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Abstract

Low-dimensional parametric models are the de-facto
standard in computer vision for intrinsic camera calibra-
tion. These models explicitly describe the mapping between
incoming viewing rays and image pixels. In this paper, we
explore an alternative approach which implicitly models the
lens distortion. The main idea is to replace the parametric
model with a regularization term that ensures the latent dis-
tortion map varies smoothly throughout the image. The pro-
posed model is effectively parameter-free and allows us to
optimize the 6 degree-of-freedom camera pose without ex-
plicitly knowing the intrinsic calibration. We show that the
method is applicable to a wide selection of cameras with
varying distortion and in multiple applications, such as vi-
sual localization and structure-from-motion.

1. Introduction
The intrinsic calibration of a camera describes the map-

ping between 2D pixels in the image and the corresponding
rays in 3D. Knowing the intrinsic calibration, i.e. being able
to project into the image (or vice versa), is a prerequisite for
most geometric vision tasks. This mapping is usually pa-
rameterized using a low-dimensional parametric model.

In this paper we propose to instead implicitly model the
intrinsic calibration. More specifically we look at estimat-
ing the 6 degree-of-freedom camera pose from given 2D-
3D correspondences when the intrinsic calibration is un-
known. Our approach assumes that the camera is central
and radially-symmetric (i.e. the distortion only varies with
the radial offset and not the angle) which is the case for
most consumer cameras. The main idea is to replace the ex-
plicit parametric model with a regularization term that force
the underlying distortion map to be smooth. The proposed
implicit distortion model allows us to essentially parameter-
ize the intrinsic calibration in terms of the camera’s extrin-
sic parameters. It is effectively parameter-free and gener-
alizes to a wide selection of camera and lens combinations
from well-behaved pinhole images to highly non-linear op-
tical systems such as fisheye or catadioptric cameras. The
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Figure 1. Example of the point-wise focal lengths fi computed
from (8) versus the image radii ri. Top: Fisheye lens. Middle:
45mm lens. Bottom: Catadioptric camera. Negative values for the
focal lengths correspond to points behind the camera center.

method can be further extended to leverage multiple images
from the same camera and even be incorporated into a full
bundle-adjustment, jointly refining 3D points and cameras.

2. Background and Related Work

Modeling Cameras and Lens Distortion. The standard
pinhole camera model works well for rectilinear lenses. To
handle deviations from this, it is common practice to in-
clude a non-linear distortion function applied to the pinhole
projections. This can be formalized as

x = f D(π (RX + t)) + c (1)

where f is the focal length, π the pinhole projection (de-
homogenization), c the principal point and D the non-
linear function modeling the lens distortion. If the cam-
era is radially symmetric, the distortion mapping only de-
pends on the radial offset and thus has the following form
D(z) = d(‖z‖)z, where d : R+ → R. The function d is
often parameterized as a polynomial in the radius r,

d(r) = 1 + k1r
2 + k2r

4 + . . . (2)
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where k1, k2, . . . are the parameters which need to be cal-
ibrated per-camera. The polynomial in (2) is the Brown-
Conrady model [4, 7] and is a popular choice in practice.1

While (1) works well for many cameras, applying the
distortion model on top of the pinhole projections in-
troduces problems for very wide field-of-view cameras
(e.g. fisheye or catadioptric systems). In [38], the authors
propose to instead reformulate the projection equations as

λ

[
x

F (‖x‖)

]
= RX + t (3)

where x is the centered image point and F : R+ → R is the
distortion function. In [38], the function F is also parame-
terized as a polynomials as in (2), except that the constant
coefficient is not fixed to one, as it also encodes the focal
length in this case. This approach can handle any radially
symmetric camera (including > 180◦ FoV). Similar distor-
tion (or rather undistortion, since it applies to the image ob-
servations) models have also been used by Fitzgibbon [8]
and many others, see e.g. [5, 13, 15–20, 29, 30].

Pose Estimation of Radially Symmetric Cameras. For a
radially-symmetric camera, it is possible to partially recover
the camera pose by using that the distortion map is purely
radial. If x = (x, y), we from (3) get a linear constraint as

(−y, x, 0) · (RX + t) = 0. (4)

This is the radial alignment constraint [44] which requires
the projection to be somewhere on the radial-line passing
through the image point. Each correspondence thus gives a
linear constraint on (R, t) which is independent of the dis-
tortion map F . Note that the constraint does not involve
t3 and it is therefore only possible to recover the camera
pose up to an unknown forward translation. In [38, 44],
this constraint was used to estimate the partial camera pose
with respect to a planar calibration pattern. This was later
generalized to non-planar configurations by Kukelova et
al. [15] which solved the general minimal estimation prob-
lem (from 5 point correspondences). The multi-view geom-
etry of cameras if you only consider the radial constraints
was originally considered by Thirthala and Pollefeys [41],
and later extended to full structure-from-motion [12,14,22].

