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Abstract

Recent progress on neural architecture search (NAS) has
demonstrated exciting results on automating deep network
architecture designs. In order to overcome the unafford-
able complexity of training each candidate architecture from
scratch, the state-of-the-art one-shot NAS approaches adopt
a weight-sharing strategy to improve training efficiency. Al-
though the computational cost is greatly reduced, such one-
shot process introduces a severe weight coupling problem
that largely degrades the evaluation accuracy of each can-
didate. The existing approaches often address the problem
by shrinking the search space, model distillation, or few-
shot training. Instead, in this paper, we propose a novel
distribution consistent one-shot neural architecture search
algorithm. We first theoretically investigate how the weight
coupling problem affects the network searching performance
from a parameter distribution perspective, and then pro-
pose a novel supernet training strategy with a Distribution
Consistent Constraint that can provide a good measurement
for the extent to which two architectures can share weights.
Our strategy optimizes the supernet through iteratively in-
ferring network weights and corresponding local sharing
states. Such joint optimization of supernet’s weights and
topologies can diminish the discrepancy between the weights
inherited from the supernet and the ones that are trained with
a stand-alone model. As a result, it enables a more accu-
rate model evaluation phase and leads to a better searching
performance. We conduct extensive experiments on bench-
mark datasets with multiple searching spaces. The resulting
architecture achieves superior performance over the cur-
rent state-of-the-art NAS algorithms with comparable search
costs, which demonstrates the efficacy of our approach.

1. Introduction

Neural architecture search (NAS) has drawn massive re-
search attention due to its efficacy in automating architecture
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Figure 1. Comparison with state-of-the-art methods on ImageNet.

engineering. A line of NAS algorithms have been success-
fully applied in the image classification [14, 18, 21, 41, 42]
and other related fields (e.g., object detection [4, 35], seg-
mentation [20, 39]). Among manys, early NAS approaches
struggle to solve the weight optimization and automated ar-
chitecture engineering problems in a nested manner. A large
number of candidate architectures are sampled and trained
from scratch, and the computation cost is thus unaffordable
on large datasets.

Recent research hotspot lies in the one-shot NAS algo-
rithms with an additional weight-sharing supernet for archi-
tecture performance evaluation. A supernet that contains
all candidate architectures is trained only once. Each archi-
tecture inherits its weights from the supernet. After that, a
search strategy (e.g., reinforcement learning, evolutionary
algorithms, etc.) is applied to select the best-performing
sub-architecture. The computation cost is thus greatly re-
duced. Though promising results have been achieved, this
global weight-sharing mechanism introduced by the one-
shot algorithms leads to severe weight coupling problem
[11, 14, 34], and results in at least two limitations. First of
all, sub-architectures with shared weights influence each
other during the supernet training process. The same op-
erator in different architectures may have different or even
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opposite gradient directions. The gradient descent direction
for one architecture may be the gradient ascent direction
for another one. The global weight sharing will lead to a
zigzag optimization process. Second, operators with high
FLOPs are less frequently sampled than others under a pre-
defined latency constraint. Architectures with such operators
are usually insufficiently trained. Both limitations would
cause non-trivial parameter distribution variance between
the model trained from scratch and that inherited from the
supernet, leading to inaccurate architecture evaluation.

Several recent works are proposed to address such a prob-
lem from various perspectives, including search space nar-
rowing [21, 27], knowledge distillation [18, 26, 38], few-shot
supernet training [40], to name a few. Though promising,
these methods are designed to improve the evaluation per-
formance of the candidate sub-architectures in an empirical
way, but the underlying reason, i.e., the distribution gap be-
tween the weights inherited from supernet and the weights
trained with stand-alone networks, has not been touched and
properly addressed.

In this paper, we make the first attempt to theoretically
analyze how weight sharing affects such a distribution gap.
We manage to prove that the distribution gap is actually
determined by the accumulated likelihood probability of
each candidate architecture and the joint likelihood of pair-
wise architectures (i.e., any two architectures with shared
weights). However, previous NAS algorithms only take into
account the first likelihood probability for network training.
Therefore, we propose a new supernet training metric with
a distribution consistency constraint that considers both of
the two likelihoods. It leads to two iterative sub-processes
when training supernet, i.e., optimizing the supernet weights
and inferring the local weight sharing states. This enables us
to simultaneously supervise the supernet training and shrink
the network parameter distribution gap.

