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Abstract

This demonstration showcases our innovations on effi-
cient, accurate, and temporally consistent video semantic
segmentation on mobile device. We employ our test-time
unsupervised scheme, AuxAdapt, to enable the segmenta-
tion model to adapt to a given video in an online manner.
More specifically, we leverage a small auxiliary network to
perform weight updates and keep the large, main segmen-
tation network frozen. This significantly reduces the com-
putational cost of adaptation when compared to previous
methods (e.g., Tent, DVP), and at the same time, prevents
catastrophic forgetting. By running AuxAdapt, we can con-
siderably improve the temporal consistency of video seg-
mentation while maintaining the accuracy.

We demonstrate how to efficiently deploy our adaptive
video segmentation algorithm on a smartphone powered by
a Snapdragon® Mobile Platform1. Rather than simply run-
ning the entire algorithm on the GPU, we adopt a cross-
unit deployment strategy. The main network, which will be
frozen during test time, will perform inferences on a highly
optimized AI accelerator unit, while the small auxiliary net-
work, which will be updated on the fly, will run forward
passes and back-propagations on the GPU. Such a deploy-
ment scheme best utilizes the available processing power
on the smartphone and enables real-time operation of our
adaptive video segmentation algorithm. We provide exam-
ple videos in supplementary material.

1. Introduction
Semantic segmentation is a core functionality for vi-

sual scene understanding and is of great importance to

1Snapdragon is a product of Qualcomm Technologies, Inc. and/or its
subsidiaries.
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(a) Sample video segmentation without AuxAdapt

(b) Sample video segmentation with AuxAdapt

Figure 1. Snapshots of our video segmentation demonstration. (a)
Sample video segmentation without using AuxAdapt. (b) Sample
video segmentation with AuxAdapt. When using AuxAdapt, we
see higher temporal consistency and an overall better quality of
video segmentation. On the other hand, without AuxAdapt, the
segmentation suffers from flickering artifacts, e.g., in the regions
that transition between road/sidewalk and vegetation.

various applications, such as AR/VR, self-driving/ADAS,
robotics, and mobile image/video processing. Given the
rapid growth of video data in recent years, the ability to
segment video content has become increasingly important.
However, directly applying an image-based segmentation
model to video data often results in temporally inconsistent
(e.g., flickering) outputs, an example of which is shown in
Fig. 1 (a). These artifacts can significantly impact down-
stream applications like background editing and degrade
user experience.

In the literature, researchers have looked into various
ways to improve temporal consistency. A major line of
work utilizes optical flow during training and/or testing, as
it captures pixel correspondence across frames [1–5]. How-
ever, their performance is constrained by the quality of the



estimated optical flow and they also require accurately an-
notated video training sets which can be costly to collect.
Some other works apply test-time adaptation to enhance
model performance, but they are too computationally ex-
pensive to run in real time [6–8].

To address these challenges, we leverage our recently
proposed adaptation scheme, AuxAdapt [9], to efficiently
perform online model updates to enhance temporal consis-
tency. AuxAdapt is designed based on the key insight that
inconsistency often arises from uncertainty in the network’s
decisions. As such, AuxAdapt enforces the segmentation
model to learn from its own outputs and reinforce its pre-
diction confidence. In addition, to significantly reduce the
computation cost of online adaptation, AuxAdapt employs
a small auxiliary network (AuxNet) to perform updates
while keeping the main segmentation network (MainNet)
unchanged. In other words, when processing each frame,
MainNet is frozen and only AuxNet is updated, while the
integrated model streams through the video. The final seg-
mentation is determined by the aggregated outputs of the
two networks. By doing this, we avoid costly model up-
dates and catastrophic forgetting, and can enhance temporal
consistency without requiring optical flow or other temporal
features which can be unreliable.

