric measure theory is a vast field that we will not
attempt to summarize here. For a comprehensive treatment,
we refer the reader to [24, 35, 53]. We focus on the rudi-
ments necessary to construct our optimization problem in
dimensions two and three, eliding technical issues that arise
in higher-dimensional ambient spaces.

The theory of currents is motivated by solving Plateau’s

Problem, the problem of finding the surface of minimal area
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enclosed by a given boundary:

argmin
⌃

{A(⌃) : @⌃ = �}. (1)

The problem (1) seeks a solution in the space of smooth em-
bedded submanifolds with boundary, which lacks convenient
properties such as convexity and compactness required for
reasoning about optimization. In GMT, this space is relaxed

to a space of currents, generalized submanifolds character-
ized by integration. Plateau’s problem (1) is systematically
translated into a problem over currents. The area functional
becomes the convex mass norm, and @ becomes a linear
operator constructed by dualizing the exterior derivative d.
We describe this translation in detail below.

3.1. Currents

Currents are to submanifolds as distributions are to sets of
points. Just as distributions are characterized by integration
against functions, k-currents are characterized by integration
against differential k-forms in the ambient space. For our
purposes, that ambient space will be an open subset U ✓ Rd,
d  3. For now, we will assume the metric is Euclidean;
see Section 4.2 for the generalization to Riemannian metrics.
We will also assume that U is bounded and contractible to
elide various technical issues.

We denote the space of smooth k-forms with compact
support in U by ⌦

k
c (U). Recall that a k-form ⇣ 2 ⌦

k
c (U)

smoothly assigns to each point x 2 U an element ⇣x 2Vk T ⇤
xU , the exterior power of the cotangent space at x.

In Euclidean space, there is a canonical identification be-
tween covectors (k = 1) and vectors. A Riemannian metric
provides a similar identification but requires more careful
bookkeeping (see Section 4.2).

The space of k-currents

Dk(U) = (⌦
k
c (U))

⇤ (2)

is the dual space of (compactly-supported) k-forms, i.e., it
consists of continuous linear functionals on k-forms. An
element T 2 Dk(U) is defined by its assignment of real
values to k-forms:

⇣ 2 ⌦
k
c (U) 7! T (⇣) 2 R. (3)

The following are two key examples of currents:

• A 0-current is simply a distribution, as

D0(U) = (⌦
0
c(U))

⇤
= (C1

c (U))
⇤
= D(U). (4)

• A submanifold ⌃ ⇢ U of dimension k can be viewed as a
current [⌃] 2 Dk(U) by integration against it:

[⌃](⇣) :=

Z

⌃
⇣. (5)

3.2. Boundary Operator

In generalizing the boundary operator from submanifolds
to currents, we need to ensure that @[⌃] = [@⌃]. Stokes’
Theorem tells us that

[@⌃](⇣) =

Z

@⌃
⇣ =

Z

⌃
d⇣ = [⌃](d⇣), (6)

motivating the definition

@T (⇣) := T (d⇣). (7)

In words, we define @ as the adjoint of d.

3.3. Mass Norm

As we did for the boundary operator, we write the area
functional in terms of integration against forms and then
replace integration by current evaluation. This definition
depends on a pointwise norm | · | on k-forms. As we are
working in dimensions d  3, it is sufficient to use the point-
wise inner product norm, and we will not concern ourselves
with complications that occur in higher dimensions.

If ⌃ ⇢ U is a smooth k-submanifold with boundary, then
its area satisfies

A(⌃) = sup

⇣2⌦k
c (U)

⇢Z

⌃
⇣ : |⇣x|  1 8x 2 U

�
. (8)

So we define the mass norm of a current T 2 Dk(U) as:

M(T ) := sup

⇣2⌦k
c (U)

{T (⇣) : |⇣x|  1 8x 2 U}. (9)

3.4. Minimal Mass Problem

Applying the transformations above to the problem (1),
one obtains a relaxation known as the minimal mass problem:

min
T2Dk(U)

{M(T ) : @T = �}. (10)

In classical GMT, the current T is taken to be in the space
Ik(U) of integral k-currents, which roughly means currents
that look like integer linear combinations of Lipschitz sur-
faces. When optimizing over Id�1(U) in ambient dimen-
sion d  7, there is an optimal solution corresponding to a
smooth submanifold (see [24] Theorem 5.4.15, [53] Theo-
rem 5.8, [35] Theorem 3.10). More recent theory extends
this result to optimization over general currents Dk(U) (see
[4] Theorem 2, [53] Remark 5.2).