However, the above optimizing process is intractable
since the computational cost for the joint likelihood of pair-
wise networks is unaffordable and the solution space of local
weight sharing states is too huge. Therefore, we innovatively
propose a layer-wise optimization strategy with a clustering
mechanism to avoid the computation for joint likelihood
of all candidate architecture pairs and restrain the space of
weight sharing states. The clustering algorithm is performed
on network’s architecture in a self-supervised manner and
we use cluster center’s weight sharing state to represent
all weight sharing states of architectures in the same clus-
ter. This greatly reduces the computational complexity and
makes the whole optimization process feasible.

To summary, our main contributions are three-fold:

• We are the first to solve the weight sharing problem
directly from the perspective of diminishing the dis-
tribution gap between the weights inherited from the
supernet and the weights trained with stand-alone net-

work. Such gap is believed to be the principal reason
that impedes the one-shot NAS progress.

• We propose a novel joint training formula to iteratively
update the supernet weights and topology, which facili-
tates a feasible optimization process.

• Our searched architectures deliver the new state-of-the-
art performance on different benchmark datasets and
search spaces.

2. Related Works
Neural architecture search has been successfully applied

in image classification [21,26,27] and language tasks [27,41].
Generally speaking, the NAS algorithms pre-define the
search space for a network and exploit one search strat-
egy, such as reinforcement learning [36], and evolutionary
algorithms [1, 25, 29], to generate candidate architectures,
which are then evaluated on the validation set. The search-
ing strategy is then updated based on the validation results.
The above processes are repeated several times until the
condition of convergence is met.

In [41, 42], Zoph et al. first introduce NAS in classifica-
tion and language modeling tasks, which search the optimal
states of convolution layers, e.g., kernel size, stride. The
works [41] and [42] have inspiring searching performance at
the cost of high computation load, as they need to train large
amounts of stand-alone models for architecture evaluation.
To address these limitations, one-shot NAS algorithms are
proposed, which exploit a supernet with shared weights to
encode all subnetwork architectures. In such methods, the
subnetwork can directly inherit weights from the supernet
for performance evaluation, and the searching time can be
greatly reduced. However, the weight sharing mechanism in
the supernet training process will introduce weight coupling
among different architectures, which greatly degenerates
the searching performance. In addition, the nonuniform
sampling of network architectures makes some of the subnet-
works insufficiently trained. Large numbers of one-shot NAS
algorithms are proposed to address the above-mentioned lim-
itations [14, 18, 19]. One way to address the coupling prob-
lem is to narrow the search space [21,42]. In [21,27,42], the
network is assumed to consist of two kinds of building cells
(i.e., the normal cell and the reduction cell), each of which
contains some basic blocks (e.g., convolution, pooling). The
algorithm only needs to search for the optimal structure
for these two building cells, which are then stacked several
times to generate the holistic net. Another idea to shrink
the search space is to incorporate the sequential searching
strategy [19, 21]. Li et al. [19] divide the search process
into several stages, and progressively determine the network
architecture from a bottom-up manner. Liu [21] simulta-
neously search the building cells (like [42]) and the ways
that the cells are stacked. The search process starts from a
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network with simple cells, and then sequentially searches
for architectures with more complex cells. In recent years,
a few algorithms introduce the distillation technology in
one shot NAS algorithms [18, 26, 38]. Such methods train
a high-performance network either offline [18, 38] or one-
the-fly [26] to supervise the searching process for network
architectures in the larger search space.

In most of the previous single-shot architecture search
algorithms, the weight parameters are shared across all the
sub-architectures with the same operator. The supernet topol-
ogy (i.e., the parameter sharing states) is fixed during the
model training process. While our method makes the first
step towards simultaneously optimizing the supernet param-
eters and topology structure.