Given the partial extrinsics (R, t1, t2), we can compute a
partial repojection error; only measuring the deviation from
the radial line. The radial reprojection error is defined as

εr(R, t,x,X) = ‖(I − zz
>

z>z
)x‖2 (5)

where z = R12X + t12

where (R12, t12) denotes the first two rows of (R, t). This
error can be used both to evaluate the quality of pose hy-

1The model also includes tangential terms which are often neglected.

potheses in RANSAC, as well as for non-linear pose refine-
ment. If we require λ > 0 in equation (3), we get the fol-
lowing constraint x>(R12X+t12) > 0 which is analogous
to the standard cheirality check and can be used for filtering.

Stratified Calibration Approaches. The radial alignment
constraint has been used extensively in stratified calibra-
tion methods which first estimate the partial extrinsics
(R, t1, t2), followed by joint estimation of t3 and the in-
trinsic calibration. This approach was originally used by
Tsai [44] (and later in [38]) for plane-based calibration.
Similarly, Kukelova et al. [15] used it for joint pose estima-
tion and self-calibration using the division model [8]. Later,
Larsson et al. [21] extended the approach to a more general
set of distortion models. Camposeco et al. [6] proposed a
stratified approach for non-parametric calibration.

Non-Parametric Camera Models. There also exists non-
parametric (or generic) models for intrinsic calibration
which estimate independent rays for each pixels, allowing
them to model arbitrary camera systems. This type of model
was first proposed by Grossberg and Nayar [9]. Since then,
there have been multiple works improving in various as-
pects; initialization [31], distortion center estimation [10],
interpolating local B-splines [2, 32] or RBF [27] and ease-
of-use [39]. Due to the high number of parameters in these
models, more dense calibration patterns [39] or active-target
(e.g. monitors) [3] are typically used.

The generic models still explicitly describe the intrinsic
calibration. In contrast to these methods, we parameterize
the intrinsic calibration in terms of the camera pose and then
regularize it. Thus we only optimize the intrinsic calibration
indirectly via the extrinsic parameters.

Related Work on Implicit Distortion Modeling. The
work most closely related to ours is from Camposeco et
al. [6] where the authors use a stratified approach for non-
parametric self-calibration. They first estimate the rotation
and two translation parameters using the radial alignment
constraint (as described above). To estimate the forward
translation t3, similar to our approach, they avoid explicitly
parameterizing the distortion map. In their method, they
instead use that the mapping from image radii to opening
angles (the angle to the principal axis) is non-decreasing.
If (R, t1, t2) is fixed, each pair of correspondences then re-
strict t3 to a half-interval (either [a,∞] or [−∞, b]). The
forward translation is then recovered by finding the posi-
tion which satisfies the most intervals. This is formulated
as the following convex optimization problem

min
t3

∑
i

max(ai − t3, 0) +
∑
j

max(t3 − bj , 0) (6)

Once the camera pose is estimated they recover an explicit
non-parametric intrinsic calibration.

The paper from Camposeco et al. [6] builds on a previ-
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ous work from Hartley and Kang [10] which takes a similar
approach but for the planar case. For a planar scene they use
the radial constraints to estimate homographies which map
the planar pattern onto the radial line for each correspon-
dence. This only yields the first two rows of the homogra-
phyH12, and in [10] they propose to optimize over the third
row h3 for each homography by regularizing the radial off-
set of the mapped points, i.e. rui = ‖H12xi‖/h>3 xi.

Our approach is similar to [6] in the sense that we also
solve for the camera pose without parameterizing the dis-
tortion. In contrast to [6], we use a stronger regularization
(a generalization of the one proposed in [10], see Sec. 3.1)
compared to their ordering constraint. Compared to [10],
we consider the general non-planar case and parameterize
the full camera matrix. For the initial upgrade step we only
need to optimize t3 (similar to [6]), instead of the three ele-
ments of the third row h3 as in [10].

Furthermore, by posing the problem in terms of the
pointwise focal lengths fi as in equation (8), the expres-
sions are simplified and allow us to more easily perform
optimization over the full 6 degree-of-freedom camera pose.
In experiments we show that this allows for accurate pose
estimates while still generalizing to a wide variety of cam-
eras. Additionally, in both [6] and [10], they do not consider
the full bundle adjustment problem where the 3D structure
is optimized jointly with the camera poses.