3.5. Representing Currents by Forms

For computational purposes, we follow [64] and optimize
over k-currents represented by differential (d � k)-forms.
This allows us to represent currents by neural networks.
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A (d� k)-form can be identified with a k-current [!] 2
Dk(U) by defining

[!](⇣) :=

Z

U
! ^ ⇣

for any ⇣ 2 ⌦
k
c (U). With this identification, we have by

Stokes’ Theorem:

@[!](⇣) = [!](d⇣) =

Z

U
! ^ d⇣ (11)

= (�1)
d�k+1

Z

U
d! ^ ⇣ =

⇥
(�1)

d�k+1
d!

⇤
(⇣).

The boundary constraint @[!] = � thus becomes an exterior
differential equation,

d! = ��, (12)

where �� is a singular (d� k)-form representing �.
Similarly, the mass norm of a k-current becomes the L1

norm of a (d� k)-form:

M([!]) = k!k1 =

Z

U
|!(x)|dvol (13)

where dvol is the volume form.

4. DeepCurrents

In the previous section, we described the relaxation of
Plateau’s minimal surface problem into a convex optimiza-
tion problem over a space of currents, with the property that
its optima include smooth surfaces, and we showed how to
represent certain currents by differential forms. In the fol-
lowing section, we introduce our novel neural representation
of currents and SGD mass minimization.

4.1. Neural Representation

The linear space of solutions to (12) can be parameterized
using the Hodge decomposition as follows:

! = df + ↵, (14)

where ↵ 2 ⌦
d�k

(U) is any particular solution of (12),
f 2 ⌦

d�k�1
(U); we ignore the harmonic term as U is

contractible. For curves in U ⇢ R2 (k = 1, d = 2) and
surfaces in U ⇢ R3 (k = 2, d = 3), f will simply be a func-
tion on U , which we can represent by a neural network. It is
convenient to use the (Euclidean) musical isomorphism ] to
encode our 1-form ! as the vector field !]. Intuitively, the
vector field corresponding to a current points in the surface
normal direction. Under this identification, (df)] = rf ,
which can be computed by autodifferentiation.

As for ↵, there is a particularly convenient choice known
as the Biot-Savart field, which can be written in closed form
when � is a polygonal curve (see [65]):

↵]
(x) :=

Z

�

d~̀⇥ ~r

|~r|3 =

X

i

(t̂i · (r̂1i � r̂0i ))(t̂i ⇥ ~r0i )

|t̂i ⇥ ~r0i |2
, (15)

where d~̀ denotes the vector arc measure on �, t̂i is the unit
tangent vector to the ith segment of �, ~r0i and ~r1i are, respec-
tively, the vectors from the point x to the initial and final
vertices of segment i, and r̂0i and r̂1i are their normalized di-
rections. In practice, we scale ↵ by 10

�3 to better match the
normalization of our network weights; this only changes the
mass minimization problem by a uniform scale. Figure 1(a)
visualizes a Biot-Savart field in 2D.

Enacting the choices above, we can use neural networks
to solve the minimal mass problem:

argmin
✓

kdf✓ + ↵�k1

=argmin
✓

Ex⇠UU

h���rxf✓(x) + ↵]
�(x)

���
i
,

(16)

where f✓ is a neural network with weights ✓, UU is the
uniform distribution over U = [�1, 1]d. r is computed
exactly via automatic differentiation, and ↵]

� is the boundary-
dependent Biot-Savart field, computed in closed form. The
expectation in (16) is approximated by uniform sampling
over U , yielding a method to compute minimal surfaces via
stochastic gradient descent (SGD).

In relation to previous discretizations of currents and
the minimal surface problem like [64], we (a) represent f
via a neural network rather than a voxel grid; (b) evaluate
↵ in closed-form; and (c) evaluate the mass norm as an
expectation that is amenable to SGD. These key choices
allow our minimal surfaces to achieve arbitrary resolution.

4.2. Modifying the Metric

Critical to the computer vision applications considered
in this paper, we can use a background Riemannian metric
to encode general surfaces that are not minimal under the
Euclidean metric. The properties of mass norm minimization
almost certainly carry over—in particular, the regularity of
minima (see, e.g., [41]).