3. Neural Architecture Search with Distribution
Consistency Constraint

Previous supernet based one-shot NAS algorithms si-
multaneously optimize the shared weights of different ar-
chitectures without considering the inherent relations be-
tween them. This global weight sharing mechanism leads
to the coupling problem among different sub-architectures,
wherein the network weights of different sub-architectures
influence each other and are usually insufficiently trained.
The evaluation accuracy based on the stand-alone model
is not always positively associated with the one-shot based
evaluation, which is an open problem in the NAS field. We
thus theoretically analyze this problem in the view of model
parameter distribution.

3.1. A Probabilistic Explanation for Global Weight
Sharing Supernet

Given the training data D and a search space consisting
of N sampled candidate architectures α1, ...αN ∈ A, we
use p(Wαi |αi, D) to denote the parameter distribution of
subnetwork αi trained from scratch, and use p(WA|A, D)
to denote the model parameter distribution of the supernet.
Here, Wαi

is the model parameter of sub-architecture αi,
and is a subset of WA. We argue that it is crucial to shrink
the gap between p(Wαi

|αi, D) and p(Wαi
|A, D) to ensure

the monotonic correlation of evaluation accuracies of the
one-shot and stand-alone models.

Based on the probability theory, p(Wαi
|A, D) can be

represented as

p(Wαi |A, D) =
p(Wαi

|αi, D)p(A|Wαi
, αi, D)

p(A|αi, D)
. (1)

We assume that the model architectures α1, ..., αN are
independent, thus p(A|Wαi

, αi, D) can be expanded as

p(A|Wαi
, αi, D)

=

N∏
j=1

p(αj |Wαi , αi, D)

=

N∏
j=1

p(D|Wαi , αi, αj)p(αj |Wαi , αi)

p(D|Wαi
, αi)

.

(2)

The KL-divergence DKL(p(Wαi |αi, D), p(Wαi |A, D))
is adopted to measure the discordance between
p(Wαi

|αi, D) and p(Wαi
|A, D) as

DKL(p(Wαi |αi, D), p(Wαi |A, D))

=

∫
p(Wαi |αi, D) log

p(Wαi |αi, D)

p(Wαi |A, D))
dWαi

=

∫
p(Wαi |αi, D) log

p(D|Wαi , αi)p(A|αi, D)
N∏

j=1
p(D|Wαi , αi, αj)p(αj |Wαi , αi)

dWαi

∝
∫

p(Wαi |αi, D) log
p(D|Wαi , αi)

N∏
j=1

p(D|Wαi , αi, αj)p(αj |Wαi , αi)

dWαi

=

∫
p(Wαi |αi, D) log

p(D|Wαi , αi)

N∑
j=1,oαi

̸=oαj

−1

N∏
j=1

oαi
=oαj

p(D|Wαi , αi, αj)p(αj |Wαi , αi)

dWαi

(3)
where the local weight sharing mechanism is introduced and
oαi

∈ oA indicates which parameter set the architecture
αi uses. Architectures αi and αj have shared weights if
oαi

= oαj
. p(A|αi, D) and p(αj |Wαi

, αi) denote the pri-
ors of architecture set A and αj , which can be regarded as
constant values. The probability p(D|Wαi , αi, αj) denotes
the likelihood probability given model parameter Wαi and
architectures αi and αj , which can be further expanded as

p(D|Wαi , αi, αj)

=

∫
p(Wαj−αi)p(D|Wαi ,Wαj , αi, αj)dWαj−αi ,

(4)

where we use Wαj−αi
to denote model parame-

ters of αj eliminating those shared with αi, and
p(D|Wαi ,Wαj , αi, αj) is the likelihood probability of ar-
chitectures αi and αj . From Eq. (3) and (4), it is easy to
conclude that a larger probability p(D|Wαi

,Wαj
, αi, αj)

helps shrink the parameter distribution gap between the one-
shot and stand-alone models.