In this demonstration, we deploy our adaptive video seg-
mentation algorithm, AuxAdapt, on a Snapdragon-powered
smartphone via a novel cross-unit deployment strategy.
While a common approach would be to simply run the en-
tire algorithm on the mobile GPU, this does not fully uti-
lize the available processing power on the phone. Although
AuxAdapt is significantly less computationally demanding
as compared to previous adaptation methods, running all
the forward and backward operations on the GPU may not
lead to real-time video segmentation. Therefore, we addi-
tionally leverage the highly optimized AI accelerator on the
smartphone and run a quantized version of the MainNet on
it since its weights will not change. Meanwhile, the AuxNet
runs on the GPU and adapts it weights as the model streams
through the video. By doing this, we enable real-time op-
eration of our adaptive video segmentation model, which
provides accurate and temporally consistent segmentation
results.

When evaluating the temporal consistency of video seg-
mentation, it is common to utilize estimated optical flow.
However, optical flow estimation may itself contain errors
and thus cause unreliable evaluation results. Recently, we
have proposed a new measure based on perceptual consis-
tency [10]. As we have shown in the original paper, percep-
tual consistency can more accurately capture the temporal
consistency of video segmentation. As such, in addition to
the existing flow-based measure, we also perform tempo-
ral consistency evaluation using our perceptual consistency
metric. Furthermore, in the demonstration, we will provide

concrete examples to demonstrate the advantages of using
perceptual consistency over estimated optical flow.

Via this demonstration, we hope to motivate further re-
search in temporally consistent and adaptive video segmen-
tation algorithms, as well as the efficient deployment of
them on mobile devices. We summarize the main contri-
butions of this demonstration as follows.

• We employ our latest online adaptation scheme, Aux-
Adapt, to obtain accurate and temporally consistent
video semantic segmentation. As compared to previ-
ous adaptation frameworks (e.g., Tent [7], DVP [8]),
AuxAdapt only requires a fraction of their computa-
tional costs for model update.

• We propose a novel cross-unit deployment strategy to
efficiently run our adaptive video segmentation algo-
rithm on a commercial smartphone powered by Qual-
comm AI Engine.2 Specifically, the larger, frozen part
of the model runs on a highly efficient AI accelerator
and a smaller, adaptive part runs on the mobile GPU.
This allows us to better leverage the processing power
on the phone and achieve real-time performance.

• When evaluating temporal consistency, in addition to
the conventional approach based on estimated optical
flow, we further utilize a new, perceptual-consistency-
based method. This new evaluation method can more
properly capture temporal consistency as compared to
using an estimated optical flow, as we shall also show
in this demonstration.

The remainder of this paper is organized as follows. In
Section 2, we provide an overview of our adaptive video
segmentation algorithm, AuxAdapt and our novel way of
evaluating temporal consistency, as well as sample evalu-
ation results. In Section 3, we present our novel scheme
that deploys the algorithm across different computing units
(i.e., GPU and AI accelerator) on the smartphone to enable
real-time performance. In Section 4, we describe details of
our implementation and how the demonstration will be con-
ducted. Conclusions will be given at the end.

2. AuxAdapt and Temporal Consistency Eval-
uation

In this section, we briefly explain the AuxAdapt [9]
framework, which is applied as a online, unsupervised, test-
time adaptation scheme to enhance the temporal consis-
tency of a video semantic segmentation model. We then
describe two evaluation schemes for measuring temporal
consistency, based on estimated optical flow and perceptual
consistency [10], respectively, and compare evaluation re-
sults without and with using AuxAdapt.

2Qualcomm AI Engine is a product of Qualcomm Technologies, Inc.



Figure 2. Illustration of the AuxAdapt framework. AuxAdapt uses
a tiny auxiliary network AuxNet faux on lower spatial resolution
together with the main segmentation network fmain to generate
segmentation decisions. For each frame xt, it only updates the
AuxNet based on the aggregated segmentation output yseg

t , which
is used as the target for training the AuxNet with a cross-entropy
loss.