Let g be a Riemannian metric given by

g(X,Y ) = hAX, Y i = hX,AY i 8X,Y 2 TU, (17)

where h·, ·i is the Euclidean inner product and A is a
smoothly varying symmetric positive definite linear map
on the tangent bundle (Ax : TxU ! TxU ). The Riemannian
pointwise norm for a k-form ⇣ is given by

|⇣x|g = |(A�1/2
x )

⇤⇣x|, (18)
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(a) (b) (c)

(d) (e) (f)

Figure 1. Minimizing the mass norm kdf+↵k1 under the Euclidean
metric in two dimensions yields a line segment connecting the two
boundary points (b). With our custom data-dependent background
metric, we can reconstruct the semicircle as a current (e). ↵ is
shown as a vector field (a) and the custom metric is depicted by
oriented ellipsoids (d, not to scale). Corresponding functions f are
shown at right (c and f).

where | · | is the Euclidean pointwise norm and B⇤⇣ de-
notes the pullback form defined by B⇤⇣(X1, . . . , Xk) =

⇣(BX1, . . . , BXk). The g–mass norm is then:

Mg([!])=k!k1,g=
Z

U
|(A�1/2

)
⇤!|(detA)

d/2
dvol. (19)

The differential equation (12) and its solution (14) are topo-
logical and do not change.

In summary, the Riemannian problem differs from the
Euclidean one by a symmetric positive definite matrix Bx:

argmin
✓

kdf✓ + ↵�k1,g

=argmin
✓

Ex⇠UU

h���Bx(rxf✓(x) + ↵]
�(x))

���
i
.

(20)

In the two-dimensional example depicted in Figure 1,
minimizing the mass norm under the Euclidean metric yields
a straight line segment (b). Changing the metric (d) yields a
semicircle (e) instead. Corresponding density plots of f are
shown in (c) and (f), respectively.

4.3. Loss Functions

The main objective function optimized by our training
procedures is the current loss, which follows from (20):

Lcurr(·) = Ex⇠UU

h���Bx(rxf✓(x) + ↵]
�(x))

���
i
. (21)

We approximate the expectation by a sample average over a
sample drawn from the uniform distribution on U .

For minimal surface computation (Section 5.1), we set
Bx = I for all x 2 U . For surface reconstruction (Sec-
tions 5.2 and 5.3), we define

Bx = wx(I � n̂proj⌃(x)n̂
>
proj⌃(x)), (22)

where ⌃ is the ground truth surface, proj⌃(x) is the clos-
est point on ⌃ to x, and n̂proj⌃(x) is its unit normal. This
positive semidefinite matrix, corresponding to a degenerate
Riemannian metric, penalizes the current’s deviation from
agreement with the surface’s orientation. A patch aligned
with ⌃ (i.e., where rf + ↵]

� k n̂) costs nothing.
When evaluating Equation (20), for half of the samples

in U , we set wx = 1, and for the other half, we set

wx = exp

✓
� 1

2�2
kx� proj�(x)k22

◆
, (23)

where proj�(x) is the closest point on the boundary to x
under Euclidean distance, and � = 0.1 in practice. We
find empirically that adding this boundary weighting, where
samples close to the prescribed boundary have a higher con-
tribution to the current loss, with a Gaussian falloff, slightly
improves our learned surfaces, particularly near the bound-
ary. See Section 5.4 for an ablation study.

For surface reconstruction, we employ an additional loss
term to guide our optimization. We define surface loss as:

Lsurf(·)=Ex,✏

h
(� � f(x� "nx) + f(x+ "nx))

+
i
, (24)

where x ⇠ U⌃, the uniform measure on the target surface ⌃,
nx is the (oriented) surface normal vector at a point x 2 ⌃,
" and � are small threshold. In practice, we set � = 0.01,
randomly pick " ⇠ U[0.0199,0.0201], and approximate the
expectation by sampling on ⌃.

This hinge loss encourages the values of our learned func-
tion f to differ by no less than a margin � across the target
surface. This objective may seem redundant as the metric
(22) already encourages alignment to the target surface. In
fact, the two are complementary—the surface loss encour-
ages f to jump near the target surface, while the current loss
ensures that the bandwidth of the jump decreases. We find
that using the surface loss term helps our models converge
to better optima (see our ablation study in Section 5.4).

4.4. Network Architecture

We learn a single current df✓ + ↵, using a deep neural
network to parameterize f✓ : R3 ! R. Given an input
point x 2 R3, we first project it onto a random Fourier
feature (RFF) space, as in [58], to obtain x̂ 2 R2048. Our
RFF coefficients are 2048-dimensional and sampled from
N (0, 4). We then decode the RFF vector to a scalar value
f✓(x) using an MLP h✓, which consists of three hidden
layers, each with 256 units and softplus nonlinearities. This
pipeline is illustrated in the top half of Figure 2.

18669



Figure 2. An overview of our network architectures for minimal
surface optimization and single surface reconstruction (top) as well
as shape space learning (bottom). An input point x is first encoded
using random Fourier features. These features are then optionally
concatenated with latent codes corresponding to shape identity and
boundary and finally decoded to a scalar output.