From the view of network parameter distribution consis-
tency, a feasible way to improve the search performance
is to maximize p(D|Wαi

,Wαj
, αi, αj) for any architecture

pair (αi, αj). When αi and αj have no shared parameters,
p(D|Wαi , αi, αj) can be rewritten as p(D|Wαi , αi). Con-
sidering p(D|Wαi

, αi) ≥ p(D|Wαi
, αi, αj), we conclude
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Figure 2. Supernet topology generation. The left side of the figure illustrates a toy supernet where the first 2 layers have been clustered
and assigned weights. The circle, square, and rhombus denote different operators in each layer. The blue and green colors denote different
weight candidates for each operator. To generate the supernet topology for the 3rd layer, we first sample the subnet pairs which share the
same operators and feed the corresponding feature maps to the meta network. The meta network then predicts the matching degrees between
arbitrary two subnets. A higher matching degree indicates the two subnets could share the same operator weights in this layer and vice versa.
Based on the matching degrees, we are finally able to cluster the subnets and assign the weight id by optimizing Eq. 7. The above process is
iterated over all layers.

that avoiding parameter sharing is a possible way to improve
the parameter distribution consistency.

In the previous one-shot NAS algorithms [14, 18, 19], the
supernet is trained via solving the following optimization
problem:

WA
∗ =argmax

WA
log p(WA|A, D)

= argmax
WA

log p(D|WA,A)

+ log p(WA|A)− log p(D|A),

(5)

where p(WA|A) and p(D|A) can be regarded as constant
values. In Eq. (5), the distribution gap between the one-
shot and stand-alone models are not considered. Based on
the previous derivations, we introduce another loss term
to measure the distribution gaps between the one-shot and
stand-alone models, and Eq. (5) can be reformulated as

WA
∗, oA

∗ =arg max
WA,oA

log p(D|WA,A, oA)

+ δ(oαi
, oαj

)

N∑
i,j=1

log p(D|Wαi
,Wαj

, αi, αj).

(6)
The optimization process in Eq. (6) can be solved via

the alternating direction method, i.e., optimizing the opti-
mal local weights assignment oA with the fixed supernet
weights, and vice versa. As far as we know, our method is
the first attempt to jointly optimize the supernet topological

structure (i.e., between which architectures the weights can
be shared) and the supernet model parameters for one-shot
NAS algorithms.

3.2. Supernet Training with Local Shared Weights

Based on the previous theoretical analysis, we divide
the supernet training process into two interlaced stages, i.e.,
supernet topology generation and supernet weight update.

3.2.1 Supernet Topology Generation

As described before, the optimal local weight assignment
oA can be obtained by solving Eq. (6). A straightforward
implementation is to assign a unique assignment id oαi

for
each architecture. However, two architectures may only
have similar structures in some layers, thus assigning a
unique cluster id to the entire architecture is suboptimal.
To make the local weight sharing mechanism more flexi-
ble, we propose the layer-wise architecture clustering al-
gorithm, and subsequently optimize the local weight shar-
ing states from the first layer to the last layer. We divide
the potential network into L parts (layers), with each of
them containing K candidate operators. We use Cl,k to de-
note the k-th operator in the l-th layer. Different from the
existing NAS algorithms, each operator in our work con-
sists of M candidate weight matrices which form a meta
weight set Wl,k =

{
w1

l,k, w
2
l,k, ..., w

M
l,k

}
. Based on the

above definitions, the weight parameter of the l-th layer in
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αi is Wαi,l = Wl,k(oαl
i
), where oαl

i
∈ {1, 2, ...,M} indi-

cates which weight in Wl,n is exploited for architecture αi.
Suppose the local weight assignment states of the first l − 1
layers have been obtained as oA1,..,l−1 = {oαl−1

1 ,...,αl−1
N

},
the optimal local weight assignment in the l-th layer can be
obtained by solving
o∗Al =argmax

oAl

log p(D|W, oA1,...,l)

+ δ(oαl
i
, oαl

j
)

N∑
i,j=1

log p(D|W, αi, αj , oA1,...,l−1),

(7)
where W = {Wl,n}l=L,n=K

l=1,n=1 . Directly optimizing Eq. (7)
by enumerating all possible oαl

i
, i ∈ {1, ..., N} is intractable.