In the following sections we present our approach for
camera pose estimation. In Section 3 we first detail how we
implicitly model the intrinsic calibration. Section 4 shows
how to perform robust estimation using the proposed model
and in Section 5 we extend it to full bundle-adjustment.

3. Implicit Distortion Modeling

Given a 2D-3D point correspondence (xi,Xi) we can
define the point-wise focal length fi as

λ

[
xi
fi

]
= RXi + t (7)

In the formulation from [38], each fi is simply the point-
wise evaluation of the distortion map, i.e. fi = F (‖xi‖).
For example, pinhole cameras have fi = f for all i. From
(7), we can then solve for the point-wise focal length fi as

fi =
‖xi‖2 (R3Xi + t3)

x>i (R12Xi + t12)
(8)

Figure 1 show some example of the point-wise focal lengths
computed for some cameras. In [38], the authors explicitly
model fi using a polynomial model similar to (2).

In this work we instead implicitly model the distortion by
regularizing the mapping between radius in the image ‖xi‖
and the corresponding point-wise focal length fi. Equation

(8) parameterizes the fi in terms of the camera pose and
using this we setup an optimization problem as

min
R,t

N∑
i=1

% (εr(R, t,xi,Xi)) +R
(
{fi}Ni=1

)
(9)

where R is a regularizer of the pointwise focal lengths, εr
is the radial reprojection error defined in Eq. (5) and % is a
robust loss function. Note that the optimization is over the
6 DoF camera pose, and only the regularizer R constrains
the forward translation t3 in the optimization problem.

The motivation for this formulation comes from consid-
ering the orthogonal decomposition of the true reprojection
error into the radial and tangential components, i.e.

‖x− z‖2 = ‖(I − zz>

z>z
)x‖2︸ ︷︷ ︸

εr

+ ‖zz
>

z>z
(x− z)‖2︸ ︷︷ ︸
εt

(10)

where z is the true projection (using the unknown intrin-
sic calibration). Here only the tangential component εt
depends on the radial offset ‖z‖ (as zz>/z>z is scale-
invariant). In the cost (9), εt is replaced by the regularizer.

3.1. Regularization of the Pointwise Focal Lengths

Each 2D-3D correspondence (xi,Xi) yields one obser-
vation of the unknown distortion mapping,

F : ri 7→ fi (11)

where ri = ‖xi‖. Similar to [6, 10] we sort the corre-
spondences such that ri < ri+1. For the regularization
we consider a generalization of local linearity assumption
from [10], but instead of only considering the two neigh-
bouring points, we do a least square fitting to the k-nearest
neighbours and penalize the deviation from the line. For
each i define the vector ri =

[
1 ri

]>
and form Ai and f

from the k = 2m symmetric nearest neighbours as

Ai =
[
ri−m · · · ri · · · ri+m

]>
(12)

f i =
[
fi−m · · · fi · · · fi+m

]>
(13)

If {(ri, fi)} lie on a line, there exist parameters βi such
that Aiβi = f i exactly. The best fitting line βi ∈ R2 can
be found by solving a linear least square problem,

βi = (Ai
>
Ai)−1Ai

>
f i (14)

Evaluating the line at ri we get the estimated focal length as

f̃i = ri
>βi (15)

We now propose to minimize the difference fi − f̃i as the
regularization. Note that the difference is a linear combina-
tion of the pointwise focal lengths in the neighbourhood,

f̃i − fi = ri
>βi − fi

= ri
>(Ai

>
Ai)−1Ai

>
f i − fi = a>i f

(16)
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where ai ∈ RN is a constant vector (depending only on the
image radii) and f ∈ RN is the vector of all focal lengths.

The regularization functionR is then computed by sum-
ming over the robust difference between the locally esti-
mated focal length f̃i and the actual fi

R(f) =
∑
i

%ε

(
|f̃i − fi|

)
=
∑
i

%ε
(
|a>i f |

)
(17)

where each ai encode the coefficients for each neighbor-
hood (see (16)), and %ε is a robust loss function. In the ex-
periments we use the Huber loss [11] with parameter ε = 1
px which seems to work well for the cameras we evalu-
ate on. In Sec. 6.3 we evaluate the different regularization
strategies as well as the impact of the robust loss.

4. Camera Pose Estimation and Calibration
In this section we present our pipeline for robust cam-

era pose estimation using the implicit distortion model pre-
sented in Section 3. Similar to [6, 15, 21, 38, 44] we first
estimate partial extrinsic parameters using the radial align-
ment constraint, followed by an upgrade step and local re-
finement. Our pipeline consists of the following steps:

1. Initialization using the radial constraints.

2. Estimation of the forward translation t3.

3. Filtering spurious inliers.

4. Full refinement of the 6 DoF camera pose.

In the following paragraphs we detail each of these steps.