Additionally, we propose a boundary-conditioned autode-
coder architecture for learning families of currents (see Fig-
ure 2, bottom). We initialize a latent code zj ⇠ N (0, 0.1)
for each mesh, and we encode the mesh boundary geom-
etry using a boundary encoder E�. For shapes that have
more than one boundary, we use a separate encoder for each
boundary loop to obtain a set of boundary latent codes z�i .
We then concatenate the latent codes along with the RFFs
[zj | z�1

j | . . . | z�B
j | x̂] and pass this vector through a

decoder h✓ as in the overfitting setting above.
Our boundary encoder inputs boundary vertices v� 2

Rb⇥3. The encoder is a network with three 1-dimensional
convolutional layers with stride 1 and circular boundary con-
ditions. The first layer uses a kernel of size 5 while the
latter two use kernels of size 3. Each layer has 256 channels,
and we use ReLU after each layer except the last. After
the convolutions, we take the mean across all the bound-
ary vertices to obtain the boundary latent code. Circular
convolutions combined with mean pooling ensure that our
encoder is invariant to cyclic permutations of the vertices,
which correspond to the same boundary geometry.

5. Experimental Results

We evaluate DeepCurrents experimentally by demonstrat-
ing results on minimal surface computation, overfitting for
single surface reconstruction, and shape space learning and
interpolation. We also show an ablation study to validate
our main design choices. All of our models are trained on a
single NVIDIA GeForce RTX 3090 GPU using Adam [34].

Figure 3. Minimal currents computed via [64] on a 90⇥90⇥90
grid (middle) display prominent grid artifacts, especially near the
boundary. In contrast, with a similar total number of parameters
(725,249 weights), our DeepCurrents achieve higher effective reso-
lution (right). Boundaries (left) are the trefoil knot (top), Hopf link
(middle), and Borromean rings (bottom).

5.1. Minimal Surfaces

We use our method to compute minimal surfaces for
three boundary configurations. We train each model for 105
iterations (⇠ 12 minutes) with a learning rate of 0.0005,
sampling 4096 points from the ambient space at each step
and reducing the learning rate by a factor of 0.6 every 10,000
steps. We only optimize Lcurr with the Euclidean metric in
these examples—we do not use Lsurf or boundary weighting.

Figure 3 compares our results to those from [64], which
uses a voxel grid; the colors represent local current orienta-
tion, which corresponds to the surface normal direction. For
fair comparison, we choose the grid size to approximate our
number of trainable parameters (903 ⇡ 725,249). While our
learned currents adhere well to the smooth input boundaries,
the currents of [64] show significant grid artifacts. Thus,
our representation exhibits greater capacity to encode high-
resolution surfaces with the same number of parameters

5.2. Surface Reconstruction

We perform surface reconstruction using DeepCurrents
by overfitting to several segmented parts of models from the
FAUST human body dataset [2]. We preprocess the data by
splitting the mesh according to the provided segmentations,
rigidly aligning all the models within each segmentation
class, and rescaling them to fit into [�0.5, 0.5]3.

We train each model for 10,000 iterations (⇠ 4 minutes)
with an initial learning rate of 0.001, decayed by a factor of
0.6 every 2000 iterations. We sample 4000 random points
from the ambient space (to compute Lcurr) and 4000 points
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Figure 4. Human body surface reconstructions. We overfit Deep-
Currents models to reconstruct several torso, head, hand, and foot
meshes. We show a volume rendering of each learned current
(right) next to the ground truth mesh (left).

Model UCD ([61]) UCD (ours)

head 0.0049 0.0010

hand 0.0045 0.0011

torso 0.0049 0.00092

foot 0.0055 0.00092

Table 1. Quantitative comparison of unidirectional Chamfer dis-
tance to [61] on single surface reconstruction of random models
from each of four shape categories.

from the mesh surface (to compute Lsurf) at each step.
We show results on torsos, heads, hands, and feet from

randomly chosen models in Figure 4. Our currents faithfully
reconstruct the target geometry.

Additionally, we compare quantitatively to [61] in Table 1.
We train their model for the same amount of time as ours
on randomly picked models. Because their model predicts
the closest point on the target surface given any input point,
we use this to compute unidirectional Chamfer distance (i.e.,
Ey⇠U⌃ [dist⌃⇤(y)], where U⌃ is the uniform distribution on
the ground truth mesh, and dist⌃⇤ is Euclidean distance to
the learned surface).