If the architectures are first divided into several clusters,
Eq. (7) can be more easily optimized based on the few
representative architectures in each cluster. For all the ar-
chitectures containing Cl,k, we first resort to the K-means
clustering algorithm to divide the architectures into M clus-
ters and then determine the weight assignment id for each
cluster. Referring to [26], for any two architectures αi

and αj with the same operate Cl,k, we exploit the output
λl
i,j of a meta network MCl,k

(detailed in the next sec-
tion) to measure the matching degree between αi and αj

in the l-th layer, where λl
i,j = MCl,k

(hl−1
αi

− hl−1
αj

). Here,

hl−1
αi

= N (x, α1,...,l−1
i ,Wα1,...,l−1

j
) denotes the output fea-

ture map of the l−1-th layer for architecture αi. We compute
the matching degrees between arbitrary two architectures
containing operator Cl.k, and obtain a matching degree ma-
trix, based on which the architectures are classified into M
clusters via the K-means clustering algorithm. Then, we
randomly sample several representative architectures from
each cluster and obtain the weight assignments for these
architectures via solving Eq. (7). Based on the representative
architectures in each cluster, we obtain the optimal assign-
ment id for all the candidate architectures. Figure 2 presents
a toy model on how our method sequentially determines the
local weight sharing states.

3.2.2 Supernet Weight Update

When the local weight sharing states of the previous l lay-
ers are determined, we update the supernet weight via the
stochastic gradient descent algorithm. For each training
batch x, two architectures αi and αj with at least one shared
operator are sampled. Then the model parameter of αi in the
f -th layer can be updated as

W t+1
αi

=W t
αi

− γ∇Wαi
L(Hx,N (x, αi,W

t
αi
))

− λi,j∇Wαj
L(Hx,N (x, αj ,W

t
αj
)),

(8)

where the gradient from two architectures are considered.
During model update, when the layer index f ≤ l, the
model parameter Wαi,f in the f -th layer is assigned to with

Wf,k(oαi,f
), where k is the operator index of αi in the f -th

layer. Otherwise, Wαi,f is assigned with a random weight in
Wf,k. We use Hx to denote the ground truth of batch data x,
and use L(.) to denote the loss function for model training.
The variable γ is the learning rate for the architecture αi, and
λi,j = [λ1

i,j , ..., λ
2
i,j ] is output of the meta network, which

controls the strength on how the gradient of architecture αj

influences the update process. By incorporating the third
term in Eq. (8), we allow the model weights from different
clusters to exchange gradient information, which boosts the
training process of the supernet. It is worth noting that λf

i,j

is used to measure the matching degree between two archi-
tectures, based on the intuition that if gradients from two
architectures can benefit the weight update process of each
other, then these two architectures can be better matched.
Using W t+1

αi
to substitute W t

αi
, we obtain the following loss

function

L(Hx,N (x, αi,W
t+1
αi

))

=L(Hx,N (x, αi,W
t
αi

− γ∇Wαi
L(Hx,N (x, αi,W

t
αi
))

− λi,j∇Wαj
L(Hx,N (x, αj ,W

t
αj
)))),

(9)
where λi,j∇Wαi

L(Hx,N (x, αj ,W
t
αj
)) is computed as

λi,j∇Wαi
L(Hx,N (x, αj ,W

t
αj
))

=[λ1
i,j∇W

α1
i

L(Hx,N (x, αj ,W
t
α1

j
)), ...,

λL
i,j∇W

αL
i

L(Hx,N (x, αj ,W
t
αL

j
))]⊤

(10)

and λl
i,j is

λl
i,j =

{ MCl,k
(hl−1

αi
− hl−1

αj
,WMCl,k

), αl
i and αl

j share Cl,k
0, else

.

(11)
L(Hx,N (x, αi,W

t+1
αi

)) is a function with respect to
WMCl,k

, and WMCl,k
can be updated as

W t+1
MCl,k

= W t
MCl,k

− η∇WMCl,k
L(Hx,N (x, αi,W

t+1
αi

)),

(12)
where η is the learning rate for the meta network. In our
implementation, the meta network is instantiated as one
fully-connected layer with a sigmoid activation function.
The supernet weights are updated for several epochs, and
the training process continues to determine the weight as-
signment states for the l + 1 layer. We formulate the overall
training procedure in Algorithm 1.