Partial Initialization of Camera Pose. Using the 5 point
minimal solver from Kukelova [15] we estimate the partial
camera pose (consisting ofR, t1 and t2) in an LO-RANSAC
framework [23]. The radial reprojection error (5) is used in
MSAC [42] scoring and minimized during the local opti-
mization. The principal point is chosen as the image center.
Optionally we can optimize the principal point at this stage.

Estimating the Forward Translation. The previous step
only recovers the orientation and two of the translation pa-
rameters. To recover t3 we keep the other pose parameters
fixed and minimize the regularization function R with re-
spect to t3, i.e.

min
t3
R (f(t3)) . (18)

Note that by fixing R12, t12 in (8), each fi can be written as

fi = αi + t3βi (19)

where αi = ‖xi‖2R3Xi

x>
i (R12Xi+t12)

and βi = ‖xi‖2
x>

i (R12Xi+t12)
, are

constants. If the robust loss function %ε is chosen to be con-
vex, e.g. as the Huber loss, then the optimization problem in
(18) is also convex. Thus we can recover globally optimal

t3 by applying any local optimization scheme. In the experi-
ments we used Levenberg-Marquardt [24,26]. If we instead
would use the squared loss (%(r) = r2) this leads to a linear
least squares problem which can be solved non-iteratively.

Filtering Spurious Inliers. The correspondences used for
the previous estimation are only filtered based on the radial
reprojection error. This allows for points which by chance
lie close to the corresponding radial line to survive the fil-
tering process. While these spurious inliers have a small
effect on the radial estimate, they are actually outliers and
have a larger impact for the estimation of the intrinsic cal-
ibration and forward translation. To identify these outliers,
we use a sliding median-based filter similarly to [6,10]. For
each point, we calculate the difference between the point-
wise focal length fi given by (8) and the median fi of its
neighbors f̄i, and filter points where |fi − f̄i| is larger than
k times the median error MED(|fi − f̄i|).

Refinement of 6 DoF Camera Pose. The initial camera
pose recovered from the previous steps is now refined by
minimizing the cost in (9) over the full 6 DoF camera pose.
Note that differentiating the pointwise focal lengths fi (8)
with respect to the camera pose is not more expensive than
computing Jacobians for the standard pinhole projection (as
they have a similar structure). For the optimization we use
Levenberg-Marquardt [24, 26].

4.1. Joint Estimation of Multiple Images

So far we have presented a method for robust pose esti-
mation and implicit calibration of a single image. In settings
where one has multiple images taken by the same camera
(i.e. they have the same distortion mapping), it is possible
to jointly estimate and calibrate them. To do this we again
use the radial alignment constraint to estimate partial intrin-
sics independently for each camera. For the initializing of
the forward translations, we can leverage correspondences
from multiple images in the regularization function (18).
The same approach was used in Camposeco et al. [6] for
their multi-camera estimation.

Let t13, t
2
3, . . . , t

M
3 denote the forward translations for the

M images. Collecting all correspondences and again sort-
ing them by the image radii, the pointwise focal lengths are

fi = αi + t
k(i)
3 βi (20)

where k(i) ∈ {1, 2, . . . ,M} is the image index from which
the correspondence came from. This does not introduce any
extra non-linearities into the cost and the optimization prob-
lem is still convex. Similarly, the final non-linear refinement
can be extended to multiple images using the same idea.

4.2. Non-Parametric Intrinsic Calibration

To allow for explicit distortion and undistortion we can
recover a non-parametric intrinsic calibration. Given a fixed
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camera pose, each correspondence gives one observation of
the distortion mapping, as in (11). Note however that here
the focal lengths are chosen to perfectly fit the measure-
ments (i.e. the radial offset exactly matches the 2D point),
which results in the noisy fi in Figure 1. In [6, 10] the au-
thors use a sliding median filter to reduce the impact of this
noise. We propose to instead denoise the fi with the regu-
larizerR by solving the following optimization problem

min
f

∑
i

%
(
|fi − f̂i|

)
+ λR(f) (21)

where f̂i are the noisy pointwise focal lengths computed
from (8). Since we want to recover corrected fi which agree
with the regularizer, we do not use a robust loss in R here.
The parameter λ controls the trade-off between fitting the
data and adhering to the regularization. For the correct fo-
cal lengths, the residual errors should be equally distributed
in the tangential and radial components, assuming the im-
age noise is isotropic. This is illustrated in Figure 2. In
Algorithm 1 we propose a simple scheme for selecting the
trade-off parameter λ based on this idea. Note that the ra-
dial reprojection for each point is invariant to the choice of
point-wise focal length fi.