2.1. AuxAdapt

Consider a pretrained semantic segmentation network
fmain. It takes an input image, x ∈ [0, 1]H×W×3, and
generates a 2D prediction map, ymain ∈ RH×W×K , for a
K-class segmentation task. H and W are the height and
width of the input image, respectively. ymain(i, j, k) indi-
cates how likely this pixel belongs to class k for the pixel
location (i, j). For the segmentation decision, an argmax
operation is applied pixel-wise to the last dimension of
ymain to assign the most probable class to each pixel. We
denote this hard decision as yseg ∈ {1, 2, . . . ,K}H×W .
To obtain semantic segmentation for a sequence of video
frames X = {x1, . . . , xT }, fmain can be applied to gener-
ate Y = {yseg

1 , . . . , yseg
T }, where T is the number of frames

in the video.
Applying fmain directly to X usually results in tem-

porally inconsistent segmentation outputs, as shown in
Fig. 1 (a). This is mainly due to the network’s uncertainty
in its own predictions, which lead to different segmenta-
tion results on visually similar regions across frames. As
such, AuxAdapt reinforces the network with its own pre-
dictions, i.e., training the network on its own decisions, in
order to enhance the network’s prediction confidence and
consistency. While one can simply update the entire net-
work based on its own outputs to achieve uncertainty reduc-

and/or its subsidiaries.

Algorithm 1: AuxAdapt
Input: x1, x2, . . . , xT ;
Output: yseg

1 , yseg
2 , . . . , yseg

T ;
Load trained MainNet fmain, which will be frozen;
Load trained AuxNet f aux as f aux

1 ;
Initialize t = 1;
while t ≤ T do
ymain
t = fmain(xt),;

yaux
t = f aux

t (xt);
yseg
t (i, j)=argmax

k

ymain
t (i, j, k)+yaux

t (i, j, k), ∀(i, j);

Compute cross-entropy loss: L(yaux
t , yseg

t );
Update f aux

t based on the above loss, which gives f aux
t+1;

t← t+ 1;
end

tion, performing back-propagation through the entire net-
work is computationally expensive and for a long video,
can make the network deviate too much from its stable pre-
trained weights, resulting in degraded accuracy.

In order to perform adaptation and avoid the disadvan-
tages of naively updating the entire model, AuxAdapt uti-
lizes an auxiliary network (AuxNet), f aux, to work with
the main segmentation network (MainNet), fmain. AuxNet
is a separately-trained small-sized segmentation network.
For a video frame at time t, MainNet and AuxNet produce
their respective prediction maps, ymain

t and yaux
t , and then an

argmax operation is applied to their summation to obtain the
final segmentation decision, yseg

t . When streaming a video,
the MainNet is frozen and the AuxNet is updated based on
yseg
t . Our AuxAdapt framework is illustrated in Fig. 2 and

summarized in Algorithm 1.

In this process, while the MainNet does not change, the
AuxNet adapts itself by learning from the final combined
decision to reduce the overall prediction uncertainty. By
only updating the small AuxNet, the forward and backward
operations will be much cheaper than those of updating the
MainNet. Furthermore, AuxAdapt can maintain the accu-
racy on both a given, specific test video and other general
test images. Specifically, since MainNet is unchanged, we
fundamentally prevent catastrophic forgetting and the varia-
tion of accuracy is limited due to the MainNet’s contribution
to the overall output. The AuxNet also distills knowledge
from the MainNet through the combined output and learns
to match the MainNet’s performance.

Networks: In this demonstration, we adopt the state-of-
the-art segmentation model, HRNet-w18 [11], and apply its
variants for both the MainNet and the AuxNet. In particu-
lar, for the AuxNet, we analyze the runtime for each layer
of HRNet-w18 on GPU and reduce the computation (e.g.,
number of channels) of observed bottlenecks. We also use
a lower input resolution for the AuxNet to further reduce
computation.



(a) Sample segmentation of video 1, without AuxAdapt

(b) Sample segmentation of video 1, with AuxAdapt

(c) Sample segmentation of video 2, without AuxAdapt

(d) Sample segmentation of video 2, with AuxAdapt

Figure 3. Segmentation results of two sequences of video frames, without and with using AuxAdapt. Rows 1 and 3 show the results without
AuxAdapt, and rows 2 and 4 are obtained by applying AuxAdapt. For each frame, we also show the temporal consistency scores (between
current and previous frames) based on optical flow (left) and perceptual consistency (right). As visible, AuxAdapt considerably enhances
the temporal consistency of the video segmentation, which is also reflected by the scores.