After the supernet gets sufficiently trained, the network
search process begins. We follow [14] to adopt the evo-
lutionary search algorithm, where subnetworks within the
supernet are selected and evaluated under the direction of the
evolutionary controller. It is worth noting that the batch stat-
ics of each subnetwork should be independent of the others
during search. Thus, we recompute the batch statics for each
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Algorithm 1 Supernet training with local weight sharing
Input: Supernet N , search space S, training data D, archi-
tecture number N , number of candidate states M , supernet
layer number L, candidate operator number K, warmup
epochs Tw, finetune epochs Tf , training epochs T , meta
network update interval τ , per-epoch iteration number I .
Output: The trained supernet model N with optimal weight
assignment oA

1: Initialize N wherein each operator Cl,k includes M can-
didate weights

2: Randomly sample A = {α1, α2, ...αN}, where A ⊂ S
3: Train (N , D, Tw)
4: for l = 1 : L do
5: for t = 1 : (T × I) do
6: Randomly sample k ∈ [1,K]
7: Randomly sample αi, αj sharing Cl,k
8: Update Wαi

according to Eq. 8
9: if t mod τ == 0 then

10: Update WMCl,k
according to Eq. 12

11: end if
12: end for
13: for k = 1 : K do
14: for αi, αj ∈ A do
15: if Cl,k ∈ αi and Cl,k ∈ αj then
16: Compute λl

i,j between αi and αj

17: end if
18: end for
19: end for
20: Classify A into M clusters based on λl

i,j

21: Obtain oαl
i

for each αi ∈ A via solving Eq. 7
22: Train (N , D, T )
23: end for
24: Train (N ,D, Tf )

candidate subnetwork on a subset of training dataset before
evaluation. Finally, we get the performance of subnetworks
ranked by the weight inherited from the supernet.

4. Experiments
In this section, we first present the implementation details

of our experiments, including the dataset, search space, and
training details. Then we compare our method with state-
of-the-art algorithms on both the ImageNet [10] and the
NAS-Bench-201 [13] datasets. At last, we conduct extensive
ablation studies to verify the effectiveness of each component
of the proposed algorithm.

4.1. Implementation Details

Dataset. We adopt the ImageNet dataset [10] as one of
our benchmarks. The original training set of ImageNet is
randomly split into two sets: 50000 images for validation

(50 images for each class exactly) and the rest for training.
The original validation set is used for testing, on which all
the evaluation results are reported. Besides standard search
spaces, we also benchmark the proposed method on the
NAS-Bench-201 [13]. NAS-Bench-201 consists of 15,625
architectures in a reduced DARTS-like search space, where
it has 4 internal nodes and 5 operations per node.
Search Space. As with the recent works [2, 5, 15, 18, 26, 32],
we perform architecture search over the search space con-
sisting of mobile inverted bottleneck MBConv and squeeze-
excitation modules to ensure a fair comparison. There are 6
basic operators, including MBConv with kernel sizes of 3,
5 and expansion rates of 4, 5, 6. The space contains about
7.58× 1019 architecture candidates in total.
Supernet. We train the supernet for 150 epochs using SGD
optimizer with momentum 0.9 and weight decay 4e-5. The
learning rate is set to 0.5 with a linear annealing. Besides,
we set N = 10, 000, M = 2, L = 16, K = 6, Tw = 10,
Tf = 44, T = 3, and τ = 20. We use 8 Nvidia Tesla V100
GPUs with a batch size of 1,024 for the supernet training.
Search. We follow [14] to employ the evolutionary algo-
rithm to search the well-performed subnetworks within the
randomly initialized subnetwork set A. Before evaluation,
the batch statics for each subnetwork is recomputed based on
200 batches of training data. We set the max iteration as 20
and the population size as 50. The mutation and crossover
are performed on the Top-10 best-performing architectures
for each iteration.
Retrain. Similar to the training of EfficientNet [32], our
selected architecture is retrained for 500 epochs on Imagenet
using RMSProp optimizer with momentum 0.9 and decay
0.9. The learning rate is set to 0.064 with a warm-up in the
first 3 epochs and a cosine annealing. The dropout ratio is 0.2
and the weight decay is 1e-5. During training, AutoAugment
[9] policy and exponential moving average are adopted. The
model is retrained using 16 Nvidia Tesla V100 GPUs with a
batch size of 2,048.