This process yields a collection of pairs of image radii
and corrected pointwise focal lengths, (ri, fi). To undistort
a point in the image, we can simply find the pairs with most
similar radii and interpolate to get the focal length. Simi-
larly, to project a 3D point, we instead compute the opening
angles θi = atan2(ri, fi) for each point and interpolate to
get the image radius r of the projected point. Sorting the
lists we can quickly find the pairs for the interpolation.

Algorithm 1: Automatic selection of λ
λ← λinit, best res←∞
εrad ← radial reprojection error
for i← 0 to max-iters do

Solve (21) to recover distortion mapping
εtan ← tangential reprojection error
res← |εrad − εrms|
if εtan ≤ εrad then

λ← 10λ // under-regularized
else

λ← λ/2 // over-regularized
end
if res < best res then

best res← res
Save best calibration found so far

end
end

5. Bundle Adjustment with Implicit Distortion
The proposed cost function that we minimize (9) natu-

rally extends to multiple images and optimization of the 3D
points as well, allowing for full bundle-adjustment. How-
ever, as our regularization is built on the correlation between
neighboring points, it breaks the independence of the 3D
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Figure 2. Impact of regularization parameter λ in (21). Left:
The distribution of the reprojection errors in polar coordinates (ra-
dial/tangential). Right: The estimated fi as a function of ri after
solving (21). Middle: For an appropriately chosen λ the radial and
tangential errors are balanced. Top/Bottom: Too low or high values
of λ lead to under/over-regularization of the distortion mapping.

points which is required to perform the Schur complement
trick [43]. This greatly limits the size of the problems which
can be tackled in practice.

To solve this problem we propose an iterative scheme.
In each iteration we solve a surrogate problem where the
Schur complement trick applies. For each residual in R,
we replace all 3D points except for one with copies of the
previous iterations value, i.e. f i in (13) is replaced by

f̃
i
=
[
fi−m(Xt−1

i−m) · · · fi(Xi) · · · fi+m(Xt−1
i+m)

]> (22)

where Xt−1
k denotes the 3D point from the previous itera-

tion. Note that each fi still depends on the pose parameters.
The inner optimization problem is again solved using

Levenberg-Marquardt [24, 26] in the experiments. Since
the inner iterations are only an approximation of the orig-
inal cost, it is not necessary to run the inner optimization
problem until convergence each time.

6. Experimental Evaluation
In the experimental evaluation we show that the implicit

model can handle a wide variety of cameras. We evaluate
both in controlled settings (such as checkerboard calibra-
tion) and on in-the-wild self-calibration scenarios (visual
localization / Structure-from-Motion). Unless otherwise
stated, all experiments use the same regularization function;
local linear fitting to symmetric neighbors (taking 2 on each
side). In the experiments we mainly compare with Cam-
poseco et al. [6] which also does model-free pose estima-
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tion. In [6] they derive their constraints from pairs of cor-
respondences. To limit the computation cost they propose
to take N = 120 pairs for their regularization. For a fair
comparison we take the same number of pairs as there are
image correspondences, making it comparable to the num-
ber of terms in the regularizerR.

In the supplementary material, we show additional re-
sults and detail parameter settings from the experiments.

6.1. Evaluation of Implicit Calibration

Checkerboard calibration. We start by comparing our ap-
proach on classical checkerboard calibration data. For the
evaluation we consider an aggregate of calibration datasets
(collected by the authors of [25]). The dataset contains im-
ages from 41 different cameras, with field-of-views span-
ning from 88◦ to 268◦ degrees. The images for each camera
is split into (≈ 35) training images and (≈ 15) test images.
Please see the supplementary for more details. We use the
calibration toolbox from BabelCalib [25] to fit a paramet-
ric model used as a psuedo-ground truth for the experiment.
Note that some of the datasets have multiple checkerboard
patterns and thus the scene is not always planar.

First we evaluate the ability to recover accurate cam-
era poses. For the training set of each camera we jointly
estimate the poses with the implicit distortion model and
compare with the camera poses from [25]. We also com-
pare with the non-parametric approach from Camposeco et
al. [6] which also performs model-free pose estimation. Ta-
ble 1 shows the rotation and translation errors. Since abso-
lute scale is not available for all datasets, we report the po-
sition error relative to the calibration board diagonal. The
principal point is initialized to the image center and op-
timized in the radial estimation. The OV plane dataset
contains sequences where the calibration board is close to
fronto-parallel. This is a degenerate configuration for focal
length calibration which leads to larger errors.