2.2. Evaluation of Temporal Consistency

In this section, we first describe two ways of evaluat-
ing temporal consistency, and then evaluate segmentation
results without and with using AuxAdapt on the Cityscapes
dataset [12]. When measuring temporal consistency, the
first method is based on estimated optical flow and has
been commonly used. The second method is based on our
newly proposed perceptual consistency, which leverages vi-
sual similarity and does not require optical flow. As we will
see, our perceptual-consistency-based scheme offers a more
reliable way to measure temporal consistency.
Optical-flow-based measure: Many existing papers use
estimated optical flow to evaluate the temporal consistency
of the video segmentation, e.g., [4,5,13,14]. Following [5],
we adopt FlowNet2 [15] to compute the optical flow be-

tween two adjacent frames and warp the segmentation at
frame t to frame t − 1. We then compare the warped and
estimated segmentation masks for each frame (t < T ) using
the standard mean Intersection-over-Union (mIoU) metric.
The overall mIoU then serves as the flow-based temporal
consistency metric, which we denote as F-TC. Note that this
is the same metric used in [5] and more details can be found
therein.

Although the flow-based measure has been widely used,
there are several drawbacks. First, it is challenging to gen-
erate highly accurate and generalizable optical flow estima-
tions. In addition, it is susceptible to occlusions and objects
moving out of the frame.

Perceptual-consistency-based measure: Recently, we
have proposed to utilize perceptual consistency to capture



Method F-TC PC mIoU GMAC
w/o AuxAdapt 73.06 81.02 72.47 17.0
w AuxAdapt 74.46 82.25 73.18 21.2

Table 1. Performance evaluation results on Cityscapes valida-
tion set. F-TC denotes the flow-based temporal consistency mea-
sure (using FlowNet2) and PC denotes the perceptual-consistency-
based temporal consistency measure. GMAC is calculated based
on an input size of 1024×2048.

the temporal consistency of video segmentation [10]. Given
two nearby video frames and the corresponding predicted
segmentation maps, we assess how much the segmenta-
tion agrees with the cross-frame pixel correspondence es-
tablished on the two frames’ perceptual feature maps.

To quantify this, for each pixel in one frame, we first find
the most correlated pixel from the other frame by matching
perceptual features. These two pixels are expected to belong
to the same class. Next, we find the most correlated pixel
that is also agreed by the segmentation maps. If the seg-
mentation agrees with the perceptual correspondence, the
correlations found via unconstrained feature matching and
segmentation-agreed feature matching will be equal. Oth-
erwise, the constrained one will be smaller. As such, we
can use the ratio between these two correlations to quantify
the pixel-wise agreement between the segmentation and the
perceptual correspondence. This can then be aggregated
over the pixels to measure the perceptual consistency be-
tween the segmentation maps on the two frames, which nat-
urally captures their temporal consistency.

Unlike optical flow, perceptual consistency does not look
for exact pixel correspondence across two images. Instead,
it finds maximally correlated pairs of pixels. This makes
perceptual consistency immune to cases like occlusions and
objects moving out of frame where exact correspondence
no longer exists.
Evaluation results on Cityscapes: We use the Cityscapes
dataset to showcase the efficacy of our video segmentation
by using AuxAdapt. As summarized in Table 1, our ap-
proach achieves higher temporal consistency in terms of
both metrics.3 Specifically, AuxAdapt achieves a temporal
consistency score of 74.46 based on the flow-based mea-
sure (F-TC) and 82.25 based on the perceptual-consistency-
based measure (PC). On the other hand, when not using
AuxAdapt, i.e., the MainNet alone is applied to each video
frame without any adaptation, the respective scores are
lower: 73.06 and 81.02. In terms of segmentation accuracy
(in mIoU), we achieve a similar (slightly higher) accuracy
as compared to case of not using AuxAdapt. We also report
the computational costs measured by GMAC and it can be
seen that the additional computation due to the adaptation
of AuxAdapt is merely 4.2G. By using the proposed Aux-

3Note that higher scores indicate higher temporal consistency for both
metrics.