4.2. Comparisons with the State-of-the-arts

Imagenet. The quantitative comparisons with the state-
of-the-arts on the ImageNet dataset are presented in Table 1
and Figure 1. We conduct experiments under two different
constraints (Flops < 350M and Flops < 500M respec-
tively). As can be seen, our method consistently outperforms
the recent SOTA algorithms with comparable flops and train-
ing costs. In particular, the smaller model (namely Ours-S)
searched under a Flops constraint of 350M achieves 78.1%
Top-1 classification accuracy, which even outperforms other
methods with larger Flops (e.g., 345M and 465M). Besides,
with the Flops constraint of 500M, the larger model Ours-L
also shows superiority over other methods. All the superior
results demonstrate the effectiveness of our method.

NAS-Bench-201. The comparisons with the state-of-the-
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Methods
Top-1 Top-5 Flops Supernet train Search cost
(%) (%) (M) (GPU days) (GPU days)

20
0-

35
0M

Fl
op

s

MobileNetV2 [28] 72.0 91.0 300 - -
MobileNetV3L1.0 [15] 75.2 - 219 ≈ 3000 -

OFA [2] 76.9 - 230 53 2
AtomNAS-A+ [24] 76.3 93.0 260 20.5 -

AKD [23] 73.0 92.2 300 - 1000
SPOS [14] 74.7 - 328 12 <1

GreedyNAS-C [37] 76.2 92.5 284 7 <1
DNA-A [18] 77.1 93.3 348 24 0.6
Cream-S [26] 77.6 93.3 287 12 0.02

FairNAS-B [7] 75.1 - 345 12 <1
SGNAS-A [17] 76.2 - 281 12 <1

MCT-NAS-C [30] 76.3 92.6 280 12 <1
Ours-S 78.1 93.8 290 16 <1

35
0-

50
0M

Fl
op

s

EfficientNet-B0 [32] 76.3 93.2 390 ≈ 3000 -
ProxylessNAS [3] 75.1 - 465 15 -
MnasNet-92 [31] 74.8 92.1 388 - -

AtomNAS-C+ [24] 77.6 93.6 363 20.5 -
GreedyNAS-A [37] 77.1 93.3 366 7 <1

MixNet-M [33] 77.0 93.3 360 ≈ 3000 -
DNA-C [18] 77.8 93.7 466 24 0.6

SCARLET-A [6] 76.9 93.4 365 10 12
DSNAS [16] 74.3 91.9 324 - -

FairDARTS-C [8] 77.2 93.5 386 3 -
Cream-M [26] 79.2 94.2 481 12 0.02
FairNAS-A [7] 75.3 - 388 12 <1

DARTS- [5] 77.8 93.9 470 4.5 -
SGNAS-C [17] 77.1 - 373 12 <1

MCT-NAS-A [30] 78.0 93.9 442 12 <1
Ours-L 79.5 94.5 486 19 <1

Table 1. Comparisons with the state-of-the-arts on the Imagenet dataset.

arts on NAS-Bench-201 are given in Table 2. All algorithms
adopt the training and validation set of CIFAR-10 for archi-
tecture search and use the NAS-bench-201 API to query the
ground-truth performance of searched architectures on three
datasets. Our results are averaged on 4 runs of searching. As
can be observed, our method outperforms the state-of-the-
arts on all three datasets and our best results approach the
optimal performance. The superior performance verifies the
effectiveness of our algorithm.

4.3. Ablation Studies

In this section, extensive ablation studies are conducted
to demonstrate the effectiveness of each component of our
method.

Weight sharing strategies. We validate the effective-
ness of the local weight sharing mechanism by comparing
three variant implementations, which are respectively the
baseline method (Gloabl Sharing) that utilizes the global
weight sharing supernet, the implementation with randomly
assigned local weight sharing states (Random Assign) and
our implementation. The comparison results can be referred

to Table 3, where our method improves the second best im-
plementation by a relative gain of 0.9% in terms of the Top-1
classification accuracy on the ImageNet dataset. Considering
both the distribution consistent constraint and the matching
degrees output by the meta network, our algorithm is able to
train more distribution consistent supernet.