Next we evaluate the accuracy of the intrinsic calibration
recovered by the method. For this we fit the explicit non-
parametric model on the training set (as described in Sec-
tion 4.2). Using the calibration we estimate poses in the test
set; undistorting the keypoints and running P3P+RANSAC,
followed by non-linear refinement of reprojection error. Ta-
ble 2 show the errors and number of images which had less
than 1px RMS reprojection error. For comparison we show
both the error obtained with the explicit parametric model
from [25] as well as the reprojection error obtained from the
non-parametric calibration obtained with [6].

Structure-from-Motion. Next we evaluate our approach
in the context of Structure-from-Motion. We consider four
datasets captured with two different cameras (one with low-
distortion and one with a fisheye lens). Example images
from the cameras can be seen in the first two rows of Fig-

Proposed Camposeco et al. [6]

εrot εpos < 1◦, 1% εrot εpos < 1◦, 1%

OV corner 1.07 0.58 122 / 280 1.20 0.59 81 / 280
OV cube 0.07 0.03 105 / 105 0.04 0.11 105 / 105
OV plane 1.23 6.78 35 / 92 1.06 1.78 32 / 92
Kalibr 0.17 0.18 277 / 280 0.31 0.86 231 / 280
OCamCalib 0.62 0.26 61 / 79 0.58 0.59 55 / 79
UZH DAVIS 0.74 1.91 110 / 140 2.14 8.28 62 / 140
UZH Snapdragon 0.16 0.25 137 / 140 0.43 0.89 122 / 140

Table 1. Pose estimation on the training set for the calibration
datasets. The table shows the average rotation error (degrees) and
position error (percentage of calibration pattern size) compared
to the poses obtained from BabelCalib [25], and the number of
images which obtain less than 1◦ rotation and 1% positional error.

[25] Proposed Camposeco et al. [6]

εBCrms εpp εrms < 1px εrms < 1px

OV corner 1.52 16.28 2.09 16/120 2.96 0/120
OV cube 0.29 0.40 0.31 49/49 0.40 49/49
OV plane 0.60 0.89 0.82 33/41 2.84 9/41
Kalibr 0.21 0.88 0.30 118/120 0.61 113/120
OCamCalib 0.68 2.17 0.97 31/40 2.62 17/40
UZH DAVIS 0.41 0.37 0.42 58/60 0.72 49/60
UZH Snapdragon 0.26 0.56 0.28 60/60 0.46 59/60

Table 2. Evaluation of non-parametric intrinsic calibration on the
test set. The table shows the RMS reprojection error (in pixels) on
the test set using the non-parametric intrinsic calibration obtained
from the training set. εpp is the average error in the estimated
principal point (in pixels). We also show the reprojection error ob-
tained with the parametric model estimated using BabelCalib [25]

ure 1. For each dataset we first create a reference recon-
struction using COLMAP together with the ground truth
intrinsic calibration (obtained via offline calibration). The
model is then manually rescaled to be approximately met-
ric. Each image is then re-matched to the reconstruction to
obtain 2D-3D matches to the model (potentially containing
outlier matches). For each image we re-estimate the cam-
era pose and compare to the SfM poses. Table 3 shows
the statistics for the pose estimation error using both single
image optimization and multiple image optimization. Fig-
ure 3 shows the cumulative error histograms. The proposed
method which optimizes the full 6 DoF camera pose consis-
tently out-performs the method from Camposeco et al. [6].

Undistorting images. Figure 4 shows qualitative results
for the intrinsic calibration. The undistorted image was not
part of the set used for estimation, showing that the method
does not overfit to the calibration set.

6.2. Implicit Self-Calibration in Visual Localization

To evaluate the robustness of the method we consider
two challenging visual localization datasets; Aachen Day-
Night [37] and InLoc [40]. We use the hloc [33–35] frame-
work (SuperPoint+SuperGlue matching with NetVLAD [1]
image retrieval) to create 2D-3D correspondences. For each
set of correspondences we estimate the camera pose, both
independently and jointly (as in Section 4.1). We again
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Kirchenge [22] (369) Grossmunster [22] (373) Kazan [28] (282) Doge Palace [28] (241)

εrot (deg.) εpos (cm.) εrot (deg.) εpos (cm.) εrot (deg.) εpos (cm.) εrot (deg.) εpos (cm.)