(a) Sample video segmentation without AuxAdapt

(b) Sample video segmentation with AuxAdapt

Figure 4. Comparison of two temporal consistency metrics for
a sample pair of consecutive video frames. On each frame, the
temporal consistency scores based on the flow-based metric and
the perceptual-consistency-based metric on shown on the left and
right, respectively. It can be seen that perceptual consistency cor-
rectly assigns higher scores to the clearly more consistent results
in the bottom row, whereas the flow-based metric incorrectly indi-
cates that the video segmentation without AuxAdapt (top) is more
consistent,

Adapt, we efficiently improve temporal consistency while
preserving original accuracy.

Sample video segmentation results without and with us-
ing AuxAdapt are shown in Fig. 3. It can be seen that Aux-
Adapt significantly improves the temporal consistency of
the video segmentation. Furthermore, we show the tempo-
ral consistency scores on each frame (computed between
the current and previous frames) based on optical flow (left)
and perceptual consistency (right). The scores also indicate
that the video segmentation based on AuxAdapt achieves
better temporal consistency. In the demonstration, we will
show consistent segmentation on full videos running live on
a smartphone.

Comparing two temporal consistency metrics: Fig. 4
shows the flow-based and perceptual-consistency-based
temporal consistency scores sample video segmentation re-
sults. It can be seen that in Fig. 4 (a), when not us-
ing AuxAdapt, the segmentation results has flickering ar-
tifacts (highlighted by the red boxes). The video segmenta-
tion with AuxAdapt, on the other hand, shows significantly
more consistent results across the frames, as can be seen in
Fig. 4 (b). We show the respective scores based on two tem-
poral consistency measures for each frame (computed be-
tween current and previous frames), with the optical-flow-
based score on the left and perceptual-consistency-based
score on the right. We see that the measure based on our
new perceptual consistency assigns higher scores to the
more consistent segmentation (bottom row), whereas flow-
based measure incorrectly gives higher scores to the less
consistent results (top row). During the demonstration, we
will provide more examples and analysis to better illustrate



Figure 5. Cross-unit deployment of AuxAdapt for real-time appli-
cation on mobile device. A quantized version of the MainNet is
deployed on the Hexagon Processor (Hex. Proc.) and the AuxNet
is deployed on the mobile GPU. MainNet’s output is converted
back to floating point before being sent to the GPU. On the GPU,
the MainNet’s and the AuxNet’s outputs are aggregated to provide
the final segmentation of a given frame. After that, the AuxNet is
updated based on this combined segmentation decision via back-
propagation.

the advantages of using perceptual consistency as a tempo-
ral consistency measure.

3. Cross-Unit Deployment on Mobile Device

We employ a novel cross-unit deployment strategy to
best utilize the processing capabilities on a smartphone
powered by the Qualcomm AI Engine. This platform
is comprised of several hardware and software compo-
nents to accelerate on-device AI-enabled user experiences.
The hardware architectures supported within the AI En-
gine include the Qualcomm® HexagonTM Processor,the
Qualcomm® AdrenoTM GPU, and the Qualcomm® KryoTM

CPU – all engineered to run AI applications quickly and
efficiently on-device. The Hexagon Processor has a fused
AI accelerator architecture, fusing together the scalar, vec-
tor, and tensor accelerators. This enables to provide fast
fixed-point integer operations, while having a low power
consumption.4

Since the MainNet is heavier and requires more compu-
tation operations as compared to the AuxNet, we take ad-
vantage of the Hexagon Processor and run a quantized ver-

4Qualcomm Hexagon, Qualcomm Adreno, and Qualcomm Kryo are
products of Qualcomm Technologies, Inc. and/or its subsidiaries.