Number of candidate weight states. In our method, each
operator consists of M candidate weight states. We conduct
experiments to analyze how M influences the searching per-
formance. As is shown in Table 4, the method achieves
comparable results when M is 2 and 3 respectively. Given a
network with L layers, there are altogether ML local weight
assignment states, which provides enough flexibility for su-
pernet training. In our implementation, we set M as 2 in all
of our experiments for training efficiency.

Number of candidate architectures. At last, we con-
duct ablation experiments to analyze the robustness of our
method in terms of the candidate architecture number N .
In our supernet training process, we set the initial architec-
ture number N = 10, 000. However, it is possible that the
best-performing architecture is not included in the initial
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Methods
Cost CIFAR-10 CIFAR-100 ImageNet16-120

(hours) valid test valid test valid test

DARTS1st [22] 3.2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS2nd [22] 10.2 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
SETN [11] 9.5 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
GDAS [12] 8.7 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
FairNAS [7] 2.7 90.07±0.57 93.23±0.18 70.94±0.94 71.00±1.46 41.90±1.00 42.19±0.31
SGNAS [17] 2.5 90.18±0.31 93.53±0.12 70.28±1.20 70.31±1.09 44.65±2.32 44.98±2.10
DARTS- [5] 3.2 91.03±0.44 93.80±0.40 71.36±1.51 71.53±1.51 44.87±1.46 45.12±0.82
Ours 3.9 91.50±0.07 94.29±0.07 73.03±0.21 73.02±0.16 46.17±0.36 46.41±0.14
Ours-best 3.9 91.53 94.22 73.13 73.17 46.32 46.48
optimal - 91.61 94.37 73.49 73.51 46.77 47.31

Table 2. Comparisons with the state-of-the-arts on NAS-Bench-201. 1st: first-order, 2nd: second-order.

Training strategy Top-1(%) Top-5(%) Flops(M)

Global-Sharing 77.2 93.2 291
Random-Assign 77.4 93.3 289
Ours 78.1 93.8 290

Table 3. Ablation study on different weight sharing strategies.

M Top-1(%) Top-5(%) Flops(M)

1 77.2 93.2 291
2 78.1 93.8 290
3 77.9 93.8 292

Table 4. Ablation study on the number of candidate weight states.

N Top-1(%) Top-5(%) Flops(M)

5,000 77.7 93.5 285
10,000 78.1 93.8 290
20,000 78.0 93.9 294

Table 5. Ablation study on the number of candidate architectures.

candidate pool. Thus, in this experiment, we set the can-
didate number to 5, 000, 10, 000 and 20, 000 respectively.
The evaluation results of searched architectures are illus-
trated in Table 5. As can be seen, increasing the number
of candidate architectures to 20, 000 does not bring further
performance improvement, thus we get the conclusion that
setting N = 10, 000 brings a good trade-off between train-
ing efficiency and overall performance.

Model ranking. To further verify the effectiveness of
our NAS method, we compared the model ranking abilities
between our method and the global weight-sharing baseline
by visualizing the relationship between performance of the
stand-alone models and the models with inherited weights.
Both our method and baseline are trained on NAS-Bench-
201 for 150 epochs. We randomly sample 15 subnets from
the search space and query their ground-truth performance
using the NAS-Bench-201 API. The comparison results are
shown in Figure 3. Each sampled model corresponds to 2
points in the figure, representing the correlation between
the true performance and predicted performance of the two
methods. As can be observed, our method ranks the subnets

Method
Baseline
Ours

Figure 3. Comparison of ranking effectiveness for our method and
the global weight-sharing baseline.

more precisely, which explains the reason why our method
achieves better final results.

5. Conclusion
In this paper, we propose a novel distribution consistent

neural architecture search algorithm to avoid the possible
weight coupling problem. We analyze the reason why weight
sharing in a supernet leads to inferior performance, and intro-
duce a distribution consistency constraint as well as the local
weight sharing mechanism in the supernet training process.
Specifically, a two-stage optimization formula is derived to
iteratively optimize the supernet topology and the network
model parameters, which tries to figure out the optimal lo-
cal weight sharing states sequentially. We conduct large
amounts of experiments on different benchmark datasets and
search space. The superior results validate the effectiveness
of the proposed method.
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