Single image Proposed 0.023 0.6 0.038 0.9 0.386 8.7 0.338 11.7
Camposeco et al. [6] 0.027 0.8 0.044 3.8 0.403 19.8 0.364 121.2

Multiple images Proposed 0.020 0.4 0.036 0.5 0.379 3.4 0.328 3.4
Camposeco et al. [6] 0.035 0.9 0.056 1.3 0.403 6.5 0.364 1.1

Table 3. Average rotation error (in degree) and camera position error (in centimeters) with COLMAP reconstruction result as pseudo
groundtruth. The number of images for each dataset is shown in the bracket. Single image optimization and multiple images optimization
are presented separately and both compared with method proposed in [6].

Rotation (deg) Position (m)
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Figure 3. Pose estimation in Structure-from-Motion. Cumulative
errors for the proposed method and [6], for both single and multi-
image optimization. Left: Cumulative rotation error in degree.
Right: cumulative camera location error in meters. Since [6] does
not optimize the rotation after the initial estimate, only one line is
presented here. Top: Grossmunster [22]. Bottom: Kazan [28]

compare with Camposeco et al. [6] and report the results
in Table 4. For our approach we show the results with and
without the filtering from Sec. 3. The filtering has signifi-
cant impact on the Aachen Day-Night while it does not im-
prove on InLoc. We can also see that going from single to
multi-image optimization improves the results significantly.

For comparison we also report the errors obtained with
using the ground truth intrinsic parameters, as well as
jointly estimating pose and a one-parameter parametric
model using the solver from [21] in LO-RANSAC [23, 36].

6.3. Comparison of Regularization Functions

In this section we perform an ablation study for the reg-
ularization function and the method for recovering the in-
trinsic calibration. For the experiment we consider the
checkerboard dataset used in Section 6.1 and consider the
average errors over the test set. Table 5 shows the full re-
sults. We compare the following: The regularization func-
tion (Reg.) Here we compare penalizing the variation as also
proposed in [10], i.e. |fi+1 − fi| with locally fitting linear
and quadratic functions (as in Section 3.1). The number
of neighbouring points (kNN) used in the local fitting. The
robust loss % used. The method for recovering the intrin-
sic calibration (Calib.). Here we compare the raw estimates

Aachen Day-Night [37] day night

Single image
Proposed (w/ filter) 58.3 / 76.5 / 94.2 61.2 / 77.6 / 99.0

Proposed (w/o filter) 51.3 / 67.4 / 92.8 50.0 / 68.4 / 94.9
Camposeco et al. [6] 46.0 / 61.9 / 83.1 45.9 / 69.4 / 85.7

Multiple images
Proposed (w/ filter) 82.6 / 92.4 / 98.3 73.5 / 88.8 / 100.0

Proposed (w/o filter) 77.8 / 90.8 / 98.3 73.5 / 88.8 / 100.0
Camposeco et al. [6] 18.6 / 34.3 / 83.5 37.8 / 63.3 / 99.0

Parametric model hloc [33] + GT calib. 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0
hloc [33] + [21] 60.6 / 82.8 / 98.2 64.3 / 82.7 / 100.0

InLoc [40] duc1 duc2

Single image
Proposed (w/ filter) 28.3 / 46.0 / 63.6 26.7 / 48.1 / 61.8

Proposed (w/o filter) 29.8 / 46.5 / 64.6 26.0 / 42.7 / 59.5
Camposeco et al. [6] 23.2 / 40.4 / 55.1 18.3 / 31.3 / 42.7

Multiple images
Proposed (w/ filter) 34.8 / 52.5 / 69.7 38.9 / 57.3 / 74.0

Proposed (w/o filter) 35.4 / 53.0 / 69.7 35.9 / 58.0 / 74.0
Camposeco et al. [6] 34.8 / 51.0 / 69.2 35.1 / 58.0 / 74.0

Parametric model hloc [33] + GT calib. 46.5 / 66.2 / 78.3 51.9 / 74.8 / 78.6
hloc [33] + [21] 25.8 / 47.5 / 62.6 27.5 / 55.0 / 66.4

Table 4. Visual localization on the datasets Aachen Day-Night [37]
and InLoc [40]. The table shows the percentage of images within
the thresholds (0.25m, 2◦) / (0.5m, 5◦) / (5m, 10◦) and (0.25m,
10◦) / (0.5m, 10◦) / (1m, 10◦) respectively. For reference we in-
clude the result for parametric models (both with GT calib. and
est. using [21]). Best result for each category highlighted in bold.