sion of the MainNet on it. This enables very fast inferences
of the MainNet. Meanwhile, the smaller and less computa-
tion demanding AuxNet runs on the GPU, where it carries
out the forward inferences and the back-propagations for
model adaptation. By adopting such a cross-unit deploy-
ment approach, we properly utilize the available AI compu-
tation resources provided by the Qualcomm AI Engine on
the smartphone. On the contrary, a simple approach of run-
ning both the MainNet and the AuxNet on the GPU would
leave the powerful Hexagon Processor un-utilized and re-
sult in much slower performance. As we shall show in the
demonstration, our cross-unit approach enables real-time,
adaptive, accurate, and consistent video semantic segmen-
tation.

Fig. 5 describes our cross-unit deployment strategy.
More specifically, given a video frame, the quantized Main-
Net runs on the Hexagon Processor and generates a segmen-
tation prediction ymain. ymain is then converted to floating
point and accessed by the GPU, which we denote as ỹmain.
On the GPU, the input frame is first down-sampled before
being fed to the AuxNet, which reduces the network’s com-
putation. The AuxNet then generates a segmentation pre-
diction yaux. Next, ỹmain and yaux are summed up, and
an argmax operation is applied on the sum to obtain the fi-
nal segmentation decision yseg for the given input frame.
To adapt the AuxNet, a cross-entropy loss is computed be-
tween yseg and yaux, and then back-propagated through the
AuxNet to update its weights.

4. Implementation and Demonstration Details

The demonstration will run as an Android application on
a mobile phone powered by Qualcomm AI Engine. The ap-
plication will take as input a video sequence and run our de-
ployed adaptive video segmentation model to generate the
corresponding segmentation maps in real time.

To deploy on the Hexagon Processor, the MainNet will
be quantized using Qualcomm Innovation Center’s open-
source AI Model Efficiency Toolkit (AIMET) [16].5 For on-
line updating the AuxNet on the GPU, we use the OpenCL
ML SDK [17, 18]. We further utilize several techniques to
speed up the AuxNet’s operation on the GPU. First, the for-
ward passes are conducted using 16-bit floating-point num-
bers (FP16) and the backward passes are carried out with
32-bit floating-point numbers (FP32). Using FP16 reduces
the forward inference time by half as compared to using
FP32. In addition, we freeze early layers in the network to
reduce the number of trainable layers, which accelerates the
backward passes.

During the demonstration, we will first provide a brief
overview of our technologies and innovations to be demon-
strated. After that, we will show our online adaptive video

5AIMET is a product of Qualcomm Innovation Center, Inc.



segmentation model running real-time on the mobile phone.
More specifically, we will highlight two aspects of our ap-
proach: 1) better temporal consistency and 2) a frame rate
that meets real-time performance requirements. This will
be done via an Android application that will display on the
phone screen the input RGB video frame sequence and the
consistent segmentation results generated at a high frame
rate based on our deployed model, as well as another ap-
plication which will display the baseline segmentation net-
work on another phone. While running the application, we
will pause the video at certain time instances to highlight
example regions to showcase our improved segmentation.
Additional information such as accuracy numbers, temporal
consistency scores, and the real-time frame rate will also be
shown. The screen recording will be provided to the audi-
ence and an interactive Q&A session will be held to answer
questions.

5. Conclusion

In this work, we outlined our approach to demonstrate
our innovations on efficient, accurate, and temporally con-
sistent video semantic segmentation on a mobile device. We
applied our test-time adaptation scheme, AuxAdapt, to en-
able an image segmentation model to adapt to a given video
online. By running AuxAdapt, we can considerably im-
prove the temporal consistency of video segmentation in a
cost-efficient manner while maintaining the accuracy. To
measure temporal consistency, we utilized our novel met-
ric, Perceptual Consistency. We also showed the efficacy
of this metric over the widely-used optical-flow-based met-
ric. Finally, we exhibited a cross-unit deployment scheme
which best utilizes the available AI processing power on a
Snapdragon-powered smartphone and enables real-time op-
eration of our adaptive video segmentation algorithm.
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