We do the same for our method by meshing our learned
current: We compute the average value s of f over a bound-
ary curve; this makes sense even if there are multiple bound-
ary curves, assuming our surface has one connected compo-
nent. Then, we extract a mesh of the level set f�1

(s) using
marching cubes. This level set is generically a closed sur-
face containing our represented surface with boundary ⌃

⇤

as a subset. We extract a mesh of ⌃⇤ by removing vertices
x for which |rxf✓(x) + ↵]

�(x)| < �. In practice, we use
� = 5⇥ 10

�3.
Our method consistently achieves better quality recon-

structions than [61].

5.3. Latent Space Learning

We use our boundary-conditioned autodecoder (Sec-
tion 4.4) to learn a disentangled representation that can inter-
polate in a high-dimensional learned latent space capturing
shape identity while having explicit control over boundary
geometry. We associate each mesh in our dataset with a
random latent code (a trainable parameter), and, to disam-
biguate shape identity from boundary geometry, we perform
random transformations. These transformations change the
boundary shape while preserving the latent code.

At each iteration, we perform random augmentations
to the target meshes: we rotate each mesh by sampling a
value in [�10

�, 10�] for each Euler angle, we rescale each
boundary loop of the mesh by a random factor between
0.85 and 1.15 along each of its two principal directions, we
propagate these transformations to the entire mesh using
harmonic skinning weights, and we shift the mesh by a
random offset between �0.05 and 0.05 in each dimension.

We train a model for each shape category for 300,000
iterations (about 10 hours) with an initial learning rate of
0.0004, decayed by a factor of 0.5 every 60,000 iterations.
At each step, we sample a random batch of 8 meshes and
sample 4000 points from each mesh.

In Figure 5, we pick two models from each shape category
and independently interpolate between their boundaries and
latent identities. Our model disentangles high-level pose and
style while respecting the prescribed geometry.

5.4. Ablation Study

We validate some of our key design choices. In Figure 6,
we overfit five models to the same hand mesh. While our
full model achieves a sharp reconstruction, removing bound-
ary weighting from our current loss metric yields a fuzzier
surface around the boundary. Changing the softplus acti-
vation functions in h✓ to ReLUs makes the entire learned
surface significantly less sharp, which we conjecture is due
to ReLU’s zero second derivative when optimizing currents
df + ↵. Removing the surface loss term from our optimiza-
tion fails to recover much of the target surface, supporting
our claim that surface loss significantly helps convergence.
Finally, foregoing the projection of the input points onto
random Fourier features prevents the model from learning.

6. Conclusion

By adopting tools from geometric measure theory, we
have constructed a neural implicit representation for surfaces
with boundary. Our SGD approach to mass norm mini-
mization enables computing minimal surfaces with arbitrary
resolution, in contrast to previous work that represents cur-
rents on a fixed-resolution grid. In addition, by constructing
a background metric, we can engineer a mass minimization
problem to encode an arbitrary surface. Combining this con-
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Figure 5. Interpolations of DeepCurrents in latent and boundary space. For each category, we pick two meshes from the training set (shown
with a blue border) and interpolate linearly between the two boundaries (horizontal axis) as well as the two latent codes (vertical axis). The
latent space interpolation yields a smooth transition between the two meshes while obeying the prescribed boundary interpolants.

Figure 6. Ablation study. From left to right: reconstruction results
on a hand without random Fourier features, without our surface
loss term, without boundary weighting, and our full model.

struction with the expressive power of neural representations,
we can encode whole families of surfaces.

We see DeepCurrents as a key tool for building flexible
neural surface representations. Stitching together DeepCur-
rents along their boundaries would produce a hybrid surface
representation where the explicit boundary curves provide
“handles” for user control. Such a representation would be
applicable where the target surface is decomposed into parts.
Unlike, say, a mesh decomposition, a DeepCurrent decom-
position would not require the parts to have simple shapes
or even to be simply connected.

Another direction for future work would be to investigate
other loss functions and optimization problems that can be
expressed in the language of currents. For example, the
convex problems studied in [39] could be optimized using
a neural representation and SGD. One could also compute
minimal currents in spaces such as the rotation groups SO(d)
or special Euclidean groups SE(d). Mass minimization in

this context could provide a useful prior for reconstruction
of shapes that come with an orientation or frame field, or it
could exploit the Gauss map to encode a smoothness prior.

Another extension of our method would be to support
periodic minimal surfaces, i.e., replacing the domain [�1, 1]3

by the torus T3. This would require a modification of our
explicit ↵ and the evaluation of df at the boundary.

While our latent space model often produces high-quality
interpolants, they are not explicitly regularized to encourage
them to look like surfaces. This sometimes yields fuzzy
results (see Figure 5, top right among the hands). Future
work could design loss terms to ensure interpolants remain
minimal with respect to some metric—analogously to the
eikonal regularization for SDFs in [29].
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