Intr. Mean Median
Reg. kNN % Calib. εrms εrms < 1px

Diff. 1 Huber Alg.1 6.881 0.693 326/490
Linear 4 Huber Alg.1 0.847 0.418 365/490
Quadratic 4 Huber Alg.1 1.208 0.466 349/490

Linear 2 Huber Alg.1 0.881 0.413 362/490
Linear 4 Huber Alg.1 0.847 0.418 365/490
Linear 6 Huber Alg.1 0.839 0.424 364/490
Linear 8 Huber Alg.1 0.841 0.420 364/490
Linear 10 Huber Alg.1 0.842 0.424 366/490

Linear 4 `2 Alg.1 0.853 0.426 363/490
Linear 4 Huber Alg.1 0.847 0.418 365/490
Linear 4 Cauchy Alg.1 0.830 0.409 365/490

Linear 4 Huber None 1.039 0.440 351/490
Linear 4 Huber Alg.1 0.847 0.418 365/490
Linear 4 Huber Med-3 1.000 0.436 350/490
Linear 4 Huber Med-5 1.177 0.430 351/490

Table 5. Ablation study for the regularization function and intrin-
sic calibration method.

given by equation (8), with Algorithm 1 and median filter-
ing as used in [6, 10]. In the table it can be seen that the
choice of regularization function is not too critical as the
differences between them are quite small.
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Figure 4. Qualitative results of implicit self-calibration. The images were not seen during calibration showing that our calibration does not
overfit to the calibration data. For the catadioptric camera we undistorted the image to four 90◦ fov images orthogonal to the principal axis.

Upgraded Bundle Adjustment

mean median mean median

Kirchenge
εrot (deg.) 1.720 0.398 1.726 0.403
εpos (m.) 0.414 0.028 0.401 0.026
εGTproj (px) 2.199 1.630 1.469 1.015
εestproj (px) 1.633 0.955 1.294 0.728

Grossmunster
εrot (deg.) 2.322 0.643 2.291 0.716
εpos (m.) 0.990 0.129 0.939 0.093
εGTproj (px) 2.866 2.110 1.631 1.325
εestproj (px) 2.866 2.110 1.516 1.075

Kazan
εrot (deg.) 0.463 0.463 0.403 0.396
εpos (m.) 0.053 0.048 0.152 0.112
εGTproj (px) 1.359 1.084 0.834 0.682
εestproj (px) 0.957 0.720 0.658 0.488

Doge Palace
εrot (deg.) 0.401 0.393 0.324 0.360
εpos (m.) 0.040 0.033 0.107 0.067
εGTproj (px) 0.914 0.710 1.091 0.981
εestproj (px) 0.893 0.690 0.619 0.453

Table 6. BA with implicit distortion model. Table shows the ro-
tation (deg.) and position (m) errors. We also report reprojection
errors, both with the GT calib. and estimated (Sec. 4.2)

6.4. Implicit Distortion in Bundle Adjustment

To evaluate the bundle adjustment, we use the 1D radial
SfM framework from Larsson et al. [22] to reconstruct the
datasets from Section 6.1. Since it solely relies on radial
constraints, it only recovers (R, t1, t2) for each camera. We
first upgrade the reconstruction using by estimating t3 with
the proposed method. Next, we perform full bundle adjust-
ment as described in Section 5. Table 6 and Figure 5 shows
how the reconstruction improves significantly as a result of
the non-linear refinement. We believe the slightly worse re-
sults for Doge-Palace are due to the scene being close to
degenerate (fronto-parallel plane) in some images, since we
obtain low errors for reprojection but not camera pose.

7. Conclusions

In this paper we have presented a method for camera
pose estimation which does not require the intrinsic calibra-
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Figure 5. Bundle adjustment with implicit distortion. Cumulative
reprojection errors using GT calib and estimated (Sec. 4.2).

tion of the camera. This was achieved by regularizing the
point-wise focal lengths, i.e. the relative scaling between
the radius of the projections and image observations. The
proposed method outperforms the previous work on model-
free pose estimation [6], extending it to allow refinement of
the full 6 degree-of-freedom camera pose and even bundle
adjustment. In [22], the authors presented a calibration-free
Structure-from-Motion framework, however it can only par-
tially recover the camera poses. Using the proposed model
we can upgrade these reconstructions to allow for the first
truly calibration-free pipeline which recovers 6 DoF poses.

However, there is still a gap in performance for implicit
distortion models compared to an explicit parametric one.
In particular, the weaker constraints make it more challeng-
ing to filter outlier correspondences in difficult matching
scenarios (see Sec. 6.2). Nevertheless, as the implicit model
is mostly camera-agnostic and can be applied to any radi-
ally symmetric camera, we believe it can be a useful tool
for bootstrapping the camera pose when both the intrinsic
calibration and the appropriate model are unknown.
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